
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 277 – 283 ISSN 1896-7094

Abstract—A block-based sparse direct finite element solver
for commonly used multi-core and shared-memory multiproces-
sor computers has been developed. It is intended to solve linear
equation sets with sparse symmetrical matrices which appear in
problems of structural and solid mechanics. A step-by-step as-
sembling procedure together with simultaneous elimination of
fully assembled equations distinguishes this method from the
well-known multifrontal solver, so this approach can be inter-
preted as a generalization of the conventional frontal solver for
an arbitrary reordering. This solver is implemented in the com-
mercial finite element software SCAD (www.scadsoft.com), and
its usage by numerous users has confirmed its efficiency and re-
liability.

I. INTRODUCTION

HE solver is based on the idea of a step-by-step assem-
bling of a given structure out of separate finite elements

and substructures obtained at the previous assembling steps,
and a simultaneous elimination of the fully assembled equa-
tions. It is an evolution of the frontal solver [1], and it differs
from the classical multifrontal solver [2][3] which is a purely
algebraic solver and gets the assembled global matrix in a
compressed format as input data.

T

The key distinctive features of the presented method are:
• Each node is associated with a group of equations (usu-

ally, 6 equations per node for shell and space frame fi-
nite elements, and 3 equations per node for volumetric
elements in unconstrained nodes). Thus, this approach
produces the natural aggregation of equations, in this
way improving the quality of reordering algorithms and
speeding up the performance at the factorization stage.
We refer to the elimination of a node of a finite element
model at each elimination step. It means that a group of
equations associated with the given node will be elimi-
nated.

• An object-oriented approach is applied. A front is a C++
class object that encapsulates eliminated nodes at the
current elimination step, a list of nodes and a list of
equations for the current front, a pointer to the dense
matrix which we denote as a frontal matrix, and so on.

• The whole elimination process is performed on a se-
quence of frontal matrices of the decreasing dimension-
ality.

This work was supported by the software company SCAD Soft
(www.scadsoft.com)

Key points of the method are described in [4]. The
paper [5] presents an improved version of the solver. The
Cholesky block factorization algorithm was applied instead
of a low-performance LU factorization from [4], and more
efficient reordering algorithms comparing to [4] were
implemented.

The current paper presents an extension of this solver
onto the class of multi-core and multiprocessor shared-mem-
ory computers which are very popular today. The contempo-
rary version of the solver is implemented in SCAD – one of
the most popular finite element software applications for
analysis and design of building structures in the Common-
wealth of Independent States region.

II. ANALYSIS STAGE

A. Reordering and Symbolic Factorization

Modern reordering algorithms have a heuristic nature and
do not provide an exact solution of the nonzero entries mini-
mization problem. Moreover, we never know in advance
what reordering strategy leads to the more optimal result for
a given problem. Therefore several reordering methods have
been developed. The most efficient methods for problems of
structural mechanics usually are the minimum degree algo-
rithm MMD , the nested dissection method ND , and the hy-
brid approach ND_MMD .

The fast symbolic factorization algorithm calculates the
number of nonzero entries for each method of the ones listed
above and then chooses the method that produces the least
number of nonzero entries.

The use of a nodal adjacency graph instead of a graph of
equations reduces the amount of data in a natural way and
makes the reordering algorithms and the symbolic factoriza-
tion procedure very fast: it takes only a few seconds even in
very large problems (2,000,000 – 4,000,000 equations) to
check 3 reordering methods and do the symbolic factoriza-
tion.

B. A Process Descriptor Data Structure

The reordering method establishes an order of the node
elimination. The next step is to define the order of the finite
element assembling.

The node is considered fully assembled if all finite ele-
ments, including this very node, have been already coupled.
Adding any of the remaining finite elements does not make
any change in the coefficients of equations associated with

978-83-60810-14-9/08/$25.00 © 2008 IEEE 277

A Sparse Shared-Memory Multifrontal Solver in SCAD Software

Sergiy Fialko
Cracow University of Technology, Poland ul. Warszawska 24, 31-155 Cracow, Poland

Email: sfialko@poczta.onet.pl

http://www.scadsoft.com/

278 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

this node. So, all equations belonging to the fully assembled
node should be eliminated.

Let us consider a simple example, a square plate with the
mesh 2x2 (Fig. 1). Before starting the elimination process,
the whole structure is presented as exploded into separate fi-
nite elements.

Fig. 1 Square plate 2x2

The sequence of nodal elimination produced by the re-
ordering algorithm is: 1, 3, 7, 9, 2, 6, 8, 4, 5. Node 1 is the
first node to be eliminated. This node belongs only to finite
element 1. So, we take the finite element 1 and node 1 as
fully assembled. The respective finite element matrix will
be:

,

4521

44342441

332331

2221

11

ssss

sss

ss

s

 (1)

where sij is a 6x6 matrix block because we suppose the de-
sign model to have six degrees of freedom per node. The
global node numbers (global indexes) are shown at the top.
The first block column contains the fully assembled equa-
tions. The partial factorization, covering only fully assem-
bled equations, is then performed and the fully decomposed
part of matrix is moved to a special buffer that contains the
fully factorized global matrix. The remaining part of the ma-
trix is an incomplete front; it will wait to be used at the fol-
lowing factorization steps. Local indexes are used during the
partial factorization. Matrix (1) is a frontal matrix.

In the same way the nodes 3, 7, 9 are eliminated, and their
respective incomplete fronts are created.

During the elimination of node 2 all finite elements have
been already involved, and now we look through the lists of
global indexes in the incomplete fronts. Node 2 is present in
the global indexes of previous (incomplete) fronts 1, 2 (Ta-
ble I), so we must assemble incomplete fronts 1, 2 to obtain
a frontal matrix containing fully assembled equations for
node 2.

This process is illustrated by Table I which shows a pro-
cess descriptor data structure. The number of elimination
steps is equal to the number of nodes of the design model.

We search for the node to be eliminated in the lists of nodes
of each remaining finite element and in the lists of global in-
dexes for each of the previous fronts. The fronts from the
preceding elimination steps, which contain this eliminated
node number, are the previous fronts. The previous fronts
and their corresponding finite elements, pointed to by the
last column of Table I, should be assembled to obtain the
frontal matrix for the current front.

C. Frontal Tree

The process descriptor data structure allows us to create a
frontal tree. We take the last front from the bottom of Table I
(it is Front 9) and put it at the top of the frontal tree (Fig. 2).
Front 8 is the previous front for Front 9 – we put it under
Front 9. For Front 8, Front 7 is its previous one – we put
Front 7 under Front 8. And so on.

We reorder the fronts to reduce the storage memory re-
quired for incomplete fronts. The new front numbers are
shown in italic under the original front numbers.

TABLE I.
A PROCESS DESCRIPTOR DATA STRUCTURE

No. of front, elimi-
nation step

Node being elimi-
nated

List of nodes in the frontal matrix List of previous fronts List of FEs fed to the as-
sembling

1 1 1,2,4,5 — 1
2 3 3,6,5,2 — 2
3 7 7,4,5,8 — 3
4 9 9,8,5,6 — 4
5 2 2,4,5,6 1,2 —
6 6 6,8,5,4 5,4 —
7 8 8,5,4 6,3 —
8 4 4,5 7 —
9 5 5 8 —

SERGIY FIALKO: A SPARSE SHARED-MEMORY MULTIFRONTAL SOLVER IN SCAD SOFTWARE 279

The frontal tree consists of (a) nodal fronts which have
more than one previous front, (b) sequential fronts which
have only one previous front, and (c) start fronts which do
not have any previous front.

The core memory is allocated dynamically for objects of
the nodal and start fronts. Each sequential front inherits the
address of the frontal buffer from its previous front – this
helps avoid the time-consuming memory allocation and
copying of incomplete front. Moreover, if the sequence of
sequential fronts does not have any assembled finite element,
it is possible to consolidate such fronts to enlarge the block
size of fully assembled equations and improve the perfor-
mance. The consolidated frontal tree is presented in Fig. 3.

Fig. 2 A frontal tree

The buffer for storing the incomplete fronts (BuffFront),
allocated in the core memory, is virtualized. When the size
of the model exceeds the capacity of the random access
memory (RAM), the buffer for the incomplete fronts is up-
loaded to hard disk. If all required previous fronts are in
RAM during the assembling of the current nodal front, they
are taken from BuffFront.

Otherwise, the previous fronts are taken from hard disk.
The BuffFront is compressed from time to time to get rid of
slow I/O operations during virtualization.

The presented method is a substructure-by-substructure
approach, because each front presents a collection of cou-
pled finite elements – a substructure, and the elimination
process consists of a step-by-step assembling of these sub-
structures and a simultaneous elimination of fully assembled
equations.

III. FACTORIZATION OF FRONTAL MATRIX

Generally, the structure of the frontal matrix can be very
complex (Fig. 4). The matrix is symmetrical, and only the
lower triangle part of it is stored in RAM. The fully assem-
bled equations (grayed) are stored continuously but in arbi-
trary parts of the matrix (not necessarily at the top). This pe-
culiarity restricts the direct application of the popular Lapack
high-performance packages (Linpack, BLAS) and forces us
to develop our own high-performance software for factoriza-
tions in frontal matrices.

Fig. 3 Consolidated frontal tree

Thus, a Cholesky block method has been developed,
which is a generalization of the frontal elimination approach
[1], [4], where the fully assembled equations are stored in ar-
bitrary parts of the matrix, onto the block version. It allows
us to achieve the BLAS level 3 performance.

=

CWB

WFW

BWA

2

21

1
T

TT

=
A W 1

BT

0 L 0
B W 2

C ⋅ I S L

I ⋅
I 0 0
W 1

T LT W 2
T

0 0 I

(2)

where W1, F, W2 are blocks of fully assembled equations, A,
B, C are blocks of partially assembled equations, which
make up an incomplete front (Fig. 5) after the partial
Cholesky factorization,

CB

A
~~
0

~
 (3)

The sign diagonal I, SL, I allows one to generalize the
classic Cholesky factorization method onto a class of prob-
lems with indefinite matrices. The symbol “~” means that the

280 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

corresponding matrix block is modified during the partial
factorization.

The fully assembled blocks are moved to the buffer for the
decomposed part of the matrix, and next the factorization of
it is performed in the address space of this buffer.

Fig. 4 The general structure of a frontal matrix. The fully assembled
equations are moved to a buffer for the decomposed matrix

The incomplete front consists of sectors A, B, C. The
symmetrical storage scheme is used. The coefficients of sec-
tor A remain in their positions, sector B moves up, and sec-
tor C moves up and to the left by the width of the grey strip.
The final structure of the incomplete front is presented in
Fig. 5.

The partial block factorization is performed in several
steps:
• Factorize block F:

T
L LSLF ⋅⋅= (4)

• Update blocks W1 , W2:

TTT
L

TT
L

222

111

~~

~~

WWWSL

WWWSL

→=⋅⋅

→=⋅⋅
 (5)

Fig. 5 The structure of the frontal matrix after the partial factorization.

An empty strip appears at the bottom of matrix.

• Update sectors A, B, C:

T

L

T
L

T
L

22

12

11

~~~

~~~

~~~

WSWCC

WSWBB

WSWAA

⋅⋅−=

⋅⋅−=

⋅⋅−=

 (6)

Expressions (4) – (6) are derived from (2) by means of the 
block matrix multiplication. Figs. 4, 5 help us to understand 
the structure of the frontal matrix. The main idea of the gen-
eralized  Cholesky block factorization method is  similar to 
the Gauss block elimination approach, reorganized to use the 
level 3 BLAS [10]. A particular case where a fully assem-
bled part is at the top of the frontal matrix is presented in [5].

Matrix F has a small dimensionality, so there is no prob-
lem to store all matrix multipliers (4) in the processor cache 
and achieve a peak performance at this stage.

Stage (5) is a forward reduction performed on the package 
of right-hand sides – it is possible to achieve a good perfor-
mance here, too.

The procedure that  consumes most of the time is  Stage 
(6). Each matrix multiplier  W1,  W2 is divided into smaller 
blocks, and the block matrix multiplication ensures the level 
3 BLAS .

IV. PARALLEL IMPLEMENTATION IN FRONTAL MATRIX

The  bottleneck  in  the  multi-core  and  multiprocessor 
shared-memory computing systems is an insufficient band-
width of the system bus which leads to a weak speedup as 
the number of processors grows. A typical dependence for 
the  speedup  parameter,  S p =  T 1 /T p ,  where  T 1 is  a 
computing time on one processor, T p is that on p processors, 
for algorithms where the performance factor  q ≤ 2 (matrix-
vector  multiplication,  non-block  matrix-matrix 
multiplication)   is  presented  in  Fig.  6.  The  performance 
factor  is  q  =  f/m where  f is  the  number  of  arithmetic 
operations for a given algorithm and m is the number of data 
transfers between RAM and the processor cache. 

A totally different  dependence  takes  place  on the same 
computer for the block matrix-by-matrix multiplication; here 

Mq ~  where M is the cache size (fig. 7). 

So, it is possible to achieve an efficient speedup for com-
puters with an insufficient bandwidth of the system bus by 
increasing the number of processors for level 3 BLAS algo-

rithms, where Mq ~  , because these algorithms use sig-

nificantly fewer RAM – cache – RAM transactions per sin-
gle arithmetic operation than the algorithms where q ≤ 2 . 

The results presented in Figs. 6 through 8 have been ob-
tained by special tests prepared by the author.

Therefore the main attention during the development of 
the parallel code is paid to the Cholesky block factorization 
in the frontal matrix and the fork-joint parallelization tech-
nique, which is used mainly at the stage 6 during the block 
matrix-by-matrix multiplication. 



SERGIY FIALKO: A SPARSE SHARED-MEMORY MULTIFRONTAL SOLVER IN SCAD SOFTWARE 281

The Microsoft Visual Studio 2008 environment (the C++ 
language  for  most  of  the  code  and  the  C  language  for 
“bottleneck”  fragments  of  the  code  in  order  to  achieve  a 
peak efficiency by compiler optimizations) with the OpenMP 
support  is  used.  All  program  code,  including  the 
factorization of frontal matrix, was developed by the author.

The local reordering of equations performed in the frontal 
matrix for the nodal and start fronts allows us to reduce the 
amount of time-consuming operations of moving sectors B , 
C block  and  thus  increase  the  performance  of  method 
(Fig. 8). 

 

Fig.  6. Sp = T 1 /T p vs. number of processors p for algorithms where 
the performance factor q ≤ 2 

 

Fig.  7. Sp = T 1 /T p vs. number of processors p for algorithms where 
the performance factor q ~ M 1/2 

We reorder the frontal nodes according to the sequence of 
global  reordering  and  then  take  the  reverse  order  –  each 
eliminated node occurs at the end of the node list. It ensures 
such a structure of the frontal matrix that the fully assembled 
equations are at  the bottom and no moving of incomplete 
fronts is required (only sector A is shown in the figure, sec-
tors B, C are omitted).

 

Fig.  8. Sp = T 1 /T p vs. number of processors p for factorization of 
frontal matrices. Trace 1 – perfect speedup, trace 2 – local fronts not 

reordered, trace 3 – reordered fronts. 

For instance, in the example of Fig. 1 the order of node 
processing for front 7 (tab. I) must be 5, 4, 8 rather than 8, 5, 
4, because this numbering ensures that at each front elimina-
tion step the fully assembled equations stay at the bottom of 
the matrix and no moving of incomplete fronts is required.

Typical  dependencies  S p = T 1 /T p vs.  the number of 
processors  p for  factorization  of  frontal  matrices  for 
presented  method are  shown in  Fig.  8.  The  total  time of 
factorization for all frontal matrices is under consideration. 
An essential improvement of performance occurs when the 
local reordering of equations in frontal matrices is performed 
(the dashed curve corresponds to local reordering and solid 
curve to no local reordering). 

V. NUMERICAL RESULTS

All results presented further below have been obtained on 
the  computer  Intel®  Core™2  Quad  CPU  Q6600 
@2.40 GHz,  cache  4xL1:  32  KB  (code),  4xL1:  32  KB 
(data),  2xL2:4096 KB, random-access memory DDR2 800 
MHz 4 GB, operating system Windows XP Professional.

D. Test 1

A cube with the mesh 40x40x40 consisting of brick volu-
metric finite elements is considered.  Four corner  nodes of 
the bottom face are restrained. This model comprises 68 921 
nodes, 64 000 finite elements, 206 751 equations; the whole 
model is stored in RAM. The analysis stage, which includes 
reordering,  symbolic  factorization,  creation  of  the  process 
descriptor  data  structures,  reordering and  consolidation  of 
the frontal tree,  is performed as a serial  computation. The 
computing time is  3  s.  The  solution  stage,  including for-
ward – backward reductions, takes 4 s. The parallel compu-
ting stage covers only the factorization of frontal matrices 



282 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

and takes a predominant part of the whole time required by 
the numerical factorization stage (Table II).

The factorized matrix, as well as the buffer for incomplete 
fronts, is stored in RAM, and due to this fact the speedup pa-
rameter on four processors is about 3.0. It is a good result for 
multi-core and shared-memory office computers. For prob-
lems of structural mechanics   solved by finite element soft-
ware  based  on  the  Intel  Math Kernel  Library (PARDISO 
solver  –[15]), the speedup parameter on four processors is 
about 2.9.

TABLE II.
TIME OF NUMERICAL FACTORIZATION FOR CUBE 40X40X40

Number of pro-
cessors

Numerical factor-
ization – Tp, s

S p =T 1 /T p 

1 519 1.0
2 280 1.85
3 202 2.57
4 167 3.10

However, the PARDISO solver works only with the core 
memory, so its capabilities are restricted to problems of rela-
tively small dimensions.

B. Test 2

A square plate with two meshes 400x400 and 800x800 is 
considered. A quadrilateral flat shell finite element is used. 
The time of numerical factorization was compared with that 
for the sparse direct solver from ANSYS v 11.0. The first 
problem (mesh 400x400, Table III)  contains 964 794 equa-
tions and the second one (mesh 800x800, Table IV) contains 
3 849 594.

TABLE III.
TIME OF NUMERICAL FACTORIZATION FOR PLATE 400X400

Number of 
processors

Numerical factor-
ization for ANSYS 

v. 11.0, s

Numerical factoriza-
tion for presented 

solver, s

1 221 226
2 176 152
4 159 121

TABLE IV.
TIME OF NUMERICAL FACTORIZATION FOR PLATE 800X800

Number of 
processors

Numerical factor-
ization with ANSYS 

v. 11.0, s

Numerical factoriza-
tion with the presented 

solver, s

1 failed 2 091
2 failed 1 450
4 failed 1 080

For the first model (mesh 400x400), our solver stores the 
factorized matrix on hard disk, but the buffer for incomplete 
fronts is stored in the core memory. Due to virtualization of 
the factorized matrix, the scalability is worse comparing to 
the previous model – the speedup parameter on four proces-
sors is about 1.9. The performance demonstrated by both the 
sparse direct solver from ANSYS v. 11.0 and our solver is 
about the same.

For the second model (mesh 800x800),  the solver  from 
ANSYS v.11.0 failed due to insufficient RAM. Results for 
our solver are presented in Table IV. The factorized matrix 

is stored on hard disk, and virtualization is used for the buf-
fer  that  contains  incomplete  fronts.  The  scalability  is 
weak — the speedup parameter on four processors is about 
1.9. The size of the factorized matrix is 9 723 MB.

C. Test 3

The design model of a multistory building complex is pre-
sented in Fig. 9.

The number of equations is 1 534 674, the size of the fac-
torized global matrix is 5 355 MB, the numerical factoriza-
tion time on four processors is 860 sec. The disk memory is 
used for virtualization of the factorized matrix as well as for 
virtualization of the buffer where the incomplete fronts are 
stored.

Test A demonstrates that the scalability of the presented 
method for multi-core and multiprocessor office computers 
is similar to the scalability of the sparse direct solver based 
on Intel Math Kernel Library when the dimensionality of the 
model permits to use only the core memory. Test B proves 
that the performance of our solver is similar to the perfor-
mance of the conventional multifrontal solver from the well-
known ANSYS software. In addition, test B shows that the 
presented solver works very efficiently with the core mem-
ory. Test C illustrates that the presented method solves a re-
ally  large  finite  element  problem  of  structural  mechanics 
very efficiently.

 
Fig.  9. Finite element model of a multistory complex “Moscow-city”, 

255 779 nodes, 347 767 finite elements, 1 534 674 equations



SERGIY FIALKO: A SPARSE SHARED-MEMORY MULTIFRONTAL SOLVER IN SCAD SOFTWARE 283

VI. CONCLUSION

A block-based sparse direct multifrontal solver for finite 
element problems of structural and solid mechanics has been 
developed. This method is oriented mainly at the usage on 
common  shared-memory  multiprocessor  and  multi-core 
computers.

The proposed solver has a clear mechanical interpretation 
as a substructure-by-substructure method. It uses the modern 
reordering algorithms which effectively reduce the fill-ins.

The Cholesky block algorithm with a generalization onto 
the class of indefinite matrices is applied here to the factor-
ization of frontal  matrix. The complicated structure of the 
frontal  matrix restricts the direct  application of the BLAS 
high-performance package and forces us to develop our own 
high-performance code based on a subdivision of the frontal 
matrix into blocks.

The OpenMP technique is applied to produce a fork-joint 
parallelization.  The  block  subdivision  and  an  appropriate 
numbering of equations in the frontal matrix, which reduces 
the amount of low-performance moving operations, allow us 
to improve the scalability of the method.

A comparison with the sparse direct solver from ANSYS 
v11.0  demonstrates  that  the  performance  of  the  proposed 
solver is close to the performance of ANSYS, but the pro-
posed solver allows us to solve essentially larger problems 
on the same computers than the ANSYS solver is capable of 
processing.

The reliability and efficiency of the proposed solver has 
been confirmed by numerous users of the SCAD commercial 
software.

REFERENCES

[1] B. M. Irons, “A frontal solution program for finite-element analysis”, 
International  Journal  for  Numerical  Methods  in  Engineering,  2, 
pp. 5 –32, 1970.

[2] I. S. Duff, J. K. Reid, “The multifrontal solution of indefinite sparse 
symmetric linear systems”, ACM Transactions on Mathematical Soft-
ware, 9, pp. 302–325, 1983

[3] F. Dobrian, A. Pothen, “Oblio: a sparse direct solver library for serial 
and parallel computations”, Technical Report describing the OBLIO 
software library, 2000.

[4] S.  Yu.  Fialko,  “Stress-Strain  Analysis  of  Thin-Walled  Shells  with 
Massive Ribs”, Int. App. Mech., 40, N4, pp. 432–439, 2004.

[5] S. Yu.  Fialko,  “A block sparse direct  multifrontal  solver in  SCAD 
software”, in  Proc. of the CMM-2005 – Computer Methods in Me-
chanics June 21-24, 2005, Czestochowa, Poland, pp. 73 – 74.

[6] A. George, J. W.-H. Liu, “The Evolution of the Minimum Degree Or-
dering Algorithm”, SIAM Rev., 31, March, pp. 1-19, 1989.

[7] A. George, J. W.-H. Liu, Computer solution of sparse positive defi-
nite systems , New Jersey : Prentice-Hall, Inc. Englewood Cliffs, 
1981, ch. 8. 

[8] C. Ashcraft, J. W.-H. Liu, “Robust Ordering of Sparse Matrices Using 
Multisection”, Technical Report CS 96-01, Department of Computer  
Science, York University, Ontario, Canada, 1996.

[9] A. George, J. W.-H. Liu,  Computer solution of sparse positive defi-
nite systems, New Jersey : Prentice-Hall, Inc. Englewood Cliffs, 1981, 
ch. 5.

[10] J. W. Demmel, Applied Numerical Linear Algebra. SIAM, Philadell-
phia, 1997, ch. 2.

[11] A. Kumbhar, K. Chakravarthy, R. Keshavamurthy, G. V. Rao, “Uti-
lization of Parallel Solver Libraries to solve Structural and Fluid prob-
lems”,  White  paper  by  Cranes  Software,  http://www.intel.com/cd/ 
software/products/asmo-na/eng/373466.htm.

[12] N. I. M. Gould, Y. Hu, J. A. Scott, “A numerical evaluation of sparse 
direct solvers for the solution of large sparse, symmetric linear sys-
tems of equations”,  Technical report RAL-TR-2005-005, Rutherford  
Appleton Laboratory, 2005.

[13] O. Schenk,  K. Gartner,  “On fast factorization pivoting methods for 
sparse  symmetric  indefinite  systems”,  Technical  Report 
CS-2004-004, Department of Computer Science, University of Basel, 
Switzerland, 2004.

[14] O. Schenk, K. Gartner, “Solving unsymmetric sparse systems of linear 
equations with PARDISO”, Journal of Future Generation Computer 
Systems, 20(3), 475–487, 2004.

[15] O. Schenk, K. Gartner, W. Fichtner. “Efficient sparse LU factoriza-
tion with left-right  looking strategy on shared memory multiproces-
sors”, BIT, 40(1), 158–176, 2000.

 

http://www.intel.com/cd/software/products/asmo-na/eng/373466.htm
http://www.intel.com/cd/software/products/asmo-na/eng/373466.htm
http://www.cs.odu.edu/~pothen/Papers/oblio99.ps
http://www.cs.odu.edu/~pothen/Papers/oblio99.ps

