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Abstract—In this paper, we consider task scheduling in dis-
tributed computing. In distributed computing, it is possible that
tasks fail, and it is difficult to get accurate information about
hosts and tasks. WQR (workqueue with replication), which was
proposed by Cirne et al., is a good algorithm because it achieves
a short job-completion time without requiring any informat ion
about hosts and tasks. However, in order to use WQR for
distributed computing, we need to resolve some issues on task
failure detection and task cancellation. For this purpose,we
examine two approaches—the conventional task timeout method
and the soft state method. Simulation results showed that the
soft state method is more robust than the task timeout method.

I. I NTRODUCTION

D ISTRIBUTED computing, in which large-scale comput-
ing is performed using the idle CPU times of many

PCs, has attracted considerable attention recently. The jobs
executed in distributed computing comprise many tasks. These
tasks are allocated to PCs and are processed in parallel.
Some well-known active distributed computing projects are
SETI@home[1] and distributed.net[2].

So far, distributed computing has been mainly used
in the limited area of scientific computing for analysis
of protein folding, climate simulations, nuclear physics,
etc. In these type of applications, the jobs are usu-
ally so large that they often take several months to
be completed. For such large jobs, the effect of task
scheduling on the job completion time is relatively
small. Therefore, an efficient task scheduling algorithm
is not that important in traditional distributed computing
projects.

In the future, it is expected that distributed computing
will be applied to various types of large-scale computing
applications such as analysis of DNA, data mining, simulations
of atmospheric circulation or ocean circulation, structural and
stress analysis and fluid analysis of the air resistance of cars
or planes and the water resistance of ships. These type of
applications require many medium-sized jobs that take several
hours or days to complete. The job completion time of such
medium-sized jobs are affected by task scheduling.

In this paper, we discuss task scheduling in distributed
computing.

Task scheduling in distributed computing has two main
goals. The first goal is to minimize the job completion time. In
order to complete a job, all tasks that are executed on various
hosts should be completed. The delay in a single task can affect
the completion time of the whole job. Therefore, the scheduler
has to monitor the task execution at each host and perform ap-
propriate actions in response to the change in a situation. The
second goal is to minimize the wastage of CPU cycles. In dis-
tributed computing, it is common to replicate tasks to achieve
good performance. However, using task replicas results in a
wastage of CPU cycles. In traditional distributed computing
projects, this wastage of CPU cycles has been tolerated be-
cause such CPU cycles otherwise go into idle cycles. However,
the wastage of CPU cycles implies the wastage of electric
power if PCs have power-saving function. Considering recent
trend of energy saving, the importance of the reduction in
wastage of CPU cycles in distributed computing is increasing.

Task scheduling is not a new problem. It has been studied
in the area of parallel computers or clusters. However, the
distributed computing systems targeted in this paper are dif-
ferent from parallel computers or clusters. The characteristics
of distributed computing are listed as follows:

• Hosts are heterogeneous and autonomous[3].
• It is difficult to obtain good information about the

hosts[4].
• Hosts are often behind NATs (network-address transla-

tions) or firewalls[5].
• Hosts are frequently turned off by users[5].
In BOINC[5], the well-known distributed computing plat-

form, task scheduling is performed on the basis of the in-
formation regarding the processing power of each host and
the estimation of the processing time of each task. When this
information does not reflect the actual performance, the job
completion time deteriorates.

In this paper, we investigate a task scheduling method
known as WQR (workqueue with replication)[6], which was
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originally proposed for heterogeneous Grid environments.The
main feature of WQR is that it does not require any kind
of information about the hosts or tasks. WQR has the same
performance as the existing scheduling method used, which
requires informations on the hosts and tasks. For this reason,
the use of the WQR method in distributed computing appears
promising. The drawback of WQR is the wastage of CPU
cycles. In WQR, some CPU cycles are wasted because tasks
are replicated and processed by multiple hosts.

There are some issues to consider when WQR is applied
to distributed computing. First, the original WQR method
does not take into account task failures and therefore it is
possible that the job will not be completed if task failures occur
frequently. In distributed computing, however, task failures
are not exceptional because the hosts are frequently turned
off by users. Second, the original WQR method assumes that
the scheduler is able to cancel executing tasks by sending
messages to the hosts. However, in distributed computing, it
is difficult for the scheduler to send messages to the hosts
because of NATs or firewalls. Therefore, in order to use the
WQR method in distributed computing, it is necessary to add
additional mechanisms to enable task failure detection andtask
cancellation.

A common approach to solve these issues is to set a time-
out for task execution. Most existing distributed computing
platforms use this approach[7]. If a scheduler does not receive
the result of an allocated task before the timeout, the scheduler
creates another replica of the task and allocates it to another
host. We call this method as the task timeout method. The
task timeout method ensures the completion of all tasks of
the job. The problem in this approach is the determination of
the appropriate timeout value. The appropriate timeout value
depends on the average task execution time and therefore
cannot be determined uniquely. The wrong timeout value may
cause a delay in job completion and wastage of CPU cycles.

Another approach involves the use of the soft state protocol,
which improves the robustness of distributed systems[8]. In
this approach, hosts and schedulers exchange messages peri-
odically in order to monitor each other’s states. Messages are
sent in a best-effort (unreliable) manner[9], that is, theyare
not retransmitted if they are lost.

In this study, we used the task timeout method and the soft
state method with WQR and compared their performances
through simulations. The simulation results showed that the
soft state method had a better performance than the task
timeout method.

The rest of this paper is organized as follows. In section
II, we define the distributed computing model and the terms
used in this study. In section III, we provide an overview
of WQR. In section IV, we explain the issues in applying
WQR to distributed computing. In section V, we describe two
approaches to deal with these issues. In section VI, we evaluate
the performance of these approaches through simulations.
Finally, in section VII, we conclude the paper.

client
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task
result
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Fig. 1. Model of the distributed computing environment

II. T HE DISTRIBUTED COMPUTING ENVIRONMENT MODEL

Distributed computing involves performing large-scale com-
putations using the idle CPU cycles of many PCs in a network.
The participating PCs are known ashosts. We use the term
users to refer to the people using the hosts. Atask is a unit of
scheduling that consists of a program and input data. Ajob is
defined as a set of tasks.

Task scheduling involves the allocation of tasks to hosts
along with the allocation of the order of execution. Like
most distributed computing projects, we consider Bag-of-Tasks
applications in which tasks are completely independent[4].

Fig. 1 shows the model of the distributed computing envi-
ronment considered in this paper. It consists of one scheduler
and many hosts.

When the scheduler receives a job, it allocates the tasks in
the job to hosts. The hosts receive the tasks from the scheduler
and send back the results after task completion. We assume
that the transfer of tasks and results are performed in a reliable
manner using retransmissions.

However, hosts sometimes crash because of hardware fail-
ures or shutdowns by users. When hosts crash, their tasks also
fail. Task failures are not notified explicitly to the scheduler.

In this paper, we distinguish between task failure and task
cancellation. The former implies that task execution is stopped
unexpectedly due to crashing of the host. The latter implies
that the task execution is stopped as the task is considered
unnecessary by the scheduler.

III. W ORKQUEUE WITH REPLICATION

Workqueue with replication (WQR)[6] is a task scheduling
algorithm originally proposed for large-scale distributed sys-
tems such as Grids. The main feature of WQR is that it does
not require any kind of information about the hosts or tasks.
The performance of WQR is equivalent to that of FPLTF[10]
or Sufferage[11], which require information about the hosts
and tasks[6].

The WQR algorithm uses task replication to achieve a good
performance. The scheduler chooses tasks in an arbitrary order
and sends them to the hosts. When a host completes its task, it
sends the result back to the scheduler and receives a new task
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from the scheduler. This scheme continues until all the tasks
in the job are allocated. In the simple Workqueue algorithm,
hosts that complete their tasks become idle. In WQR, however,
these hosts are allocated replicas of tasks that are still running.
When a task replica finishes at any host, its other replicas are
cancelled.

Using task replication, WQR can improve the performance
of a distributed computing by reducing the delay in completion
of tasks allocated to slow/busy hosts. Task replication increases
the possibility that at least one replica is allocated to a fast/idle
host.

However, to avoid wastage of CPU cycles, there is a
predefined limit on the number of task replicas. Tasks are
replicated until the number of replicas reaches this predefined
limit.

IV. I SSUES IN APPLICATION OFWQR TO DISTRIBUTED

COMPUTING

The concept of WQR is very desirable in a distributed
computing environment in which it is difficult to obtain
accurate information about the performance of hosts. However,
the original WQR algorithm is not recommended for use in a
distributed computing environment. When the WQR method
is applied to distributed computing, there are some issues to
consider.

A. Detection of task failure

When a task fails, the scheduler should detect the failure
and reschedule the failed task to a different host. However,it
is very difficult for the scheduler to detect task failures without
any notification.

In the original WQR method, the number of task replicas
that can be created is limited. If all the replicas of a task fail
and these failures are not detected by the scheduler, the task
can never get completed. Such a situation can be avoided if the
number of task replicas is unlimited. However, this increases
the wastage of CPU cycles[6].

B. Explicit task cancellation

In the original WQR method, when a task replica is com-
pleted by any host, the executions of its other replicas are
cancelled in order to reduce the wastage of CPU cycles.

However, in distributed computing, it is difficult for the
scheduler to cancel the tasks executing on hosts. This is
because in a distributed computing environment, the hosts
are generally behind NATs or firewalls. In this situation,
communications are always initiated by the hosts and not by
the scheduler. The scheduler cannot send any messages unless
the hosts open a connection to the scheduler. Therefore, even
though the scheduler receives the results of the completed
task, it cannot send messages to the other hosts to cancel the
replicas.

V. EXTENSIONS OFWQR

We consider two approaches to improve the WQR method,
i.e., the task timeout method and the soft state method, in order
to deal with the issues discussed in section IV.

A. Task timeout method

In BOINC, the task timeout method, which has an upper
limit for task execution time, is used.

The scheduler allocates a task to a host and sets the timeout
value on the timer. If the scheduler does not receive the result
of the task from the host before the timeout period elapses, it
reschedules the task to another host. This method ensures the
completion of all tasks of the job.

A problem with the timeout method is the determination of
an appropriate timeout value. The appropriate timeout value
depends on the average task execution time. An inappropriate
timeout value delays job completion and wastes many CPU
cycles. For example, if the timeout value is too small, the
scheduler creates redundant replicas of tasks that are still
running, while if the timeout value is too large, there is a
delay in the detection of failed tasks by the scheduler.

The explicit task cancellation mentioned in section IV-B is
impossible in the task timeout method. All task replicas are
executed until they have completed or failed.

B. Soft state method

The soft state method was originally proposed for state man-
agement of communication protocols[12]. It is characterized
by periodic refreshing of information and the initialization
of information by timeout. Lui et al. showed that the use of
the soft state method makes communication protocols highly
robust[8].

In the soft state method, the scheduler and hosts exchange
information with each other. Hosts that are executing tasks
send refresh messages to the scheduler periodically. On receiv-
ing the refresh message, the scheduler sends a reply message
to the host. Messages are sent in a best-effort (unreliable)
manner, that is, they are not retransmitted if they are lost.
If the scheduler does not receive a refresh message before
the message timeout, it reschedules the corresponding taskto
another host. On the other hand, if the host does not receive
a reply message before the message timeout, it aborts its task
and sends a request for a new task to the scheduler.

The main feature of this method is that the scheduler and
the hosts are aware of each other’s states due to the periodic
exchange of messages. On receiving refresh messages from
the hosts, the scheduler confirms that the allocated tasks are
running normally. The reply messages from the scheduler to
the hosts confirm that the scheduler is still waiting for the
results of the tasks, that is, the tasks are not cancelled. Thus,
the soft state method can perform explicit task cancellation,
which cannot be achieved with the task timeout method. By
stopping the flow of refresh messages, the scheduler can
inform the host that the task is no longer necessary.

However, problems can arise if message losses occur fre-
quently. If refresh messages are lost consecutively, the sched-
uler regards the corresponding task as failed and creates
redundant replicas of the task. If reply messages are lost
consecutively, the host regards its task replica as cancelled
and aborts the necessary task replica. This false task abortion
is another cause of task failure.
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In order to exchange messages with the scheduler, hosts
should always be connected to the network. However, since
the sizes of refresh and reply messages are very small, the
network load added by these messages is negligible compared
to the tasks and their results.

VI. PERFORMANCEEVALUATION

We evaluated the performance of the two methods men-
tioned in section V through simulations.

We assumed that the network transfer times were negligible
because our target applications were CPU bound. As the
performance criteria, we considered the job completion time
and the number of wasted CPU cycles The job completion time
is the time between the start of the first task and the completion
of the last task. The wasted CPU cycles are the sum of all the
CPU cycles that are used for executing task replicas that did
not contribute to the final result. Such task replicas include
cancelled replicas, failed ones, and redundantly completed
ones.

In the rest of this section, we will refer to the task timeout
method and the soft state method as the TT and SS methods,
respectively.

A. Simulation settings

In our simulations, the scheduler runs a single job. There-
fore, all hosts execute tasks of the same job. Further, each host
executes only one task at a time.

The processing power of each host is taken from a uni-
form distributionU(1, 7) and therefore the average processing
power of the hosts is 4. The total processing power of all the
hosts in the system is fixed to 1000.

The size of a task is defined as the processing power
required to process the task. For example, a task with a size
of 10 is processed in 5 s by a host with a processing power of
2. The average task size (denoted asµ) is 10000 (large tasks)
or 100 (small tasks). The size of each task is an integer taken
from a normal distribution with a standard deviation of0.4µ.
In both cases, the total size of all tasks included in a job is
fixed as 1000000.

The number of task replicas is limited to 4 on the basis of
the results of the study by Cirne et al.[6], which states thatthe
performance of WQR with a limit of 4 is close to that when
the number of task replicas is unlimited.

The task failure rate is defined as the inverse of the MTBF
(mean time between failures) of tasks. All tasks have the same
failure rate regardless of their size. This reflects the factthat
large tasks stay in the hosts for a long time and therefore they
are more likely to be involved in host crashes.

The message loss rate is defined as the ratio of lost messages
to total messages sent. If the message loss rate is 0.1, it implies
that 10% of the messages are lost.

For the TT method, the simulations were performed by
changing the task timeout value. We used three timeout values
es, 2es, and 4es. es is the estimated average task execution
time given byes = µ/p, while p is the average processing
power (p = 4, as mentioned in section VI-A). For example,
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if the average task size is 10000, then the task timeout values
are 2500, 5000, and 10000. In the following graphs, “TT-X”
indicates a task timeout method with timeout valueX .

In the simulations of the SS method, refresh messages were
sent every 10 s and the message timeout value was set to
100(s). This implies that 10 or more consecutive message
losses resulted in rescheduling or abortion of tasks, as men-
tioned in section V-B.

B. Simulation results

For each parameter setting, we performed 10 simulations
using different jobs. The presented results are the averageof
the results of the 10 simulations.

1) Effect of task failures: The task failure rate was changed
for all simulations. The message loss rate was fixed at 0.
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Fig. 6. Plot of the CPU cycles wasted by failed tasks (µ = 10000)

 0

 10000

 20000

 30000

 40000

 50000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

C
om

pl
et

io
n 

tim
e 

(s
)

Message loss rate

SS
TT-2500
TT-5000

TT-10000

Fig. 7. Plot of the job completion time (µ = 10000)

 0

 100

 200

 300

 400

 500

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

%
 o

f W
as

te
d 

C
P

U
 c

yc
le

s

Message loss rate

SS
TT-2500
TT-5000

TT-10000

Fig. 8. Plot of the wasted CPU cycles (µ = 10000)

Fig. 2 shows the job completion time when the average task
sizeµ is large. It can be observed that the job completion time

of the SS method is short and the impact of the task failure rate
is relatively small. In the case of the TT method, the larger the
timeout value, the larger the impact of the task failure rate. The
reason for this is the difference in the task failure detections
in the TT and SS methods. When a task fails, the TT method
has to wait for the timeout in order to allocate a new replica
to another host. Therefore, the large timeout value delays the
start of the replica and also delays the task completion. On the
other hand, a scheduler using the SS method can detect task
failures immediately because the refresh messages stop when
a task fails.

Fig. 3 shows the number of wasted CPU cycles. The impact
of task failures in the TT method is almost the same regardless
of the timeout value. This is because the replica creation in
the TT method is triggered by a timeout and therefore is
independent of task failures. On the other hand, the number of
wasted CPU cycles in the SS method is almost proportional to
the task failure rate. This implies that the number of replicas
in the SS method increases with the number of task failures.
However, these replicas reduce the job completion time of the
SS method and therefore they are accepted as a necessary cost.

Fig. 4 and Fig. 5 show the performances of the two methods
whenµ is small. The impact of task failures is very small in
both the TT and SS methods. The reason for this is that small
tasks are not likely to be involved in host crashes because of
their short stay in the hosts and they do not waste many CPU
cycles even if they fail.

2) Effect of the task timeout value: It should be noted that
the performance of the TT method is significantly affected by
the task timeout value. Since the timeout value defines the
maximum task execution time, the appropriate timeout value
depends on the average task execution time. Calculation of
the average task execution time requires information such as
the average task size and the processing power of hosts. The
fact that the performance of the TT method depends on this
information contradicts the advantage of WQR, which does
not require any information about tasks and hosts.

Moreover, even if we can calculate the average task execu-
tion time (denoted ase), the appropriate timeout value for the
TT method cannot be determined by a simple calculation such
ase ·F , whereF is some fixed value. There are two ways in
which the task timeout value affects task execution.

1) If the timeout value is extremely large, the creation of a
new replica of a failed task is delayed, and as a result,
the completion of the task is also delayed.

2) If the timeout value is very small, many redundant repli-
cas are created and they consume computing resources.

Fig. 2 (whene is large) shows that a timeout value smaller
thane is desirable. However, Fig. 4 (whene is small) shows
the opposite behavior. These results indicate that effect (1) is
dominant for largee and effect (2) is dominant for smalle. It
is very difficult to estimate the effect of the timeout value on
task execution for a given value ofe.

3) Effect of task cancellation: It should be noted that in
Fig. 3, the number of wasted CPU cycles in TT increases as
the task failure rate decreases. The scheduler using TT is not
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able to cancel the execution of task replicas even if they are
unnecessary. Therefore, even for a low task failure rate, many
redundant replicas are executed to the end, and they waste
many CPU cycles. On the other hand, the number of wasted
CPU cycles in the SS method decreases as the task failure
rate decreases. The scheduler using the SS method cancels
task replicas as soon as they became unnecessary. Therefore,
redundant replicas are cancelled before they waste CPU cycles.
This result shows that SS’s explicit cancellation of redundant
replicas is effective in reducing the wastage of CPU cycles.

When the task failure rate is high, however, the difference
between SS and TT is small. This is because a high task
failure rate implies that many replicas including redundant
ones fail frequently. Fig. 6 shows the wasted CPU cycles of
failed tasks. From the graph, it can be observed that most
of the wasted CPU cycles are those of failed tasks. In this
case, most redundant replicas in SS failed before they were
cancelled explicitly.

4) Effect of message losses: We also investigated the effect
of changing the message loss rate of the simulations. The
average task size is 10000 and the task failure rate is fixed
to 1 (time/1000 s).

Fig. 7 and Fig. 8 show the job completion time and the
number of wasted CPU cycles, respectively. It is obvious that
the performance of the TT method is not affected by the
message loss rate because the TT method does not exchange
any messages during task execution. The performance of SS is
also not affected as long as the message loss rate is lower than
a threshold value (approximately 0.3 in the graph). However,
as the message loss rate increases above the threshold, the
performance of the SS method degrades significantly.

In the SS method, consecutive message losses cause false
task abortion (as mentioned in section V-B). If the host aborts
its task replica, the scheduler regards the task as failed and
allocates a new task replica. However, when the message
loss rate is very high, this new task replica may be aborted
again. If the message loss rate is higher than the threshold,
such abortions occur repeatedly, and the task completion is
significantly delayed. The threshold is determined by the
refresh interval and the timeout value of the SS method.

It should be noted that this result does not necessarily
mean that the SS method is not robust against message losses.
A significant degradation in performance occurs only when
the high message loss rate continues permanently, which is
impractical in real networks. A temporary increase in message
losses does not affect the performance of SS.

VII. C ONCLUSIONS

In this paper, we investigated task scheduling in distributed
computing. We selected WQR as the scheduling method
because it does not require any kind of information about

the hosts or tasks. We used the conventional task timeout
method and the soft state method with WQR and compared
their performances through simulations. The simulation results
are summarized as follows.

• The soft state method is more robust than the task timeout
method against task failures.

• The performance of the task timeout method depends
on the timeout value, and it is difficult to calculate the
appropriate timeout value.

• The soft state method wastes less CPU cycles than the
task timeout method when the task failure rate is low.

• There is a threshold for the message loss rate, over
which the performance of the soft state method degrades
significantly.

From these results, we can conclude that the soft state method
is preferable to the task timeout method for task scheduling
in distributed computing.
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