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Abstract—In this paper, we consider task scheduling in dis-  In this paper, we discuss task scheduling in distributed

tributed computing. In distributed computing, it is possible that  computing.

tasks fail, and it is difficult to get accurate information about Task scheduling in distributed computing has two main
hosts and tasks. WQR (workqueue with replication), which wa Is. The first lis t inimize the iob letion ti |
proposed by Cirne et al., is a good algorithm because it achies goals. Thefirstgoa '_S 0 minimize the job compietion |nTe._
a short job-completion time without requiring any information order to complete a job, all tasks that are executed on v&riou
about hosts and tasks. However, in order to use WQR for hosts should be completed. The delay in a single task cact affe
distributed computing, we need to resolve some issues on kas the completion time of the whole job. Therefore, the schedul
failure detection and task cancellation. For this purpose,we nhas to monitor the task execution at each host and perform ap-

examine two approaches—the conventional task timeout met . . . . . -
and the soft state method. Simulation results showed that # propriate actions in response to the change in a situatiba. T

soft state method is more robust than the task timeout method ~S€cond goal is to minimize the wastage of CPU cycles. In dis-
tributed computing, it is common to replicate tasks to azhie

l. INTRODUCTION good performance. However, using task replicas results in a
ISTRIBUTED computing, in which large-scale computwastage of CPU cycles. In traditional distributed compytin
ing is performed using the idle CPU times of manyprojects, this wastage of CPU cycles has been tolerated be-
PCs, has attracted considerable attention recently. The jeause such CPU cycles otherwise go into idle cycles. However
executed in distributed computing comprise many taskss@hdhe wastage of CPU cycles implies the wastage of electric
tasks are allocated to PCs and are processed in parafewer if PCs have power-saving function. Considering recen
Some well-known active distributed computing projects ateend of energy saving, the importance of the reduction in
SETI@home[1] and distributed.net[2]. wastage of CPU cycles in distributed computing is incregsin
So far, distributed computing has been mainly used Task scheduling is not a new problem. It has been studied
in the limited area of scientific computing for analysisn the area of parallel computers or clusters. However, the
of protein folding, climate simulations, nuclear physicglistributed computing systems targeted in this paper &re di
etc. In these type of applications, the jobs are usierent from parallel computers or clusters. The charastiesi
ally so large that they often take several months f@f distributed computing are listed as follows:
be completed. For such large jobs, the effect of taske Hosts are heterogeneous and autonomous|[3].
scheduling on the job completion time is relatively « It is difficult to obtain good information about the
small. Therefore, an efficient task scheduling algorithm hosts[4].
is not that important in traditional distributed computing « Hosts are often behind NATs (network-address transla-
projects. tions) or firewalls[5].
In the future, it is expected that distributed computing « Hosts are frequently turned off by users[5].
will be applied to various types of large-scale computing In BOINC[5], the well-known distributed computing plat-
applications such as analysis of DNA, data mining, simateti form, task scheduling is performed on the basis of the in-
of atmospheric circulation or ocean circulation, struatand formation regarding the processing power of each host and
stress analysis and fluid analysis of the air resistance rsf cthe estimation of the processing time of each task. When this
or planes and the water resistance of ships. These typeirdbrmation does not reflect the actual performance, the job
applications require many medium-sized jobs that takeraévecompletion time deteriorates.
hours or days to complete. The job completion time of suchIn this paper, we investigate a task scheduling method
medium-sized jobs are affected by task scheduling. known as WQR (workqueue with replication)[6], which was
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originally proposed for heterogeneous Grid environmerie.

main feature of WQR is that it does not require any kind
of information about the hosts or tasks. WQR has the same
performance as the existing scheduling method used, which
requires informations on the hosts and tasks. For this reaso
the use of the WQR method in distributed computing appears
promising. The drawback of WQR is the wastage of CPU
cycles. In WQR, some CPU cycles are wasted because tasks
are replicated and processed by multiple hosts.

There are some issues to consider when WQR is applied
to distributed computing. First, the original WQR method
does not take into account task failures and therefore it is
possible that the job will not be completed if task failuresur
frequently. In distributed computing, however, task fegk
are not exceptional because the hosts are frequently turned

off by users. Second, the original WQR method assumes that T g pisTRIBUTED COMPUTING ENVIRONMENT MODEL

the scheduler is able to cancel executing tasks by sendin%_ ributed ing invol forming | |
messages to the hosts. However, in distributed computing, i Istriblted computing INVolves pertorming 'arge-scaleneo
tations using the idle CPU cycles of many PCs in a network.

is difficult for the scheduler to send messages to the ho%% ticinating PC K aests. Wi the t
because of NATs or firewalls. Therefore, in order to use th € participating S are known S. Ve use the term
sto refer to the people using the hoststask is a unit of

WQR method in distributed computing, it is necessary to adty”

additional mechanisms to enable task failure detectiortasid Scheduling that consists of a program and input datpobAs
cancellation. defined as a set of tasks.

Task scheduling involves the allocation of tasks to hosts
A common approach to solve these issues is to set a timgong with the allocation of the order of execution. Like
out for task execution. Most eXiSting distributed Compgtinmostdistributed Computing projects' we consider Bagaﬁk’ﬁ
platforms use this approach[7]. If a scheduler does notvecegpplications in which tasks are completely independent[4]
the result of an allocated task before the timeout, the sdked F|g 1 shows the model of the distributed Computing envi-

creates another replica of the task and allocates it to @notfonment considered in this paper. It consists of one sciedul
host. We call this method as the task timeout method. Thgg many hosts.

task timeout method ensures the completion of all tasks ofyyhen the scheduler receives a job, it allocates the tasks in
the job. The problem in this approach is the determination @fe job to hosts. The hosts receive the tasks from the sofedul
the appropriate timeout value. The appropriate timeoutevaland send back the results after task completion. We assume
depends on the average task execution time and theref@yg: the transfer of tasks and results are performed in abeli
cannot be determined uniquely. The wrong timeout value Mgyanner using retransmissions.

cause a delay in job completion and wastage of CPU cycles.However, hosts sometimes crash because of hardware fail-

Another approach involves the use of the soft state protocl€s or shutdowns by users. When hosts crash, their tasks als
which improves the robustness of distributed systems}g]. fail. Task failures are not notified explicitly to the schésu
this approach, hosts and schedulers exchange messages péf this paper, we distinguish between task failure and task
odically in order to monitor each other’s states. Messages &ancellation. The former implies that task execution ippeml

sent in a best-effort (unreliable) manner[9], that is, teg unexpectedly due to crashing of the host. The latter implies
not retransmitted if they are lost. that the task execution is stopped as the task is considered

Hnecessary by the scheduler.

processing task

Fig. 1. Model of the distributed computing environment

. . u
In this study, we used the task timeout method and the so
state method with WQR and compared their performances I1l. WORKQUEUE WITHREPLICATION

through simulations. The simulation results showed that th Workqueue with replication (WQR)[6] is a task scheduling
soft state method had a better performance than the t@§K.ithm originally proposed for large-scale distritmiitgys-
timeout method. tems such as Grids. The main feature of WQR is that it does
The rest of this paper is organized as follows. In sectiamt require any kind of information about the hosts or tasks.
II, we define the distributed computing model and the terni$he performance of WQR is equivalent to that of FPLTF[10]
used in this study. In section Ill, we provide an overviewr Sufferage[11], which require information about the Bost
of WQR. In section IV, we explain the issues in applyingnd tasks[6].
WQR to distributed computing. In section V, we describe two The WQR algorithm uses task replication to achieve a good
approaches to deal with these issues. In section VI, we aeluperformance. The scheduler chooses tasks in an arbitrdey or
the performance of these approaches through simulatioard sends them to the hosts. When a host completes its task, it
Finally, in section VII, we conclude the paper. sends the result back to the scheduler and receives a new task
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from the scheduler. This scheme continues until all thestasik. Task timeout method

in the job are allocated. In the simple Workqueue algorithm, |5 BOINC, the task timeout method, which has an upper
hosts that complete their tasks become idle. In WQR, howevighit for task execution time, is used.

these hosts are allocated replicas of tasks that are stiling.  The scheduler allocates a task to a host and sets the timeout
When a task replica finishes at any host, its other replicas ggjue on the timer. If the scheduler does not receive thetresu
cancelled. of the task from the host before the timeout period elapses, i

Using task replication, WQR can improve the performang@schedules the task to another host. This method enswes th
of a distributed computing by reducing the delay in completi ¢ompletion of all tasks of the job.

of tasks allocated to slow/busy hosts. Task replicatiors@ses A problem with the timeout method is the determination of
the possibility that at least one replica is allocated tos#lidle 5, appropriate timeout value. The appropriate timeoutevalu
host. depends on the average task execution time. An inapprepriat

However, to avoid wastage of CPU cycles, there is @neout value delays job completion and wastes many CPU
predefined limit on the number of task replicas. Tasks aggcles. For example, if the timeout value is too small, the

replicated until the number of replicas reaches this predéfi scheduler creates redundant replicas of tasks that ate stil

limit. running, while if the timeout value is too large, there is a
IV. | SSUES IN APPLICATION OFWQR TO DISTRIBUTED delay in the detection of failed tasks by the scheduler.
COMPUTING The explicit task cancellation mentioned in section IV-B is

anossible in the task timeout method. All task replicas are

The concept of WQR is very desirable in a dlstnbuteexecuted until they have completed or failed.

computing environment in which it is difficult to obtain
accurate information about the performance of hosts. HewevB. Soft state method

the original WQR algorithm is not recommended for use in & The soft state method was originally proposed for state man-
distributed computing environment. When the WQR methoghement of communication protocols[12]. It is characttiz
is applied to distributed computing, there are some ISSOesyy periodic refreshing of information and the initializzi

consider. of information by timeout. Lui et al. showed that the use of
A. Detection of task failure the soft state method makes communication protocols highly
robust[8].

When a task fails, the scheduler should detect the failure

and reschedule the failed task to a different host. Howeéver In the soft state method, the scheduler and hosts exchange

is very difficult for the scheduler to detect task failureshout information with each other. Hosts that are executing tasks
send refresh messages to the scheduler periodically. @iviec

any nofification. ing the refresh message, the scheduler sends a reply message

In the original WQR method, the number of task replicas : .
that can be created is limited. If all the replicas of a task fgto the host. Messages are sent in a best-effort (unreliable)

and these failures are not detected by the scheduler, the tﬁsa nner, that is, they are not retransmitted if they are lost.

e . . |[ the scheduler does not receive a refresh message before
can never get completed. Such a situation can be avoided if . . :
) . o o e message timeout, it reschedules the correspondingdask
number of task replicas is unlimited. However, this incesas

another host. On the other hand, if the host does not receive
the wastage of CPU cycles|[6]. : : )

a reply message before the message timeout, it aborts its tas
B. Explicit task cancellation and sends a request for a new task to the scheduler.

pleted by any host, the executions of its other replicas dft¢¢ hosts are aware of each other's states due to the periodic
cancelled in order to reduce the wastage of CPU cycles. €xchange of messages. On receiving refresh messages from

However, in distributed computing, it is difficult for thethe hosts, the scheduler confirms that the allocated tagks ar
scheduler to cancel the tasks executing on hosts. This'@ning normally. The reply messages from the scheduler to
because in a distributed computing environment, the hodlge hosts confirm that the scheduler is still waiting for the
are generally behind NATs or firewalls. In this situationf€Sults of the tasks, that is, the tasks are not cancellegs,Th
communications are always initiated by the hosts and not B} Soft state method can perform explicit task cancefiatio
the scheduler. The scheduler cannot send any messages uMiBich cannot be achieved with the task timeout method. By
the hosts open a connection to the scheduler. Therefore, eftoPPINg the flow of refresh messages, the scheduler can
though the scheduler receives the results of the completBfprm the host that the task is no longer necessary.

task, it cannot send messages to the other hosts to cancel tHéowever, problems can arise if message losses occur fre-
replicas. quently. If refresh messages are lost consecutively, thedsc

uler regards the corresponding task as failed and creates
V. EXTENSIONS OFWQR redundant replicas of the task. If reply messages are lost
We consider two approaches to improve the WQR methazhnsecutively, the host regards its task replica as cattell
i.e., the task timeout method and the soft state methoddearorand aborts the necessary task replica. This false taskiaort
to deal with the issues discussed in section IV. is another cause of task failure.
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In order to exchange messages with the scheduler, hosts T

T
; L SS —— B
should always be connected to the network. However, since 120000 | 175500 a
the sizes of refresh and reply messages are very small, the 2100000 |- L B
network load added by these messages is negligible compared £ 80000 | N
. = L] ;
to the tasks and their results. £ o000 | E '__..‘_:
VI. PERFORMANCE EVALUATION E 40000 [ 1
o
We evaluated the performance of the two methods men- 20000 -
tioned in section V through simulations. (e .

0 02 04 06 08 1 12 14 16

We assumed that the network transfer times were negligible _ _
Task failure rate (time/1000 s)

because our target applications were CPU bound. As the
performance criteria, we considered the job completioretim Fig. 2. Plot of the job completion timeu(= 10000)
and the number of wasted CPU cycles The job completion time
is the time between the start of the first task and the congpleti —
of the last task. The wasted CPU cycles are the sum of all the S R
CPU cycles that are used for executing task replicas that did 300 & TT-5000 :-m--: / .
not contribute to the final result. Such task replicas inelud 250 - - B
cancelled replicas, failed ones, and redundantly congblete 200
ones. 150

In the rest of this section, we will refer to the task timeout 100 F
method and the soft state method as the TT and SS methods, 50 L

respectively. C
. . 0O 02 04 06 08 1 12 14 16
A. Smulation settings Task failure rate (time/1000 s)

In our simulations, the scheduler runs a single job. There-
fore, all hosts execute tasks of the same job. Further, easth h
executes only one task at a time.

The processing power of each host is taken from a uni- 1800
form distributionU (1, 7) and therefore the average processing 1600
power of the hosts is 4. The total processing power of all the 1400
hosts in the system is fixed to 1000. izgg

The size of a task is defined as the processing power 800
required to process the task. For example, a task with a size 600
of 10 is processed in 5 s by a host with a processing power of

% of Wasted CPU cycles

Fig. 3. Plot of the wasted CPU cycleg & 10000)

Completion time (s)

400

2. The average task size (denotedqss 10000 (large tasks) 200 o

or 100 (small tasks). The size of each task is an integer taken 0 02 04 06 08 1 12 14 16

from a normal distribution with a standard deviation0of . Task failure rate (time/1000 s)

In both cases, the total size of all tasks included in a job is

fixed as 1000000. Fig. 4. Plot of the job completion timg:(= 100)
The number of task replicas is limited to 4 on the basis of

the results of the study by Cirne et al.[6], which states that . L .
performance of WQR with a limit of 4 is close to that wherf the average task size is 10000, then the task timeout salue

the number of task replicas is unlimited are 2500, 5000, and 10000. In the following graphs, ‘X T-
The task failure rate is defined as the inverse of the MTERdICates a task timeout method with timeout valie

(mean time between failures) of tasks. All tasks have theesam !N the simulations of the SS method, refresh messages were
failure rate regardless of their size. This reflects the faat SSNt €very 10 s and the message timeout value was set to

large tasks stay in the hosts for a long time and therefone tht00(s). This 'mP“eS that 19 or more qonsecutlve message
are more likely to be involved in host crashes. losses resulted in rescheduling or abortion of tasks, as men

The message loss rate is defined as the ratio of lost messd{f§ed in section V-B.
to total messages sent. If the message loss rate is 0.1 liegnp, i :

B. Smulation results
that 10% of the messages are lost.

For the TT method, the simulations were performed by For each parameter setting, we performed 10 simulations
changing the task timeout value. We used three timeout salwsing different jobs. The presented results are the aveshge
es, 2es, and4e,. e, is the estimated average task executioifie results of the 10 simulations.
time given bye;, = p/p, while p is the average processing 1) Effect of task failures: The task failure rate was changed
power { = 4, as mentioned in section VI-A). For examplefor all simulations. The message loss rate was fixed at 0.
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Fig. 8. Plot of the wasted CPU cycleg & 10000)

of the SS method is short and the impact of the task failuee rat
is relatively small. In the case of the TT method, the larger t
timeout value, the larger the impact of the task failure.rate
reason for this is the difference in the task failure detedi

in the TT and SS methods. When a task fails, the TT method
has to wait for the timeout in order to allocate a new replica
to another host. Therefore, the large timeout value delags t
start of the replica and also delays the task completionh@n t
other hand, a scheduler using the SS method can detect task
failures immediately because the refresh messages stop whe
a task fails.

Fig. 3 shows the number of wasted CPU cycles. The impact
of task failures in the TT method is almost the same regasdles
of the timeout value. This is because the replica creation in
the TT method is triggered by a timeout and therefore is
independent of task failures. On the other hand, the nuntber o
wasted CPU cycles in the SS method is almost proportional to
the task failure rate. This implies that the number of regslic
in the SS method increases with the number of task failures.
However, these replicas reduce the job completion time @f th
SS method and therefore they are accepted as a necessary cost

Fig. 4 and Fig. 5 show the performances of the two methods
wheny is small. The impact of task failures is very small in
both the TT and SS methods. The reason for this is that small
tasks are not likely to be involved in host crashes because of
their short stay in the hosts and they do not waste many CPU
cycles even if they fail.

2) Effect of the task timeout value: It should be noted that
the performance of the TT method is significantly affected by
the task timeout value. Since the timeout value defines the
maximum task execution time, the appropriate timeout value
depends on the average task execution time. Calculation of
the average task execution time requires information sich a
the average task size and the processing power of hosts. The
fact that the performance of the TT method depends on this
information contradicts the advantage of WQR, which does
not require any information about tasks and hosts.

Moreover, even if we can calculate the average task execu-
tion time (denoted as), the appropriate timeout value for the
TT method cannot be determined by a simple calculation such
ase- F', whereF' is some fixed value. There are two ways in
which the task timeout value affects task execution.

1) If the timeout value is extremely large, the creation of a
new replica of a failed task is delayed, and as a result,
the completion of the task is also delayed.

2) If the timeout value is very small, many redundant repli-
cas are created and they consume computing resources.

Fig. 2 (whene is large) shows that a timeout value smaller
thane is desirable. However, Fig. 4 (whenis small) shows
the opposite behavior. These results indicate that effigcis(
dominant for large: and effect (2) is dominant for small It

is very difficult to estimate the effect of the timeout value o
task execution for a given value ef

3) Effect of task cancellation: It should be noted that in

Fig. 2 shows the job completion time when the average taBlg. 3, the number of wasted CPU cycles in TT increases as
sizep is large. It can be observed that the job completion tintbe task failure rate decreases. The scheduler using TTtis no
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able to cancel the execution of task replicas even if they ahee hosts or tasks. We used the conventional task timeout
unnecessary. Therefore, even for a low task failure rateymamethod and the soft state method with WQR and compared
redundant replicas are executed to the end, and they wabkigr performances through simulations. The simulaticuits
many CPU cycles. On the other hand, the number of wastage summarized as follows.

CPU cycles in the SS method decreases as the task failurg The soft state method is more robust than the task timeout
rate decreases. The scheduler using the SS method cancelsmethod against task failures.

task replicas as soon as they became unnecessary. Thereforg The performance of the task timeout method depends
redundant replicas are cancelled before they waste CP@gycl  on the timeout value, and it is difficult to calculate the

This result shows that SS’s explicit cancellation of redamtd appropriate timeout value.

replicas is effective in reducing the wastage of CPU cycles. . The soft state method wastes less CPU cycles than the
When the task failure rate is hlgh, however, the difference task timeout method when the task failure rate is low.

between SS and TT is small. This is because a high task, There is a threshold for the message loss rate, over

failure rate implies that many replicas including redurtdan  which the performance of the soft state method degrades
ones fail frequently. Fig. 6 shows the wasted CPU cycles of  gjgnificantly.

failed tasks. From the graph, it can be observed that Me§bm these results, we can conclude that the soft state mhetho

of the wasted CPU cycles. are .those Of_ failed tasks. In ﬂ]? preferable to the task timeout method for task scheduling
case, most redundant replicas in SS failed before they were isiributed computing.

cancelled explicitly.
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