
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 525 – 534 ISSN 1896-7094

 

Abstract— OLAP (Online Analysis Processing) applications
have very special requirements to the underlying
multidimensional data that differs significantly from other
areas of application (e.g. the existence of highly structured
dimensions). In addition, providing access and search among
multiple, heterogeneous, distributed and autonomous data
warehouses, especially web warehouses, has become one of the
leading issues in data warehouse research and industry. This
paper proposes a new message interface for a new platform
independent data warehouse architecture that can deliver
location, platform, and schema transparency for clients that
access autonomous data warehouses. The new message interface
uses XML in order to provide interoperable way to query and
administrate federated data warehouses in addition to compose
the multidimensional query result sets.

I. INTRODUCTION

A. Background

INCE its evolution XML, accompanied with its related
technologies (XQuery, XPath, XSL,…etc), has been

considered the main standardized technology for the data ex-
change over information networks [1], [2]. By the time, the
XML usage has increased with many applications. Recently,
XML has significantly influenced building databases [2].
XML data is generated by applications and it can be con-
sumed by applications. It is not too hard to imagine that
some data sources in the enterprise are repositories of XML
data or that they are viewed as XML data independently on
their inner implementation.

S

In this case we could try to build a new data warehouse
(DW) architecture that uses XML as its base for designing
the messaging interface for that new architecture. In [3] a
new data warehouse architecture (that is called XWarehouse)
has been introduced. This architecture proposes the idea of
utilizing XML as well as other design ideas in order to be
able to build a platform independent multi- federated DW. In
[3] the need for XML based messaging interface that has
been called eXtensible multiDimensional XML
XDXML has been introduced. As being part of the XWare-

This work was supported into its practical side with Johnson & Johnson
– Medical Egypt

house architecture, XDXML purpose is to compose all re-
quest, and response messages between the XWarehouse
clients and orchestration. This will gives the opportunity to
establish a communication between DW clients and a DW
server with no regard to the platform compatibility issues.
Moreover, XDXML provides the multidimensional format
needed for caching the Multi-federated DW data as well as
the DW Metadata on the Warehouse orchestration server that
is responsible of orchestrating the multiple federated incom-
patible data warehouse at the backend with the DW query re-
quests by the XWarehouse clients. In consequence, a need
for dimensional modeling of XML data is appearing through
the introduction of the XDXML. This paper proposes the
XML based multidimensional messaging interface
(XDXML) that the proposed XWarehouse uses. The paper
depicts XDXML design goals, its basic structure, its embed-
ded support for multi dimensions, its new operators, and the
active capabilities into it. This XML based interface has
been implemented into a real world case study that has been
already presented previously [3].

B. Contribution

The contribution of this paper aims to propose a new Mul-
tidimensional messaging interface in order to interchange
multidimensional data, schemas, queries, and other adminis-
trative commands over XWarehouse data warehouse archi-
tecture [3]. This interface will be called eXtensible
Multidimensional XML (XDXML). The remainder of
this study is organized. Specifically; to describes the archi-
tecture by means of:

- Overview of the related research work
-The XDXML design objectives.
-The XDXML schema description.
-The XDXML active commands as well as predicates

C. Outline

This paper is organized as follows. At the beginning this
paper presents a literature review that has conducted a sur-
vey about the previous efforts that tried to tackle using XML
in dimensional modeling [4], [5]. The section analyzes each
of those efforts and tells what is/are the negative point(s) into
each proposed effort. Afterwards, the paper presents the

978-83-60810-14-9/08/$25.00 © 2008 IEEE 525

Ahmed Bahaa Farid
Helwan University, Faculty of
Computers and Information,

Cairo, Egypt
Email:

{Ahmed.Bahaa@gmail.com}

Prof.Dr.Ahmed Sharaf Aldin
Ahmed

Helwan University, Faculty of
Computers and Information,

Cairo, Egypt
Email:

{Profase2000@yahoo.com}

Prof.Dr. Yehia Mostafa Helmy
Helwan University, Faculty of
Computers and Information,

Cairo, Egypt
Email:

{Ymhelmy@yahoo.com}

Designing new XML Based Multidimensional Messaging Interface
for the new XWarehouse Architecture

526 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

main design objectives that the XDXML tries to fulfill. Prior
to that, the paper delves into the XDXML basic multidimen-
sional schema. In order present more details about the
XDXML; the paper presents part of a real life implementa-
tion that has been used in order to validate the XDXML ap-
plicability. This helps in depicting the last part of the paper
that depicts the XDXML ability to not only to compose mul-
tidimensional data as well as queries but also to send some
administrative commands too.

D.Literature Review

The study has made a reviews for finding out the research
efforts that has tackled the same problem domain, or part of
it. For the time being, and as to the researcher knowledge,
only few research efforts have been done regarding utilizing
the XML [6], [7] in creating an architectural foundation for
storing, administrating, and integrating data warehouse data
(i.e. multidimensional data).

1)The Common Warehouse Metamodel (CWM)

The CWM is an Object Management Group (OMG) initia-
tive. Its version 1.0 has been released in Feb. 2001. Through
the CWM specifications[7], [8], OMG is targeting the cre-
ation of standard format for data warehouse Metadata based
on a foundation Metamodel [4]. Based on the UML, CWM
builds a complex model for describing data warehouse Meta-
data. The main goal of its specification is to create a standard
interface to data warehouses that every vendor tool can ac-
cess, e.g. OLAP tools [5], ETL tools etc. [8], [9], The speci-
fication concentrate on building a standard between vendor
tools for data warehouse interchange based on certain XML
format [9]. The data warehouse multidimensional data inter-
change is out of scope of this specification. The CWM XML
package only contains XML based definitions for classes and
associations that represent common data warehouse Meta-
data. Based on this, the CWM just targets to bridge the gaps
between data warehouse tools in order to be able to work to-
gether but, it doesn’t provide message interface for exchang-
ing and querying data in an open environment [8] ,[10],[11],
[12]. By other words, CWM is a data interchange format
more than being a multidimensional message interface that
includes action commands to take remote actions. This is left
for the application level not the CWM itself.

2) MetaCube-X XML Metadata Foundation

The MetaCube-X is an XML instance of the Metacube
concept, [11], [12]. While MetaCube is a conceptual multidi-
mensional data model that some vendors are currently using
(e.g. Informix, and Microstrategy), MetaCube-X seeks pro-
viding the user with a query mechanism for accessing infor-
mation on the different web warehouses. This concept of
MetaCube-X concentrate on defining an XML based schema
for querying multidimensional data from different web ware-
houses [11]. Based on this MetaCube-X only concentrates on
Metadata and doesn’t take care of the data itself (the fact
data as well as the dimensions)[6]. Moreover, when propos-
ing the data MetaCube-X proposes it tightly coupled with its
Metadata. By other words, it doesn’t make separation be-
tween schema and the multi-dimensional data. The
MetaCube-X whole contribution is only targeting querying

activities. Similarly to CWM it doesn’t utilize the web ser-
vices technology to provide access to remote web ware-
house, and OLAP systems. Finally it doesn’t support a spe-
cific architecture to implement its model as a complete solu-
tion.

3) XML for Analysis (XMLA)

XMLA is an initiative that has been co-sponsored by Mi-
crosoft and Hyperion (SAS has joint them in April 2002). Its
version 1.0 specification has been released in April 2001
[13], [14], [15]. This specification utilizes the popularity of
web services in providing data warehouse users with SOAP
and XML based access to remote OLAP systems. While
proposing an appropriate architecture, XMLA is concerned
with how to query multidimensional data as well as Metadata
through the use of the md/XML interface [13]. By other
words, XMLA along with md/XML is designed to retrieving
data not for manipulating and recapitulating cubes [13][14],.
Moreover, XMLA doesn’t support querying the galaxy
schema for data retrieval

4) XCube

XCube is a family of XML based document templates that
aim to exchange data warehouse data (i.e. data cubes) over
any kind of networks [17]. In spite of releasing a way to ex-
change data as well as format, XCube schema is dedicated
for the purpose of querying the web warehouse data , not any
other purpose (i.e. exploring cube facts and dimensions, and
managing a web warehouse) [18]. Not only that but also, the
XCube schema is complicated to the extent that it is hard to
be processed. This means that it doesn’t support multiple Hi-
erarchies dimensions. Within the schema description there is
no distinction between the dimension itself and its dimen-
sional hierarchies. XCube main target is to supply a standard
format for exchanging data warehouse data, not a complete
architectural solution for managing, querying, and exchang-
ing data. There is no support for utilizing XSD for Schema
validation or XSLT for presentation layer flexibility. There
is no concrete definition for an architecture that defines how
to deploy this format, or where its parsers will be deployed.
Subsequently, XCube doesn’t discuss how could be a level
of integration between federated data warehouses, or web
warehouses. Finally, it is not concerned with granting a high
level of access to the data warehouses through something
like Thin OLAP (ThOLAP) that X-Warehouse.

5) INRIA’s GEMO Project

GEMO is a three-years project that has been born from the
merging of INRIA (Institut National De Rechercha En Infor-
matique Et En Automatique). With Members of another
multinational research group. This project depends heavily
on the usage of XML related technologies in order to insure
data exchange as well as management. One of the main ap-
plication domains for this project is the data for data ware-
houses. The Gemo 2006 activity report that has been pub-
lished by INRIA doesn’t talk about tackling the idea of the
integration between federated data warehouses [19]. In order
to promote their project foundation, the members of INRIA
has contributed in releasing many publications regarding
there diversified research points.

AHMED BAHAA FARID ET. AL.: DESIGNING NEW XML BASED MULTIDIMENSIONAL MESSAGING INTERFACE 527

6) Concluding Remarks

These are all the known scientific contributions regarding
the study research point. As has been clarified each one of
the five contributions has some weak points that is fulfilled
in this paper’s contribution. Based on the above review it
could be seen that none of the depicted efforts has proposed
a complete architecture that enables platform independent
data warehouse architecture that can enable integrating
multi-federated data warehouses together which could be ac-
cessed transparently. While not supported by some of the ef-
forts depicted above, XDXML proposes this through its ar-
chitecture (XWarehouse). In addition to that, XDXML sup-
ports querying Galaxy schema. Moreover, XDXML supports
making remote actions over the remote cubes.

II. XDXML DESIGN GOALS

The XDXML format has been designed according to cer-
tain objectives. These objectives target functional as well as
nonfunctional requirements. At the following are the main
five design objectives that based on them the XDXML XML
based Multidimensional Message Interface has been de-
signed.

A. Minimizing Size

At the core of the XDXML, the well formed XML resides.
The main nature of any well formed XML document is that it
is being constructed hierarchal. The hierarchal structure in
turn imposes a larger size than other ways of composing doc-
uments (e.g. relational). According to that the XDXML
should try to minimize the redundancies that may appear into
the single document without scarifying any required func-
tional requirement. Minimizing the size of the XDXML data
and commands can enhance the performance of sending re-
quests and receiving responses to and from the X-Warehouse
server. In addition to that it can minimize the time needed to
parse

B. Supporting Multiple Hierarchies

In multidimensional design any cube can support multiple
hierarchies [20], [21], [22]. This helps when same fact data
is needed to get navigated with specific dimension according
to multiple hierarchal points of view. As an example for that,
for a pharmaceutical company they need to track the net sold
amounts (after calculating all type of discounts) according to
the time dimension. They have multiple time hierarchies
Fig. 1 a, and b.

(a) Time Hierarchy 1 (b) Time Hierarchy 2

Fig. 1a: Time Dimension Hierarchy 1

The first hierarchy is concerned with dynamic periods.
People at the pharmaceutical company have the need to track
the sales values over the last 12 months (Moving Annual
Time- MAT). This period is divided into two semesters (6

months). Each semester in turn is divided into 2 quarters (3
months) for each (see Fig. 1a). At the same time, people
need to navigate the data for the current fiscal year, semester,
and quarters. This brings up the second hierarchy (see Figure
1b). Incentives at the pharmaceutical companies are calcu-
lated based on each quarter sales and performance. Most of
the work that has been proposed previously in this research
field neglects delivering a schema that supports multiple hi-
erarchies for the same dimension. This put them in a bad cor-
ner when it comes to the real implementation practices [18],
[11].XDXML should deliver a multi-hierarchal dimension
support.

C. Supporting Actions Declaration

The XDXML doesn’t target only the regular decision
makers. By other words it doesn’t only provide DW reports
and queries requests and responses but, it targets supporting
DW administrators too. That is why the Proposed X-Ware-
house XDXML format supports two action commands that
could be sent by administrators and other querying users to
perform certain actions on the server. These commands are
Act and Get

D. Supporting New Dimensional Operators

XDXML should propose new dimensional operators. The
new operators should deliver better querying capabilities.
The new operators should help to get only data that is really
needed.

E. Supporting Galaxy Schema

The multi-fact cubes are not regular cubes but, sometimes
the business needs impose having it. This may happen when
extending the data warehouse schema with new measures
that changes the core approach that the business work on. At
this time, it is highly recommended to overcome the prob-
lems that may arise at this time. Moreover, the multi fact
cube could be beneficial when targeting to build the data
warehouse according to the Ralph Kimball’s Bus
architecture [21], [22]. Multi-Fact cube creates a
multi-star schema that is called Galaxy Schema, or Fact Con-
stellation schema [23]. In Galaxy Schema same dimensions
are utilized by more than one fact table. XDXML X-Ware-
house messaging interface should support the Galaxy
Schema that is not supported into any of the previous
work [24].

III. THE XDXML SCHEMA

In order to fulfill the previous design objectives XDXML
differentiates between the schema and the data itself. The
schema could be explained separately through an XSD based
file then the XDXML data comes accompanied with. At the
following is an explanation of the XDXML schema, and how
the data will get composed to.

A. The XDXML Cube

The XDXML Cube is the key component of the XDXML
schema. The cube is the container of the rest of the multidi-
mensional data that will be gotten from the server. For better
network performance, the XWarehouse architecture imple-
ments the idea of Cubes Client-Side Cashing

528 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

(3Cs) [3]. The 3Cs feature imposes transferring data into
cube format not a report format. This can minimize the size
of data transferred which fulfils the first design objective for
the XDXML protocol which is Minimizing. Moreover, trans-
ferring the requested data as facts and dimensions can give
the user more flexibility to make some slicing and dicing op-
erations while not being connected to the server. According
to that the XDXML Cube consists of XDXML Facts, and one
or more XDXML Dimensions. Fig. 2 shows the main struc-
ture of the XDXML Cube.

Fig. 2 The XDXML Cube main structural schema

As it is depicted each cube consists of one or many fact as
well as one or many dimensions. As has been stated above
the first design objective for the XDXML which is Minimiz-
ing Size has been fulfilled by transferring the multidimen-
sional data not as cells but as facts and dimensions. This
doesn’t not only minimize the size of data received from the
server but also, gives the flexibility to process the data on the
client while being disconnect off the server. It is important to
note here that each XDXML Cube node has an attribute
called name for the cube name.

Fig. 3 Depicts the XDXML schema elements as classes
using the UML based Class diagram.

Fig. 3 A UML Representation for the main XDXML schema

Fig. 4 depicts the XML representation of the XDXML
cube.

Fig. 4 the XDXML Cube Schema

B. The XDXML Fact

XDXML Fact is the heart of the cube. At most cases,
cubes have just one fact table but, at some case their maybe
more than one fact table. This happens in what is called gal-
axy schema. XDXML format supports both cases. Based on
that XDXML schema may contain one or many cubes within
the XDXML Facts. The Facts contains the sequence of
XDXML Fact. Each Fact represents a fact table. Actually,
this fulfils the fifth design objective for the XDXML proto-
col which is; Supporting Galaxy Schema. Each Fact consists
of an attribute FactName and a Collection of
FactElements. This is a of sequence of FactElement
that represent one fact along with its measures and keys.
That is why, each FactElement consists of two children
elements; Measures element, and Factkeys element.
The Factkeys element contains inside it all XDXML
FactKey nodes. Each FactKey element node describes one
of the FactKeys that connect the facts to their related dimen-
sions. Each FactKey has two describing attributes. The
Measures element contains a sequence of Measure
nodes. Each Measure element has two attributes. Fig. 5
shows a fragment of the XDXML Cube schema that de-
scribes the XDXML Fact.

Figure 5: The XDXML Fact Schema

AHMED BAHAA FARID ET. AL.: DESIGNING NEW XML BASED MULTIDIMENSIONAL MESSAGING INTERFACE 529

C. The XDXML Dimension

The Dimension element has a count attribute. This helps
in defining explicitly how many dimensions is contained into
any XDXML document that can enhance the parsing algo-
rithm performance. Each XDXML Dimension element de-
scribes one dimension table. The Dimension element has two
children, and three attributes. The first Attributes is the
Name attribute (This attributes is not presented into figure 6
because of the space limitation), the second, and third at-
tributes are attributes for declaring the Dimension Key, and
the Application Key. These are DimensionKeyAttributeID,
and ApplicationKeyAttributeID attributes respectively.

The first child is the Attributes element of
Attributes type. The Attributes type is a sequence of
XDXML Attribute element that compose up the dimension
table. Each Attribute element usage purpose is depicted
into a XML attribute called Description describing what this
is used for. In addition to that each attributes has four de-
scribing nodes. The Name node element states the attribute
name. The Value node contains the attribute value. The
AttributeID node grants each attribute an integer id.
This ID helps in referring to each attribute for many pur-
poses that will appear later. Using integer ID instead of the
string attribute id (attribute name) to refer for the XDXML
attribute can enhance the parsing performance as well as
minimizing the XDXML size. It is important here to state
that the Dimension Key as well as the Dimension Applica-
tion Key [21], [22] are included as two XML attribute ele-
ments. The values of these two attributes refer to the values
of the AttributeID element node value within the two
XDXML Attributes that act as Dimension ID and Applica-
tion ID. The fourth attribute is The Default Parent
node element is the AttributeID of the upper level for each
attribute in the default hierarchy. Fig. 6 shows the XDXML
Dimension Schema. The second child for the XDXML Di-
mension element node is the Hierarchies of a Hierarchies
type. The Hierarchies Type contains a sequence of XDXML
Hierarchy element nodes.

D. The XDXML Hierarchy

The XDXML Hierarchy is no more than a definition
for how data will get organized. It has no more user data
than that already exists into the dimension attributes. Instead,
it organizes the existing attributes by specific organization
only into certain granularity levels. According to that, the
XDXML Hierarchy is a part of the XDXML Dimension
(see Fig. 6). As it is apparent at the figure, the XDXML Hi-
erarchy schema contains one direct child node; the Levels
element node of Levels type. In turn, the Levels element is a
sequence of Level element nodes type. Each Level element
node has one attribute that describe the Level number of
each level in the hierarchy. The description of the attribute
that resides at each level comes for two element nodes; the
AttributeID and the ParentAttributeID that contains the At-
tributeID value for the attribute above it in the Hierarchy.
This approach of describing the multi-hierarchal schema in
the XDXML schema makes it distinctive of the other related
work that talked about the multi-hierarchal schema because;

it makes the Multi-hierarchal description on the schema itself
not on the data, as others do [7],[9], [11], [18],. Again, this
can minimize the size aggressively. The XDXML Hierarchy
Schema fulfills the second design objective for that XDXML
that has been stated above which is: Supporting Multiple Hi-
erarchies.

Figure 6: The XDXML Dimension Schema

IV. APPLYING THE XDXML SCHEMA ON A REAL
MULTIDIMENSIONAL DATA

In order to validate this architecture, a case study has been
conducted in one of the Medical equipment multinational
companies in Egypt (Johnson & Johnson-J&J- medical
Egypt), the architectural components have been belt using
.NET C# code and then got deployed. The company hosts
two data marts. The first one is the In Market Sales data
marts (this includes facts about selling the devices and items
from the distributor to the end-user) that keep the sales team
distribution, Sales budgets and sales actual achievements.
This data mart is about 2.54 GB in size. The Financial data
mart is a 3.2 GB data mart that is hosted on an AS/400
server that is located on Europe (this includes the financial
facts as well as the facts of sales between the company and
distributors). This data mart is related to the internal sales
between the Egyptian subsidiary and the EMEA headquarter.
Previously all strategic planning used to be done on the num-
bers of the To Market sales. According to some deficiencies
that has been discovered during the last two years, the corpo-
rate has changed its global strategy to make both the To-mar-
ket Sales, and the In-Market Sales equally important. Based
on this, new measures have been emerged based on the new
interest of having the ability to process the internal To-Mar-
ket sales(J&J/ Distributor) along with the In-Market
Sales(distributor/end customer) . That is why a new need has
been emerged to navigate to both of measurements together.
All used examples below are extracted out of this case study
as a try to highlight practical examples for using the

530 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

XDXML in exchanging a subset of a multidimensional data
of a multinational medical company. This multinational
medical company is specialized in producing and selling the
medical materials (bondage, medical threads, plasters…).
Fig. 7 depicts an overview of the multidimensional data that
is retrieved from the orchestration server of this company.
As it is clear from the figure, the cube is composed of one
Fact called SalesFact and two dimension elements. The first
one is the Product_Dim dimension while the second is the
Date_Dim.

Fig. 7 Practical Example for a XDXML Cube

A. The SalesFact XDXML Fact

For the sake of simplicity this fact has only one measure
which is the Qty. Actually this depicts the quantity sold from
the referred product at the referred time. These three pieces
of data compose all together one fact that is recorded as one
FactElement. Fig. 8 depicts the SalesFact XDXML
fact. As it is opposed, This XDXML fact has just one fact
element (this done to simplify the example) The fact element
shows up that this XDXML has two keys that refer to two di-
mensions (remember that the cube has two dimensions that
are referred to by these two keys). The first FactKey is the
Product key that refers to the dimension key number 1 in the
Product_Dim dimension. The second key is the Date key
that refers to the dimension key number 1 in the Date dimen-
sion.

Figure 8 The SalesFact XDXML Fact

B. Product_Dim XDXML Dimension

Fig. 9 depicts the Product_Dim XDXML dimension. As it
is apparent from the figure, this dimension has one default
hierarchy and another defined hierarchy. For the sake of sim-
plicity just one dimension element has been defined here. As
it is clear from the figure the only dimension element avail-
able has a dimension key with value 1. This is the same
value for the fact key at the SalesFact XDXML fact. It is im-

portant here to highlight that the DefaultParentID element is
used to represent the default hierarchy.

Fig. 9 The Product_Dim XDXML Dimension

V. ESTABLISHING ACTIONS USING XDMQUERIES

The third XDXML design objective imposes Supporting
Actions Declaration. In order to fulfill this objective
XDXML has introduced a way to query and administer the
XWarehouse. This is done through XDMQueries. Actually,
XDMQuery is part of the XDXML. This type of queries is
sent within a XDMQuery XDXML node that can include
Get and/or Act statements. The Get statement is primarily
concerned with querying data and schemas, while the Act
statement is concerned with performing some administrative
actions on the remote cubes. Each query is sent within a re-
quest. The request may contain Get or Act statements. The
answer is received within a XDMQuery Response tag.

A. The XDMQuery Get Statement

Using the XDMQuery Get command it is possible to ex-
plore data as well as schema. This is done through sending
an XDMQuery Request and receiving the response using the
XDXML protocol for the schema or/and the data. Get state-
ment works by using some XDMQuery predicates. The first
predicate is <GetServerCubes>. If the request is containing a
query with a response containing a schema(Metadata) then
the statement should contain the predicates inside a
XDMSchema tag. If the query needs to respond by data, not
a schema then, the query predicates should be contained in-
side a XDMData tag. As depicted as Fig.10 the
XDMSchema and XDMData tags are containing the predi-
cates. This helps in containing multiple predicates at the
same request some to receive data and others to receive
Metadata.

1) GetServerCubes Predicate(Schema only)

Fig.10 depicts the first XDMQuery Get statement predi-
cate; the GetServerCubes predicate. This predicate is re-
sponsible of acquiring the server cubes available at specific

AHMED BAHAA FARID ET. AL.: DESIGNING NEW XML BASED MULTIDIMENSIONAL MESSAGING INTERFACE 531

server. This could be unlimited to all available cubes on the
server or limited to the cubes last updated at specific time.

(a) GetServerCubes Predicate Query (b) Query Response

Fig. 10 The GetServerCubes Request and Response in Get Statement

2) GetCube Predicate(Schema and data)

This predicate targets querying both; part of the specific
cube data and/or its Metadata. As explained before, in order
to define whether you need the schema for the required
query or the Metadata you Should use either the XDM-
Schema or the XDMData tags. Fig. 11(a) shows how to use
the GetCube predicate within the Get Statement in order to
query the Cube Metadata. Fig. 11(b) shows an Example for
the GetCube predicate when is used to retrieve data. If noth-
ing else has been specified, the default is to return the data
with the most granular dimensional level. The example that
is depicted below doesn’t mention any granularity levels for
the Product_Dim dimension. If nothing else has been men-
tioned, the default hierarchy is retrieved, and the most gran-
ular level is used. If nothing else has been specified, the de-
fault is to return the data with the most granular dimensional
level. The example that is depicted above doesn’t mention
any granularity levels for the Product_Dim dimension. If
nothing else has been mentioned, the default hierarchy is re-
trieved, and the most granular level is used.

 (a)Retrieving Schema (b) Retrieving Data

Figure 11 GetCube Predicate Request

B. The XDMQuery Act Statement

The Act is primarily directed to the administrators. By us-
ing the Act statement, it is possible to take action over exist-
ing cubes. One of the most important activities that the ad-
ministrator may need to accomplish is to update his cubes.
The UpdateCubeData is a predicate that could be used in
order to initiate this task by the administrator remotely. For
the time and resources limitation, this study presents only
this predicate with the Act statement. More predicates could

be provided for both the Get and the Act statements during
future work.

Fig.12 depicts an example for the Act statement with the
UpdateCubeData operator. As it is clear from the figure, the
Act statement is enclosed inside a transaction. This to tell
that all the statements contained inside the transaction ele-
ments are in just one transaction. The XDMQuery transac-
tion can contain Act as well as Get statements. Enclosing Get
statement inside a Transaction maybe helpful because that
the XDMQuery may work in asynchronous mode. Based on
this enclosing the Get statement inside a transaction will be a
declaration that all enclosed statements will work as one
batch. If one fails all will fail too. The Transaction purpose
is clearer in Act statement. If one fails all actions taken on
the cubes will rollback.

The UpdateCubeData predicate has one attribute to define
the cube name. In addition to that it has one child element to
define how data will be updated inside the cube. Whether
data will be completely deleted and added again, or just the
modified data will be overwritten. The former could be used
if the cube data has changed massively at the base data ware-
house since last update while, the later could be useful if
there is no massive change in the data warehouse data.

Separating the update of each cube in separate Act state-
ment rather than having Cubes child element will give the
opportunity to make one cube got updated when others fail
to perform their updates. If All or Nothing is needed it is
possible to use the XDMQuery Transaction processing is
needed. It is important the mention here that the cube updat-
ing alternative is supported if on ly the server side cubes
management system supports this feature otherwise; the de-
fault cube updating method will take place.

Fig. 12 a Sample for the XDMQuery Act Statement

C. Presenting the Pump-Up and Dump-down new
Multidimensional Operators for Get command

The XDQuery supports two new operators for better mul-
tidimensional querying. These operators are directed to mini-
mize the hierarchy declarations. Using these operators, the
user can ask for a retrieving the data based on certain schema
but without having all its intermediate levels. As an example
for this, the hierarchy shown in figure 10(a) is depicting the
default dimension hierarchy which is; WWFranchise/Fran-
chise/Major/Minor/ProductCode. The question her is, what if
the decision maker needs to retrieve the data according to the
following Hierarchy; WWFranchise/Franchise/ProductCode?
In order to fulfill this requirement, it is needed to define a

532 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

new hierarchy with this structure. The new XDQuery opera-
tors help at this case. The DumpDown operator is responsi-
ble of aggregating data to one of the indirect parent of spe-
cific level. This means that when using the PumpUp opera-
tor, the query should define the most granular level and
which parent level is direct aggregating the data. By other
words using the DumpDown and PumpUp operators, the
same required results could be gotten but DumpDown will
retrieve some extra data that are not retrieved by PumpUp
operator. This is means that using the same facts/dimensions/
level names Dump-Down data set is s upper se t of the
PumpUp data set. The other difference is the hierarchy level
that is used to refer to the data; whether it is an upper level
or lower one. Figure 13 shows a sample hierarchy of the case
study in subject of this study. This hierarchy is based on the
same data of the previous figures.

Fig. 13 Sample Data Hierarchy for the XDXML Cube Presented in fig-
ure 7 and all its subsequent figures

1) The Pump-Up XDMQuery Operator

Fig.14 depicts syntax for using the PumpUp operator. The
Get is the XDMQuery’s Get statement. With is a reserved
word for defining specific dimensions. For is another re-
served word for defining specific value for the required hier-
archy level.

Get Sales: SalesFact(Qty)
With Product-Dim
On ProductCode PumpUp Franchise
For ProductCode = 8335

Fig 14 an example for Using PumpUp XDQuery Operator

According to figure 15, the result for this query will be as
depicted in figure 16 but using XDXML. Figure 17 shows
the same result but in XDXML The importance of using
DumpDown and DumpUp operators comes from the fact that
they minimize the amount of data that could be retrieved be-
cause it gives the ability to omit the unwanted intermediate
levels of dimensional levels

Fig. 15 Block Diagram for the Result of Query Shown in Fig.14

Fig 16 The XDXML Cube of the Get Statement at Fig 15

2) Dump-Down XDMQuery Format

Fig. 17 shows the DumpDown operator. As presented, the
DumpDown operator is a way that can be used to omit a lot
of unneeded data. Fig.17 expresses that the user needs only
to get the Qty Measure that is inside the SalesFact using the
Franchise Level and its children up to the Product Code di-
rectly at the Product_Dim dimension. The result for this
query is depicted in Fig. 18. As it is clear the main difference
between DumpDown and PumpUp operators is that,
PumpUp operator is used to get certain upper level data
along with its all children at the dimensional hierarchy, while
the PumpUp operator retrieves certain measurement value
according to its value for certain leaf node value at specific
hierarchy along with its defined parent at certain level. Ac-
cording to that, DumpDown will most probably returns
amount of data that is larger in size of that returned by the
PumpUp if same level names have been used at both state-
ments.

Get Sales: SalesFact(Qty)
With Product-Dim
On Franchise DumpDown ProductCode
For Franchise = GYNECARE

Fig. 17 An example for Using DumpDown XDMQuery Operator

Fig.18 The XDXML Cube that represents the result of the Get State-
ment at Fig. 17

AHMED BAHAA FARID ET. AL.: DESIGNING NEW XML BASED MULTIDIMENSIONAL MESSAGING INTERFACE 533

VI. FUTURE WORK AND CONCLUSION

A. Future Work

This scientific work could be extended at the future by
many ways. The following are just some examples of the po-
tential future work:

-Designing more predicates for the existing Get and Act
commands. These predicates could be related to more ad-
ministrative tasks (e.g. building and dropping cubes)
-Taking in considerations the security aspect of XDXML
as this paper doesn’t discuss that aspect.
-Implementing optimized parsing algorithm for parsing
XDXML at the XWarehouse client-side as well as service-
side.
-Extending XDMQuery in order to be able to query avail-
able mining models.
-Extending XDXML to include querying data mining
models [23].

B. Conclusion

This work presented a message Interface for exchanging
data as well as commands over the XWarehouse Architec-
ture [19] using XML as well as its related technologies (e.g.
XSD, XSLT,…). The XWarehouse architecture is a newly
proposed data warehousing architecture that uses Web Ware-
housing infrastructure for building better platform indepen-
dent and more integrated and accessible data warehouses.
Web warehousing refers to whether the use of the power of
web infrastructure in architecting data warehouses, or the use
of data warehouse techniques into keeping historical data
about the click stream backlog [22]. In the case of XWare-
house first meaning is the intended and meant.

The paper used the XML technology as the base for build-
ing up the XDXML. XDXML used inside XWarehouse to
get used by clients and servers for exchanging their data,
schemas, and query as well as administrative commands.
This paper is not concerned with the security details of the
XDXML. XWarehouse uses http and SOA (Service Oriented
Architecture) in order to build interoperable, vendor neutral
data warehouse architecture that can enable clients as well as
servers that depends on different platforms, DWMS (Data
Warehouse Management Systems), and Operating systems to
interoperate together transparently from the client. Moreover
X-Warehouse architecture provides a way in order to inte-
grate multi-federated data warehouse to act transparently as
one logical data warehouse in front of the X-Warehouse
clients.

This research has introduced the XDXML by providing a
review for the related work that used XML for encapsulating
data warehouse data and queries. Moreover, this paper tried
to unveil the weak points for each effort that XDXML tries
to overcome [23]. Moreover, the paper clarified what is the
major design objectives that has been build based on. Pre-
senting the design objectives has illustrated how does
XDXML overcomes all the depicted weak points at the re-
lated research efforts surveyed. Prior to that, the paper began
to delve into the detailed design of the XDXML by explain
the key constructing components of the XDXML data
schema. This paper has used the same case study at which

the XWarehouse has been implemented in order to apply the
XDXML. Part of the sample data of this case study has been
used as an example for depicting examples of the XDXML
Cube, XDXML Fact, and XDXML dimension schemas. All
these schemas are mainly based on the XSD (XML Schema
Definition). In addition to that the paper showed how
XDXML can express action either for querying multidimen-
sional data or to do some administrative actions at the server
side through what has been called XDMQuery. XDMQuery
is a dual-verb XML based language that is considered part of
the XDXML. The two verbs are Get for querying data, and
Act for sending action requests including administration ac-
tions. Get verb can use to newly proposed operators at this
paper in order better retrieve what is needed accurately with-
out any extra dimensional data member levels. Thus, reduc-
ing the retrieved the size of the XDXML which is one of its
design goals.

It is important to mention here that the case study has been
conducted to apply the X-Warehouse along with its XDXML
messaging interface using a real life environment that is
brought from the medical industry of one of the multination-
als in Egypt In order to verify the applicability of the archi-
tecture [3]. The result showed that:

-The X-Warehouse Architecture is possible to get imple-
mented and fulfilling its design goals.
Figure 19 depicts the deployed X-Warehouse architecture.
As it is apparent, in addition to the regular desktop as well as
web based access, this architecture permits mobile devices
from accessing web warehouses data.

Fig 19 The X-Warehouse Architecture

-Using Caching in both server side as well as client side of
the X-Warehouse architecture enhance the performance in
average by 313%

-The performance overhead of using the X-Warehouse is
in average just 5.11% which could be worthy to be incurred
in order to solve the compelling problems that X-Warehouse
tackles.

 - The ThOLAP could be implemented based on the same
architecture using the XDXML application protocol.

To conclude this work has successfully implemented the
XDXML XML based XWarehouse Messaging Interface. A
future studies will be made in order to more predicates to the
Get and Act verbs for performing other administrative tasks.
The XDXML at it is current state doesn’t tackle how to
query the data mining structures out from the server side.

534 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

This is expected to be the subject of one of the future re-
search efforts.

REFERENCES

[1] Xiaogang Li and Gagan Agrawal, “Efficient Evaluation of XML Over
Streaming Data”, Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005.

[2] Wanhung Xu, Z. Meral Ozsoyoglu, “Rewriting XPath Queries Using
Materialized Views”, Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

[3] Ahmed Bahaa, Ahmed Sharaf, and Yahia Helmy, “Towards a New
Platform Independent Data Warehouse Architecture Using Web, and
XML Technologies”, 2008

[4] Bert Scalzo, “Oracle® DBA Guide to Data Warehousing and Star
Schemas”, Prentice Hall. 2003.

[5] E. F. Codd, S. B. Codd, and C. T. Salley, “Providing OLAP (Online
Analytical Processing) to User Analysts: An IT Mandate”, White
Paper, Arbor Software Corporation, 1993.

[6] Dalamagas Theodore, etal, “A methodology for clustering XML
documents by structure, Information Systems”, Information Systems
Journal No. 31, 2006, Elsevier B.V. P.187 -228.

[7] Pokorny Jaroslav. “Modeling Stars Using XML”, Proceedings of
DOLAP’01 ACM. Atlanta, United States, November 9, 2001.

[8] Kumpon Farpinyo, “Designing and Creating Relational Schemas
with a CWM-Based Tool”, ACM digital library, 2003.

[9] N. N.: “Common Warehouse Meta Model Specification. Ver-
sion 1.0”,.OMG Feb. 2001. TTTT http://www.omg.org/cgi-bin/apps/
doc?ad/01-02-01.pdf

[10] Claudio Seidman, “Data Mining with Microsoft® SQL Server™
2000 Technical Reference”, Microsoft. 09/2001.

[11] T. B. Nguyen, A M. Tjoa, R. R. Wagner, “Conceptual Multidimensio-
nal Data Model Based on Object-Oriented MetaCube”, Proceedings
of the 2001 ACM Symposium on Applied Computing Las Vegas,
Nevada, United States ,2001.

[12] Thanh Binh Nyguyen, A Min Tjoa, and Oscar Mangisengi,
“MetaCube-X: An XML MetaData Foundation for Interoperability
Search Among Web Warehouses”, Proceedings of the International
Workshop on Design and Management of Data Warehouses
(DMDW’2001). Switzerland, June 2001.

[13] N. N: “XML for Analysis Specification. Version 1.0”, Microsoft Cor-
poration, Hyperion Solutions Corporation, 2001.

[14] John Mikesell, “Implementing the XML for Analysis Provider for
SQL Server 2000 Analysis Services”, Microsoft Corporation. 2004.

[15] N. N: “Designing and Implementing OLAP Solutions with Micro-
soft® SQL Server™ 2000, Course# 2074 Curriculum”, Microsoft
Corporation, 2001

[16] N. N: “Populating a Data Warehouse with Microsoft SQL Server™
2000 Data Transformation Services”, Course# 2092 Curriculum,
Microsoft Corporation, 2001

[17] Wolfgang Hümmer, Andreas Bauer, and Gunnar Harde., “X- Cube-
XML for Data Warehouses. Proceedings of the 6th ACM internatio-
nal Workshop on Data Warehousing and OLAP”, November 2003.

[18] R. A. Moeller. Distributed Data Warehousing Using Web Techno-
logy. AMACOM. 2001.

[19] N. N: Project-Team gemo: “Management of Data and Knowledge
Distributed Over the Web Activity Report”. INRIA, 2004

[20] Kimball Ralph, “Laura Reeves, Margy Ross, and Warren Thornth-
waite. The Data Warehouse Lifecycle Toolkit”, Second Edition John
Wiley & Sons 2002.

[21] Kimball Ralph, and Margy Ross, “The Data Warehouse Toolkit”, Se-
cond Edition John Wiley & Sons 2003.

[22] Kimball Ralph, and Richard Merz. “The Data Webhouse Toolkit
(Building the Web Enabled Data Warehouse)”, John Willey & Sons,
2000.

[23] Panos Vassiliadis, Timos Sellis. “A Survey of Logical Models for
OLAP Databases”, SIGMOD Record, Vol. 28, No. 4, December
1999.

[24] Micheleline Han, “Data Mining Concepts and Techniques", Morgan
Kaufmann”, 2004.

http://www.omg.org/cgi-bin/apps/doc?ad/01-02-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/01-02-01.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/01-02-01.pdf

