Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
Computer Science and Information Technology pp. 601-608 ISSN 1896-7094

Embedded Control Systems Design based on
RT-DEVS and Temporal Analysis usingPBAAL

Angelo Furfaro and Libero Nigro
Laboratorio di Ingegneria del Software
Dipartimento di Elettronica Informatica e Sistemistica
Universita della Calabria, 87036 Rende (CS) Italy
http://www.lis.deis.unical.it
Email: a.furfaro@deis.unical.it, l.nigro@unical.it

Abstract—This work is concerned with modelling, analysis and « building concrete tools in Java for RT-DEVS simula-
implementation of embedded control systems using RT-DEVS.e. tion and final system implementation. The Java-based

a specialization of classic DEVS (Discrete Event System Spe ; ; : i 1
fication) for real-time. RT-DEVS favours model continuity, i.e. approach aims to improve applicability and portability
of RT-DEVS software.

the possibility of using the same model for property analys (by
simulation or model checking) and for real time execution. ecial This paper introduces RT-DEVS and its operational seman-
case tools are proposed in the literature for RT-DEVS model tics, then a transformation process of RT-DEVS specifica-
analysis and design. In this work, temporal analysis expl@s an ,nq into UppAAL is suggested for exhaustive verification
efficient translation in UPPAAL timed automata. The paper shows - . .

an embedded control system model and its exhaustive verifitian. activities based on mO(_je! checking. The approach is demon-
For large models a simulator was realized in Java which diretty ~ Strated through a realistic embedded control system. After
stems from RT-DEVS operational semantics. The same concesn that, current implementation status of Java-based dewedap

are at the basis of a real-time executive. The paper discusséhe tools and programming style are clarified. Prototype tools

implementation status and, finally, indicates research diections were achieved by adapting existing tools for ActorDEVS [9]
which deserve further work. y pting 9 !

Index Terms—DEVS, real-time constraints, embedded control []_-O]- Finally, conclusions are presented with an indioatod
systems, model continuity, temporal analysis, timed autoata, directions of further work.

model checking, Java.
II. RT-DEVS DEFINITIONS

. . INTRODUCTION - A DEVS Basics
HERE is a general agreement today about the importance . id d modeliing f lism f
of using formal tools for rigorous development of real- DEVS [5] is a widespread modelling formalism for con-

time systems which in general have safety and time criticayrrent and timed systems, founded on systems theory con-

requirements to fulfil. However, a known hard problem for thgepts. A DEVS system consists of a collection 9f one or
developer is how to ensure that a given formal model of a sy§Or€ components. Two types of components exasumic
tem, preliminarily analyzed from both functional and terrgdo (©" Pehavioural), andoupled (or structural) components. A
viewpoints, is correctly reproduced in an implementatibims DEVS atomic component is a tupkeM defined asdM =<
paper describes some work aimed to the realization of tools £ 5, Y, Gint, deat, A, ta > where:
modelling, analysis and implementation of embedded contro « X is the set of input values
systems, specifically for experimenting with model conitipu ~ « 5 is a set of states
[1], [2], i.e. seamless development where the same modeb Y is the set of output values
is used both for property analysis (through simulation or ¢ dint : S — S is theinternal transitionfunction
model checking) and for real time execution. The modelling * Jdext : @ X X — S is the external transitionfunction,
language is RT-DEVS [3], [4], i.e. is a specialization of WhereQ@ = {(s,e)[s € 5,0 < e < ta(s)} is the set of
classic DEVS (Discrete Event System Specification) [5] with ~ total statese is the elapsed timesince last transition
a weak synchronous communication model and constructs fos A : S — Y is theoutput function
expressing timing constraints. RT-DEVS owes to DEVS for « ta: S — R _, is the timeadvance function
both atomic and coupled component formalization and modelThe setsX, S andY are typically products of other setS,
continuity. Special case tools are reported in the litemafd] in particular, is normally the product of a set@dntrol states
to support a development methodology for RT-DEVS. (also saidphase} and other sets built over the values of a
The original contribution of this work is twofold: certain number of variables used to describe the component a
« proposing a mapping of the fundamental phases of madaand. Informal semantics of above definitions are as follows
elling and safety/temporal analysis of RT-DEVS system&t any time the component is in some statec S. The
in terms of the popular and efficientRBAAL toolbox component can remain in s for the time duratidwéll-time
with timed automata [6], [7], [8] ta(s). ta(s) can be0, in which cases is said a transitory

601

602

state, or it can beo, in which case it is said a passive state

because the component can remain forever iihno external
event interrupts. Provided no external event arrives, eetid

PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

uncertainty in the activity duration. Default interval of
passive states igo, oo] and can be omitted. Transitory
(or immediate) states have intenjal 0].

of (supposed finite) time valug(s), the component movesto 2) Non determinism is assumed as collision resolution rule.
its next states’ = d;,+(s) determined by the internal transition 3) The communication model is weak synchronous, i.e. non

function §;,,;. In addition, justbefore making the internal

transition, the component produces the output computed by

the output functiom\(s). During its stay ins, the component
can receive an external eventvhich can cause to be exited

earlier thanta(s). Lete < ta(s) be the elapsed time since the

entering time ins. The component then exits statemoving

blocking with (possible) message loss. At any communi-
cation, an output event is always immediately consumed.
If the receiver is not ready, the message is lost. If both
sender and receiver are ready to communicate, the output
event is converted into an input event which is instantly
received.

to next states’ = d..:(s,e,z) determined by the external))) o
A time interval[lb, ub] is made absolute at the instant in time

transition functioné.,;. As a particular case, the externa . ! . -
eventz can arrive where = ta(s). In this (collision) case 7 the corresponding stateis entered. An internal transition

two events occur simultaneously: the internal transitivene 0U{90ings can occur at any time greater than or equai Ib

and the external transition event. A collision resolutiaier PUt, t0 avoid a timing violation, before or at + ub. An

is responsible for ranking the two events and determinieg tfXt€rnal transition fires upon synchronization on an input

next state. After entering stasé, the new time advance value€vent independently of the dwell-time of current phasesit i

ta(s') is computed and the same story continues. It should B&Sumed that a self-loop external transition does notrtesta

noted that there is no way to directly generate an output frd#fliing in current phase. Pre-emption and restarting ofesurr

an external transition. To achieve this effect a transiigse, UMing, when desired, can be simulated with the help of an

used as destination of the external transition and whoskdam ransitory phase. Graphically (see e.g. Fig. 2), an inferna

function generates the desired output, can be introducssl (§ansition is depicted by a thin oriented edge terminatiriy w

Fig. 4). a dashed arrow wh|gh specifies thg execution of the Ia.mbda
In practice, an atomic component receives its inputs frofUtPut) function, which can be void. An external transitio

typed input ports and similarly, generates outputs througl® instéad drawn by a thick oriented edge. Sending event

typed output ports Actually X is a set of pairs< inp,v > ¢v through outportOP is denoted by the syntar)Plev.

whereinp is an input port and the type of values which Slmllarly, readiness to accept event through input port/ P

can flow throughinp. Y is a set of pairs< outp,v > where IS €xpressed by P?ev. The abstract executor of RT-DEVS

outp is an output port. Ports are architectural elements whidpjtializes current time t® and iterates the following two basic

enable modular system design. A component refers only ¥£PS-:

its interface ports. It has no knowledge about the identity 1) e next minimal time at which new internal transitions
of cooperating partners. A coupled component (subnet) is = .oy fire is determined and become the current time.
an interconnection of existing atomic or coupled (hierarch 2) All candidate internal transitions which can occur at
cal) components. Formally, it is a structué&\/ defined as current time are determined. Lef; be an atomic
CM = (X,Y,D,{My|d € D}, EIC, EOC, IC), where: component with one such a transition. Let the lambda
« X and Y are input and output sets of the coupled fynction of current state of; consist ofOPlev. Let
component C; be a component coupled with; where input port
o D is a set of (sub) component identifiers (or names) IP matches output porOP of C;. ProvidedC; has
« M is a set of (sub) DEVS components whose intercon- an outgoing transition from current state annotated with
nection gives rise to the coupled model IP?ev, the two transitions (internal if; and external
e« EIC is the external to internal coupling function (for in C;) are immediately executed with the event sent by
routing external events to internal components) C; synchronously transmitted 6. In the caseC; is
e« FEOC is the internal to external coupling function (for not ready to receivé’; event, the output transition i@;
routing internally generated events to the external envi- s stjll made but the event gets lost. The above activity is
ronment of the coupled component) repeated for each candidate internal transition. When the
« ICis the internal to internal coupling function. candidate set empties, the executor goes back tolstep

B. RT-DEVS Concepts It is worthy of note that while weak synchronization is a wsef
RT-DEVS [4] refines basic DEVS with the following con-feature in general real time systems (e.g., a message with
cepts. a sensor reading can be lost for a missing synchronization,
1) The dwell-timeta(s) in a state now mirrors the exe-in which case a controller can use previous sensor data), it
cution time of anactivity associated with the state. Inincreases the burden of the RT-DEVS modeller when the sys-
particular, the execution time is specified by a (densem cannot tolerate synchronization losses. Model vatidat
and static) time intervallb, ub], where lower and up- through simulation or verification can help in assessingemr
per boundslb,ub € R[Jg_oo], 0 < Ib < ub, express system behaviour.

ANGELO FURFARO ET. AL: EMBEDDED CONTROL SYSTEMS DESIGN BASEON RT-DEVS AND TEMPORAL ANALYSIS USING UPPAAL 603

I1l. A TRAFFICLIGHT CONTROLLER

The following describes the modelling of a Traffic Light
Control system (TLC) [11]. In the proposed scenario, the
traffic flow at an intersection between an avenue and a street
is regulated by two traffic lights. The lights are operatedaby
control device (controller) that, in normal conditiongeahates
in a periodic way the traffic flow in the two directions. In
addition, the controller is able to detect the arrival of an
ambulance and to handle this exceptional situation by &hlgw
the ambulance crossing as soon as possible and in a safe way.
For the sake of simplicity, it is assumed that at most one
ambulance can be in the closeness of the intersection at a
given time. During normal operation conditions, the se@een

green-yellow-red is alternated on the two directions with t Fig. 2. Light behaviour
light held green for45 time units (tu), yellow for5 tu and
red on both directions for 1 tu. The intersection is equipped \ chooseDir()

with sensors able to detect the presence of an ambulance at AR
three different positions during its crossing. As soon as th [40 80]
ambulance arrival is detected, a signal named “approathing

is sent to the controller. When the ambulance reaches the

nearness of the intersection the signal “before” is issidter Nafter® o Nlappr(dir)
the ambulance completes the crossing the signal “after” is ’
generated. The controller reacts to the “approaching” tven
by leading the intersection to a safe state, i.e. bringint bo [6,9] [8,10]
lights on red. "4
Albefore
StreetLight (SL) Fig. 3. Ambulance behaviour
A
I X={ <A, appr >, <A, before>, <A after>}
A\ Y={<SL, toR>, <SL, toY>, <SL, t oG, <AL, t oR>,
SL
<AL, toY>, <AL, t 0G>}
Controller (C Ambul A !
on roALer() AHA mbulance (A) Component behaviour is specified in Figg. from 2 to 4 where
V- an oval box represents a phase of the component. The complete
l state setS obviously depends also on the component local
v variables. For instance, the Controller hadiravariable whose
AvenueLight (AL) value ir]dicate the avenue or the_s_treet, and Iogica}l vaaria_mtnib_
where information about an arriving ambulance is maintine

when current phase of the controller cannot be pre-empted.
Fig. 1. Traffic light coupled model Similarly, light components keep the light status in thesthr
logical variablesr,y, andg. A light component (Fig. 2) is
When the signal “before” is received, the controller swéish normally in theHome phase with default intervdbo, oc]. The

to green the light on the ambulance’s arrival direction.efft arrival of atoR, toY or toG event causes an external transition
the ambulance leaves the intersection (“after” event) thve c respectively totoRed, toYellow or toGreen phase which is
troller turns the green light to red and resumes its normidden exited aftefl time unit by an internal transition reaching
sequence. Fig. 1 illustrates an RT-DEVS coupled model afjainHome. The lambda function associated with the internal
the TLC system which is made of four connected compdtransitions specifies the required state changes in thé ligh
nents: there are two instances of the Light component, whichBehaviour of the ambulance (Fig. 4) is cyclic. After a non
respectively correspond to the light on the avenue and thaterministic time in40, 80], the ambulance announces itself
on the street, one Ambulance component, which models the choosing an arriving direction and sending #ppr event
behaviour of the sensing equipments of the intersectiod, ao the controller. From th8EFORE phase and after a time in
one Controller component which implements the above dgg; 10] the ambulance sends a before event to the controller.
scribed control logic. Couplings in Fig. 1 are realized egw Finally, form the AFTER phase the ambulance signals its
matching input/output portsX/Y sets for the Controller are passage through the intersection by sending an after evdnt w
as follows: an elapsed time if, 8]. In Fig. 4 the normal and exceptional

604

Alappriamb=true, save dir

A?appriamb=true
save dir

SL\ﬂoY

Aafter

A%apprlamb=true,
save dir

BRA)&
[dirst] A%before e [dir=ave] A?before o
[00] !

Fig. 4. Controller behaviour

behaviours of the controller can be distinguished. Theaihit
phase isBR1 (both lights reds). Under normal behaviour, the

controller steps through a light cycle (e.g. fradR1, to AV
to Ay to BR2 for the avenue, and frolBR2 to SG, to SY

to BR1 for the street). It should be noted that a “both reds”

condition BR1 or BR2) is always maintained fot time unit.

2)

3)

Avenue and street cycles strictly alternate. A normal cycle 4)
is started provided no ambulance is sensed. During a light

cycle the arrival of ambulance pre-empts normal behaviaur.
particular, a green phaseg or SG) is immediately abandoned
by anticipating the next yellow phase and then finishing the

cycle. However, current yellow phase is never pre-emptéid. A 5)

of this guarantees the duration of the yellow phase (in the
example in [11] it was erroneously made possible, in worst

case conditions, that a yellow phase doubles its duration).

It should be noted the efforts taken in Fig. 4 for not losing

PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

L_toRed? L_toGreen?

worED Q) (O tGREEN

x<=1 x<=1

L_toYellow?
x=0

toYELLOW

Fig. 5. Light template

of the traffic lights be consistent at all times. To avoid
accidents among vehicles crossing the intersection, when
on a direction the light is green or yellow, thus allowing
traffic in the direction, the light on the opposite direction
must be red.

Lights should be both reds at a before eved vehicle
should be allowed to cross the intersection at a before
event.

Deadline of3 tu for turning green the light after a
before eventAssuming that it takes at leadttu for

the ambulance to reach the intersection from the time
instant of the before signal, it follows that there exists a
deadline of 3 tu for the controller to turn green the light
on the arriving direction, also considering that a light
takes 1 tu for changing its status.

Correct sequencing of the lights on each directiédn
correct behaviour requires that only transitions from red
to green, from green to yellow and from yellow to red
should be allowed. A transition out of this sequence
denotes a wrong sequence.

The ambulance must be livén particular, after sig-
nalling an approach, it must be guaranteed that the
ambulance model comes back to liteme phase.

IV. TEMPORAL ANALYSIS USING UPPAAL

the approaching signals. As soon as an ambulance is sense¥/eak synchronization and message losses increase the
the logical variableamb is set totrue. At cycle end, the Need for functional, safety and temporal analysis of an RT-
presence of an ambulance requires an exceptional behavigfgVS model. In this work an RT-DEVS model is preliminary

to be executed by first reaching trBRA (both reds with transformed into BPAAL [6] for model checking. BPAAL
ambulance) phase. FroBRA, and depending on the arrivingWas chosen because it supports data variables and weak syn-
direction of the ambulance, the controller senses eveats fr chronization through broadcast channels [12]. The folfmyi

the ambulance and commands accordingly the light by turnif§mmarizes the translation rules.

it first green, then yellow after ambulance passage andyinall « An RT-DEVS component is mapped onto arPRAAL

red. Ambulance events (e.lgefore andafter) are processed by

external transitions. Light control is instead realizetbtigh
internal transitions. Following an exceptional behavjdhe

controller restarts the normal cycle by giving the turn te th

other direction.

A. Property Requirements for the TLC

The TLC has safety and (bounded) liveness (e.g. deadline)

properties, besides absence of deadlock or livelock ciomgit

template, which has a local clock

Phases of the source component correspond one-to-one
to locations of the template.

Each pair of matching ports (e.g. the output parof
Ambulance and the input poa of Controller) together
with a data/control symbol, is mapped on to a broad-
cast channel. For instance, broadcast chanaetsppr,

A _before andA_after are shared between Ambulance and
Controller etc.

1) Traffic must never be allowed in both directions simulta- « Templates receive as parameters the broadcast channels

neously For safety reasons it is required that the status

corresponding to used input/output ports.

ANGELO FURFARO ET. AL: EMBEDDED CONTROL SYSTEMS DESIGN BASEON RT-DEVS AND TEMPORAL ANALYSIS USING UPPAAL 605

x<=80 oed x<=0 Absence of deadlocks confirms the TLC model correctly
Home@ pr——— @APPR behave despite weak synchronization and (possibly) messag
' loss. That the unsafe state of both lights green is neveheshc
is checked by asking the verifier if there exists a state in the
X>=6 state graph where the g data of both lightslidn addition,
A_after! A_appr! it was verified that whenever the traffic is allowed in one
x=0 x=0 direction (the light is green or yellow), the light is red on
the other direction.
o x>=8 A_before! Ve Correct sequencing of lights was verified by introducing
AFTXg_/S x=0 X<_15E F three additional variables in the Light template for stgrthe

previous status of the light, by changing the Light behavgmu
Fig. 6. Ambulance template as to conserve previous status at any new assignment, and by
checking that it is always true that a green status is pretede

TABLE | by the red status etc. These details and queries are omitted f

UPPAAL QUERIES FOR PROPERTY ANALISYS OFLC

simplicity.
Property Query Result A few additional words relate to deadline checking. The
Absence of deadlocks A[] 'deadlock satisfied UpPAAL model was decorated by introducing the global
Lights consistency Al (ALg==1]|AL.y==1) imply SL.r==1 | satisfied | |ngjcal variable flag and the extra clock Variable flag is
Lights consistency A[] (SL.g==1||SL.y==1) imply AL.r==1 | satisfied 9 in th Ag bul | h he bef 9
Lights must never be both green | E<> SL.g==1 && AL.g==1 not satisfied _Set to true In the Ambulance t(_amp ate_ when the before event
Ambulance is live A.APPR --> A Home satisfied is sent to controller, and reset in the Light template (tforee
Deadline checking Al flag imply z<=3 satisfied in both instances of the template) when the green status is

installed (on the exiting edge from theGreen location in
o . Fig. 5). It was found that not only the required deadline is
» Shared communication data, e.g. thievariable used by fyfiled but that in reality 1 tu is always sufficient for the

Ambglanf:e apd Controller, become global declarationgontroller, following a before signal, to turn green thenlign

DEVS component implies the invariamt< ub is added
to locationPH. Default time intervaloo, o] is implicit. V. IMPLEMENTATION STATUS

Time interval [0,0] of a transitory phase is mapped on RT-DEVS was prototyped in Java using an adaptation of
the invariantz < 0. UPPAAL requires bounds of a time the ActorDEVS lean agent-based framework [9], [10]. The
interval to be expressed by naturals. following provides some implementation hints and gives a
« An internal transition of the RT-DEVS model is associflayour of the programming style. Both discrete and dense tim
ated with a timed edge having the guard> ib. The models are supported, through the class hierarchy (imesfa

update portion of the command on the edge contains thg underlined): Ti ne, Absol uteTi me, RelativeTi ne,
effect of the output function. An external transition isrj ne| nterval, Absol ut eDi screteTi ne, Absol ut e-

associated with an untimed edge which in turn relates fRnseTi ne, Rel at i veDi scret eTi e, Rel ati ve-
an input synchronization with a broadcast channel. penseTi ne, Di screteTinelnterval, DenseTi ne-

The above rules were applied to obtain the models in Figint er val . A concrete time object has &al ue() method
from 5 to 7 which depict the BPAAL version of RT-DEVS which returns al ong for discrete time, and aloubl e
TLC components. In Fig. 6, random choice of the ambulanéer dense time. An RT-DEVS atomic component must be
arriving direction is simply achieved by non-deterministiprogrammed as a class which derives directly or indirectly
selection, on the edge betweeme and APPR locations, from the RTDEVS abstract base class, which provides the
of the value of the local variable betweenave and str contract of operations (see the extract in Fig. 8) and basic
values (typeave_str is an alias ofintlave,str]). As one can behaviour.
see, the BPAAL templates correspond as close as possibleA specific component must implement the abstract methods
to source RT-DEVS components. Therefore, the translatioh RTDEVS in order to specify its specific behaviour. For
can be easily automated. The resultamPllaL system model simulation purposes thectivity() method can be left to
is the parallel composition of one instance of the Controllés default (no-operation) body. Phases are coded as irstege
template, two instances of the Light template and one igstarinternal and external transitions return the int of the npdadse.

of the Ambulance. It should be noted that component methods have direct access
o to the whole state by accessing the component local data
A. Verification of the TLC variables. Theti () method returns the (dense or discrete)

The timed automata model of the TLC was verified usintgme interval associated with the given state. Metimaa()
the UPPAAL version 4.1.0. Table | illustrates some TCTLreturns theAbsol ut eTi ne value of current time.
queries issued to the mpAAL verifier used for property Typed input/output ports are supported respectively bg-par
analysis. metric classe$ nput <v> and Qut put <v>. Typically, V is a

606 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

x<=0 x<=5
x>=45 @ AL_toYellow! M\ AY x>=5 AL_toRed!
4 N\
x=0 x=0 x=0
A_app
amb=true
A_appr?
A_appr? amb=true

<=45 amb=true,x=0

AG<
x>=1 && lami
AL_toGreen! x=0|

BR2

A_appr?
BR1 O A_appr? - —
x<=1)<]amb=true ambs=true <=1

x>=1 && lami
SL_toGreen! x=0

SG

) x<=45

A_appr? A_appr?
amb=true A_appr? amB:Ft)rF;e
x>=5 amb=true,x=0 -
bd! -
A oy AL|_toRed!
X= __ x>=5 SL_toRed! SL_toYellow! x>=45) k=0
x=0 N\ x=0 N\ x=0

x<=0

A_after? M\ ALftoYeIIow! CjAFT

= O/ =
x=0 x<=0 x=0 x<=5

SAF D\ SL?toYeIIow’ M\

= O/
x<=5 x=0 x<=0

SL_toGreen! L_toGreen!

_ x>=1 && amb
x=0, amb=false

x>=1 && amb J
x=0, amb=false

_/
BRA

Fig. 7. Controller template

public abstract int delta_int(int phase); public class LightEvent {

public abstract int delta_ext(int phase, RelativeTime e, Message x); public static enum Symbol{ TO_RED, TO_YELLOW, TO_GREEN };
public abstract void lambda(int phase); private Symbol symbol;

public abstract RelativeTime ta(int phase); public Symbol getSymbol(){ return symbol; }

public abstract Timelnterval ti(int phase); public void setSymbol(Symbol symbol){ this.symbol=symbol; }
public void activity(int phase){} YiLightEvent

public AbsoluteTime now(); Fig. 9. Class of light events

Fig. 8. An extract of RTDEVS atomic components programmimgriace

simulation purposes, is illustrated in Fig. 10.

For components with non punctual time intervals (e.g.
user defined class which specifies the data/control symbéisbulance and Controller) thea() method returns a number
which can flow through the port.nput is a subclass of uniformly distributed in the time interval of current phase
Cut put . Each component exports its input port types. Output Java TLC model was executed using dense time and
ports are created by a configurer (e.g. the n() method) the RTDEVS Sinul ation control engine which mimics
and passed to relevant components e.g. at construction tithe RT-DEVS operational semanticRTDEVS_Si mul ati on
The configurer is also in charge of linking matching ports faeceives the Absol uteDenseTi me) simulation time
establishing a coupled model. Programming style is exemgdimit (e.g. 107) and a simulation clock (here a
fied by showing details of the Light atomic component. Lighsi mul ati onDenseTi meCl ock). RTDEVS maintains a
events were modelled as instances of thght Event class priority queue of timers ranked by ascending fire times
(Fig. 9). The Light component, shaped for prototyping an@bsolutizedt a values). The engine fires most imminent

ANGELO FURFARO ET. AL: EMBEDDED CONTROL SYSTEMS DESIGN BASEON RT-DEVS AND TEMPORAL ANALYSIS USING UPPAAL 607

public class Light extends RTDEVS{

limessage interface can terminate earlier than its lower bound duration or after
public static class L extends Input<LightEvent>{} its upper bound. In the first case the engine can delay the
IIphases T R i P P

private static final byte Home=0, ToRED=1, ToVELLOW=2, ToGREEN=3; firing of the internal transition until the rez_;ll_tlm_e cloclemw_ es

/lstate variables the lower bound. In the latter case activity interruptiord an
private byte r=1, y=0, g=0, id; concepts of adaptive scheduling and imprecise computation
private Monftor f; Id help. A icul i RT-DEVS model
public Light(byte id, Monitor m){ this.id=id; this.m=m; initialPhase(Home); } [13] could help. As a particular scenario, an Ri- moae
public int delta_int(int phase){ could be analyzed and executed on a single processor, by

if(phase!=Home) phase=Home;
return phase;

Mlelta_int

public int delta_ext(int phase, RelativeTime e, Message x){
if(phase==Home){

ensuring atomicity and mutual exclusion of activities.

VI. CONCLUSION

LightEvent le=((L)x).get(); This paper reports about specification, analysis and Java
if(le.getSymbol()==LightEvent.Symbol. TO_RED) phase=ToRED; ; 1 -
else if(le.getSymbol()==LightEvent.Symbol. TO_YELLOW) phase=ToYELLOW, Impl,em,entatlon of RT D,EVS, systems operated und_er model
else phase=ToGREEN: continuity. Model checking is enabled by a translation onto
t} - timed automata of BPAAL. For large models an achieved
Vel oxt discrete-event simulation tool can be exploited. Java émpl
public RelativeTime ta(int phase) mentations rely on a minimal, efficient and customizablenage
if(phase==Home) return RelativeDenseTime.INFINITY; framework [9] [10]

return new RelativeDenseTime(1);

Yita On-going and future work is directed at:

public Timelnterval ti(int phase){
if(phase==Home) return new DenseTimelnterval();//[infty,infty]
return new DenseTimelnterval(1,1);
Wi
public void lambda(int phase){
if(phase!=Home){
switch(phase){ .
case ToRED: r=1; y=0; g=0; break;
case TOYELLOW: r=0; y=1; g=0; break;
case TOGREEN: r=0; y=0; g=1; break;
default: throw new RuntimeException("lllegal phase");

m.light(id, r, y, g, ((AbsoluteDenseTime)now()).value());//to monitor

}
Mllambda (1]
protected boolean acceptable(Message x){ return x instanceof L; }/acceptable
YiLight

Fig. 10. Class Light of the TLC [2]

(31

internal transitions one at a time and updates the simulatio
clock to the fire time accordingly. The output function[4
then sends synchronously its message to the couplea
component. In the case the partner component is not reade/
for synchronization, the sent message is simply lost. [gjrin[J
simulation, anmbni tor object (transducer) gets informed of [g)
event occurrences and checks system properties (e.g.ritcou
the number of times the bad state green-green of the tvi
lights is reached, and measures the maximal time distan%
between the occurrence time of the green light in the agivin
direction of the ambulance, and that of the immediately
preceding before event, etc.). Also under simulation, th€ T g
was found to be temporally correct.

For real-time execution, RT-DEVS naturally requires a
multi-processor implementation (each component runs ®n if9]
own processor, as was assumed by temporal analysis). The
ta() function is no longer useful. Thecti vity() method [10]
should be programmed with the (sub)algorithms to be carried
out in each phase of the component. All other methods rem&#l
unchanged. Of course, a real-time executive has to possibly
compensate for violations of activity durations. An adtivi [12]

experimenting with real-time executives using the Real-
time Specification for Java platform [14]
extending the approach to the distributed context using
standard middleware like HLA/RTI or real-time CORBA
building development tools for visual modelling, proto-

typing/simulation, and automatic generation of Java code

and UrpaAL XML code.

REFERENCES

X. Hu and B. Zeigler, “Model continuity to support softvea devel-
opment for distributed robotic systems: A team formatiorareple,”
Journal of Intelligent and Robotic Systemml. 39, no. 1, pp. 71-87,
2004.

——, “Model continuity in the design of dynamic distriled real-time
systems,"|IEEE Trans. Syst., Man, Cybern, ®ol. 35, no. 6, pp. 867—
878, 2005.

J. Hong, H. Song, T. Kim, and K. Park, “A real-time dis@etvent
system specification formalism for seamless real-timewso# devel-
opment,” Discrete Event Systems: Theory and Applicatiord. 7, pp.
355-375, 1997.

H. Song and T. Kim, “Application of real-time DEVS to amals of
safety-critical embedded control systems: railroadsiras example,”
Simulation vol. 81, no. 2, pp. 119-136, 2005.

B. P. Zeigler, H. Praehofer, and T. KimTheory of modeling and
simulation 2nd ed. New York: Academic Press., 2000.

G. Behrmann, A. David, and K. G. Larsen, “A tutorial orPBAAL,” in
Formal Methods for the Design of Real-Time Systesas LNCS 3185,
M. Bernardo and F. Corradini, Eds. Springer, 2004, pp. 286--2

F. Cicirelli, A. Furfaro, and L. Nigro, “Using TPN/Desigr and WPAAL
for modular modelling and analysis of time-critical sysgghinterna-
tional Journal of Simulation Systems, Science & Technology. 8,
no. 4, pp. 8-20, 2007, special Issue on Frameworks and Agtiolits in
Science and Engineering.

A. Furfaro and L. Nigro, “Modelling and schedulabilitynalysis of real-
time sequence patterns using time Petri nets ar@A4L,” in Proc. of
International Workshop on Real Time Software (RTS'@¢tober 16
2007, pp. 821-835.

F. Cicirelli, A. Furfaro, and L. Nigro, “A DEVS M&S framewark based
on Java and actors,” iRroc. of 2nd European Modeling and Simulation
Symposium (EMSS’06Barcelona, Spain, October 4-6 2006.

——, “Actor-based simulation of PDEVS systems over HL#, Proc.
41st Annual Simulation Symposium (ANSS'@8)08, pp. 229-236.

S. C. V. Raju and A. C. Shaw, “A prototyping environmeot §pecifying
and checking Communicating Real-time State Machin&qftware—
Practice and Experiengevol. 24, no. 2, pp. 175-195, 1994.

Uppaal. [Online]. Available: http://www.uppaal.com

608 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

[13] W. A. Halang, “Load adaptive dynamic scheduling of &askith hard [14] RTSJ. [Online]. Available: http://jcp.org/aboutddeommunityprocess/
deadlines useful for industrial application€Computing vol. 47, pp. first/jsr001/rtj.pdf
199-213, 1992.

