
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 601–608

ISBN 978-83-60810-14-9
ISSN 1896-7094

Embedded Control Systems Design based on
RT-DEVS and Temporal Analysis using UPPAAL

Angelo Furfaro and Libero Nigro
Laboratorio di Ingegneria del Software

Dipartimento di Elettronica Informatica e Sistemistica
Universitá della Calabria, 87036 Rende (CS) Italy

http://www.lis.deis.unical.it
Email: a.furfaro@deis.unical.it, l.nigro@unical.it

Abstract—This work is concerned with modelling, analysis and
implementation of embedded control systems using RT-DEVS,i.e.
a specialization of classic DEVS (Discrete Event System Speci-
fication) for real-time. RT-DEVS favours model continuity, i.e.
the possibility of using the same model for property analysis (by
simulation or model checking) and for real time execution. Special
case tools are proposed in the literature for RT-DEVS model
analysis and design. In this work, temporal analysis exploits an
efficient translation in UPPAAL timed automata. The paper shows
an embedded control system model and its exhaustive verification.
For large models a simulator was realized in Java which directly
stems from RT-DEVS operational semantics. The same concerns
are at the basis of a real-time executive. The paper discusses the
implementation status and, finally, indicates research directions
which deserve further work.

Index Terms—DEVS, real-time constraints, embedded control
systems, model continuity, temporal analysis, timed automata,
model checking, Java.

I. I NTRODUCTION

T HERE is a general agreement today about the importance
of using formal tools for rigorous development of real-

time systems which in general have safety and time critical
requirements to fulfil. However, a known hard problem for the
developer is how to ensure that a given formal model of a sys-
tem, preliminarily analyzed from both functional and temporal
viewpoints, is correctly reproduced in an implementation.This
paper describes some work aimed to the realization of tools for
modelling, analysis and implementation of embedded control
systems, specifically for experimenting with model continuity
[1], [2], i.e. seamless development where the same model
is used both for property analysis (through simulation or
model checking) and for real time execution. The modelling
language is RT-DEVS [3], [4], i.e. is a specialization of
classic DEVS (Discrete Event System Specification) [5] with
a weak synchronous communication model and constructs for
expressing timing constraints. RT-DEVS owes to DEVS for
both atomic and coupled component formalization and model
continuity. Special case tools are reported in the literature [4]
to support a development methodology for RT-DEVS.

The original contribution of this work is twofold:
• proposing a mapping of the fundamental phases of mod-

elling and safety/temporal analysis of RT-DEVS systems
in terms of the popular and efficient UPPAAL toolbox
with timed automata [6], [7], [8]

• building concrete tools in Java for RT-DEVS simula-
tion and final system implementation. The Java-based
approach aims to improve applicability and portability
of RT-DEVS software.

This paper introduces RT-DEVS and its operational seman-
tics, then a transformation process of RT-DEVS specifica-
tions into UPPAAL is suggested for exhaustive verification
activities based on model checking. The approach is demon-
strated through a realistic embedded control system. After
that, current implementation status of Java-based development
tools and programming style are clarified. Prototype tools
were achieved by adapting existing tools for ActorDEVS [9],
[10]. Finally, conclusions are presented with an indication of
directions of further work.

II. RT-DEVS DEFINITIONS

A. DEVS Basics

DEVS [5] is a widespread modelling formalism for con-
current and timed systems, founded on systems theory con-
cepts. A DEVS system consists of a collection of one or
more components. Two types of components exist:atomic
(or behavioural), andcoupled (or structural) components. A
DEVS atomic component is a tupleAM defined asAM =<

X, S, Y, δint, δext, λ, ta > where:

• X is the set of input values
• S is a set of states
• Y is the set of output values
• δint : S → S is the internal transitionfunction
• δext : Q × X → S is the external transitionfunction,

whereQ = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the set of
total states, e is theelapsed timesince last transition

• λ : S → Y is theoutput function
• ta : S → R

+
[0,∞] is the timeadvance function.

The setsX , S andY are typically products of other sets.S,
in particular, is normally the product of a set ofcontrol states
(also saidphases) and other sets built over the values of a
certain number of variables used to describe the component at
hand. Informal semantics of above definitions are as follows.
At any time the component is in some states ∈ S. The
component can remain in s for the time duration (dwell-time)
ta(s). ta(s) can be0, in which cases is said a transitory

601

602 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

state, or it can be∞, in which case it is said a passive state
because the component can remain forever ins if no external
event interrupts. Provided no external event arrives, at the end
of (supposed finite) time valueta(s), the component moves to
its next states′ = δint(s) determined by the internal transition
function δint. In addition, just before making the internal
transition, the component produces the output computed by
the output functionλ(s). During its stay ins, the component
can receive an external eventx which can causes to be exited
earlier thanta(s). Let e ≤ ta(s) be the elapsed time since the
entering time ins. The component then exits states moving
to next states′ = δext(s, e, x) determined by the external
transition functionδext. As a particular case, the external
eventx can arrive whene = ta(s). In this (collision) case
two events occur simultaneously: the internal transition event
and the external transition event. A collision resolution rule
is responsible for ranking the two events and determining the
next state. After entering states′, the new time advance value
ta(s′) is computed and the same story continues. It should be
noted that there is no way to directly generate an output from
an external transition. To achieve this effect a transitoryphase,
used as destination of the external transition and whose lambda
function generates the desired output, can be introduced (see
Fig. 4).

In practice, an atomic component receives its inputs from
typed input ports and similarly, generates outputs through
typed output ports. Actually X is a set of pairs< inp, v >

where inp is an input port andv the type of values which
can flow throughinp. Y is a set of pairs< outp, v > where
outp is an output port. Ports are architectural elements which
enable modular system design. A component refers only to
its interface ports. It has no knowledge about the identity
of cooperating partners. A coupled component (subnet) is
an interconnection of existing atomic or coupled (hierarchi-
cal) components. Formally, it is a structureCM defined as
CM = (X, Y, D, {Md|d ∈ D}, EIC, EOC, IC), where:

• X and Y are input and output sets of the coupled
component

• D is a set of (sub) component identifiers (or names)
• M is a set of (sub) DEVS components whose intercon-

nection gives rise to the coupled model
• EIC is the external to internal coupling function (for

routing external events to internal components)
• EOC is the internal to external coupling function (for

routing internally generated events to the external envi-
ronment of the coupled component)

• IC is the internal to internal coupling function.

B. RT-DEVS Concepts

RT-DEVS [4] refines basic DEVS with the following con-
cepts.

1) The dwell-timeta(s) in a state now mirrors the exe-
cution time of anactivity associated with the state. In
particular, the execution time is specified by a (dense
and static) time interval[lb, ub], where lower and up-
per boundslb, ub ∈ R

+
[0,∞], 0 ≤ lb ≤ ub, express

uncertainty in the activity duration. Default interval of
passive states is[∞,∞] and can be omitted. Transitory
(or immediate) states have interval[0, 0].

2) Non determinism is assumed as collision resolution rule.
3) The communication model is weak synchronous, i.e. non

blocking with (possible) message loss. At any communi-
cation, an output event is always immediately consumed.
If the receiver is not ready, the message is lost. If both
sender and receiver are ready to communicate, the output
event is converted into an input event which is instantly
received.

A time interval[lb, ub] is made absolute at the instant in time
τ the corresponding states is entered. An internal transition
outgoings can occur at any time greater than or equalτ + lb

but, to avoid a timing violation, before or atτ + ub. An
external transition fires upon synchronization on an input
event independently of the dwell-time of current phase. It is
assumed that a self-loop external transition does not restart
timing in current phase. Pre-emption and restarting of current
timing, when desired, can be simulated with the help of an
transitory phase. Graphically (see e.g. Fig. 2), an internal
transition is depicted by a thin oriented edge terminating with
a dashed arrow which specifies the execution of the lambda
(output) function, which can be void. An external transition
is instead drawn by a thick oriented edge. Sending event
ev through outportOP is denoted by the syntaxOP !ev.
Similarly, readiness to accept eventev through input portIP

is expressed byIP?ev. The abstract executor of RT-DEVS
initializes current time to0 and iterates the following two basic
steps.

1) The next minimal time at which new internal transitions
can fire is determined and become the current time.

2) All candidate internal transitions which can occur at
current time are determined. LetCi be an atomic
component with one such a transition. Let the lambda
function of current state ofCi consist ofOP !ev. Let
Cj be a component coupled withCi where input port
IP matches output portOP of Ci. ProvidedCj has
an outgoing transition from current state annotated with
IP?ev, the two transitions (internal inCi and external
in Cj) are immediately executed with the event sent by
Ci synchronously transmitted toCj . In the caseCj is
not ready to receiveCi event, the output transition inCi

is still made but the event gets lost. The above activity is
repeated for each candidate internal transition. When the
candidate set empties, the executor goes back to step1.

It is worthy of note that while weak synchronization is a useful
feature in general real time systems (e.g., a message with
a sensor reading can be lost for a missing synchronization,
in which case a controller can use previous sensor data), it
increases the burden of the RT-DEVS modeller when the sys-
tem cannot tolerate synchronization losses. Model validation
through simulation or verification can help in assessing correct
system behaviour.

ANGELO FURFARO ET. AL: EMBEDDED CONTROL SYSTEMS DESIGN BASED ON RT-DEVS AND TEMPORAL ANALYSIS USING UPPAAL 603

III. A T RAFFIC L IGHT CONTROLLER

The following describes the modelling of a Traffic Light
Control system (TLC) [11]. In the proposed scenario, the
traffic flow at an intersection between an avenue and a street
is regulated by two traffic lights. The lights are operated bya
control device (controller) that, in normal conditions, alternates
in a periodic way the traffic flow in the two directions. In
addition, the controller is able to detect the arrival of an
ambulance and to handle this exceptional situation by allowing
the ambulance crossing as soon as possible and in a safe way.
For the sake of simplicity, it is assumed that at most one
ambulance can be in the closeness of the intersection at a
given time. During normal operation conditions, the sequence
green-yellow-red is alternated on the two directions with the
light held green for45 time units (tu), yellow for5 tu and
red on both directions for 1 tu. The intersection is equipped
with sensors able to detect the presence of an ambulance at
three different positions during its crossing. As soon as the
ambulance arrival is detected, a signal named “approaching”
is sent to the controller. When the ambulance reaches the
nearness of the intersection the signal “before” is issued.After
the ambulance completes the crossing the signal “after” is
generated. The controller reacts to the “approaching” event
by leading the intersection to a safe state, i.e. bringing both
lights on red.

StreetLight (SL)

Ambulance (A)Controller (C)

AvenueLight (AL)

L

L

A

SL

A

AL

Fig. 1. Traffic light coupled model

When the signal “before” is received, the controller switches
to green the light on the ambulance’s arrival direction. After
the ambulance leaves the intersection (“after” event) the con-
troller turns the green light to red and resumes its normal
sequence. Fig. 1 illustrates an RT-DEVS coupled model of
the TLC system which is made of four connected compo-
nents: there are two instances of the Light component, which
respectively correspond to the light on the avenue and that
on the street, one Ambulance component, which models the
behaviour of the sensing equipments of the intersection, and
one Controller component which implements the above de-
scribed control logic. Couplings in Fig. 1 are realized between
matching input/output ports.X /Y sets for the Controller are
as follows:

Fig. 2. Light behaviour

AFTER

APPR

BEFORE

Home[40,80] [0,0]

[8,10]

chooseDir()

[6,8]

A!appr(dir)

A!before

A!after

Fig. 3. Ambulance behaviour

X={<A,appr>,<A,before>,<A,after>}

Y={<SL,toR>,<SL,toY>,<SL,toG>,<AL,toR>,

<AL,toY>,<AL,toG>}

Component behaviour is specified in Figg. from 2 to 4 where
an oval box represents a phase of the component. The complete
state setS obviously depends also on the component local
variables. For instance, the Controller has adir variable whose
value indicate the avenue or the street, and logical variable amb
where information about an arriving ambulance is maintained
when current phase of the controller cannot be pre-empted.
Similarly, light components keep the light status in the three
logical variablesr,y, and g. A light component (Fig. 2) is
normally in theHome phase with default interval[∞,∞]. The
arrival of a toR, toY or toG event causes an external transition
respectively totoRed, toYellow or toGreen phase which is
then exited after1 time unit by an internal transition reaching
againHome. The lambda function associated with the internal
transitions specifies the required state changes in the light.

Behaviour of the ambulance (Fig. 4) is cyclic. After a non
deterministic time in[40, 80], the ambulance announces itself
by choosing an arriving direction and sending theappr event
to the controller. From theBEFORE phase and after a time in
[8, 10] the ambulance sends a before event to the controller.
Finally, form the AFTER phase the ambulance signals its
passage through the intersection by sending an after event with
an elapsed time in[6, 8]. In Fig. 4 the normal and exceptional

604 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 4. Controller behaviour

behaviours of the controller can be distinguished. The initial
phase isBR1 (both lights reds). Under normal behaviour, the
controller steps through a light cycle (e.g. fromBR1, to AV
to AY to BR2 for the avenue, and fromBR2 to SG, to SY
to BR1 for the street). It should be noted that a “both reds”
condition (BR1 or BR2) is always maintained for1 time unit.
Avenue and street cycles strictly alternate. A normal cycle
is started provided no ambulance is sensed. During a light
cycle the arrival of ambulance pre-empts normal behaviour.In
particular, a green phase (AG or SG) is immediately abandoned
by anticipating the next yellow phase and then finishing the
cycle. However, current yellow phase is never pre-empted. All
of this guarantees the duration of the yellow phase (in the
example in [11] it was erroneously made possible, in worst
case conditions, that a yellow phase doubles its duration).
It should be noted the efforts taken in Fig. 4 for not losing
the approaching signals. As soon as an ambulance is sensed,
the logical variableamb is set to true. At cycle end, the
presence of an ambulance requires an exceptional behaviour
to be executed by first reaching theBRA (both reds with
ambulance) phase. FromBRA, and depending on the arriving
direction of the ambulance, the controller senses events from
the ambulance and commands accordingly the light by turning
it first green, then yellow after ambulance passage and finally
red. Ambulance events (e.g.before andafter) are processed by
external transitions. Light control is instead realized through
internal transitions. Following an exceptional behaviour, the
controller restarts the normal cycle by giving the turn to the
other direction.

A. Property Requirements for the TLC

The TLC has safety and (bounded) liveness (e.g. deadline)
properties, besides absence of deadlock or livelock conditions.

1) Traffic must never be allowed in both directions simulta-
neously. For safety reasons it is required that the status

r=1,y=0,g=0

x=0

L_toG reen?

x=0
r=0,y=1,g=0

x=0

L_toY ellow?

L_toR ed?

toR E D
Home

x<=1

toG R E E N

toY E LLOW

r=0,y=0,g=1

x>=1

x>=1x>=1
x<=1x<=1

Fig. 5. Light template

of the traffic lights be consistent at all times. To avoid
accidents among vehicles crossing the intersection, when
on a direction the light is green or yellow, thus allowing
traffic in the direction, the light on the opposite direction
must be red.

2) Lights should be both reds at a before event. No vehicle
should be allowed to cross the intersection at a before
event.

3) Deadline of 3 tu for turning green the light after a
before event. Assuming that it takes at least4 tu for
the ambulance to reach the intersection from the time
instant of the before signal, it follows that there exists a
deadline of 3 tu for the controller to turn green the light
on the arriving direction, also considering that a light
takes 1 tu for changing its status.

4) Correct sequencing of the lights on each direction. A
correct behaviour requires that only transitions from red
to green, from green to yellow and from yellow to red
should be allowed. A transition out of this sequence
denotes a wrong sequence.

5) The ambulance must be live. In particular, after sig-
nalling an approach, it must be guaranteed that the
ambulance model comes back to itsHome phase.

IV. T EMPORAL ANALYSIS USING UPPAAL

Weak synchronization and message losses increase the
need for functional, safety and temporal analysis of an RT-
DEVS model. In this work an RT-DEVS model is preliminary
transformed into UPPAAL [6] for model checking. UPPAAL

was chosen because it supports data variables and weak syn-
chronization through broadcast channels [12]. The following
summarizes the translation rules.

• An RT-DEVS component is mapped onto an UPPAAL

template, which has a local clockx.
• Phases of the source component correspond one-to-one

to locations of the template.
• Each pair of matching ports (e.g. the output portA of

Ambulance and the input portA of Controller) together
with a data/control symbol, is mapped on to a broad-
cast channel. For instance, broadcast channelsA appr,
A before andA after are shared between Ambulance and
Controller etc.

• Templates receive as parameters the broadcast channels
corresponding to used input/output ports.

ANGELO FURFARO ET. AL: EMBEDDED CONTROL SYSTEMS DESIGN BASED ON RT-DEVS AND TEMPORAL ANALYSIS USING UPPAAL 605

dir=d,x=0

A_after!
x=0

x=0

x=0

A_before!

A_appr!

AP P RHome

x<=8
B E FAF T

x>=40

x>=8

x>=6

x<=10

x<=80 x<=0d : ave_str

Fig. 6. Ambulance template

TABLE I
UPPAAL QUERIES FOR PROPERTY ANALISYS OFTLC

Property Query Result

Absence of deadlocks A[] !deadlock satisfied

Lights consistency A[] (AL.g==1||AL.y==1) imply SL.r==1 satisfied

Lights consistency A[] (SL.g==1||SL.y==1) imply AL.r==1 satisfied

Lights must never be both green E<> SL.g==1 && AL.g==1 not satisfied

Ambulance is live A.APPR --> A.Home satisfied

Deadline checking A[] flag imply z<=3 satisfied

• Shared communication data, e.g. thedir variable used by
Ambulance and Controller, become global declarations.

• A strict time interval [lb, ub] of a phasePH of an RT-
DEVS component implies the invariantx ≤ ub is added
to locationPH. Default time interval[∞,∞] is implicit.
Time interval [0, 0] of a transitory phase is mapped on
the invariantx ≤ 0. UPPAAL requires bounds of a time
interval to be expressed by naturals.

• An internal transition of the RT-DEVS model is associ-
ated with a timed edge having the guardx ≥ lb. The
update portion of the command on the edge contains the
effect of the output function. An external transition is
associated with an untimed edge which in turn relates to
an input synchronization with a broadcast channel.

The above rules were applied to obtain the models in Figg.
from 5 to 7 which depict the UPPAAL version of RT-DEVS
TLC components. In Fig. 6, random choice of the ambulance
arriving direction is simply achieved by non-deterministic
selection, on the edge betweenHome and APPR locations,
of the value of the local variabled betweenave and str
values (typeave str is an alias ofint[ave,str]). As one can
see, the UPPAAL templates correspond as close as possible
to source RT-DEVS components. Therefore, the translation
can be easily automated. The resultant UPPAAL system model
is the parallel composition of one instance of the Controller
template, two instances of the Light template and one instance
of the Ambulance.

A. Verification of the TLC

The timed automata model of the TLC was verified using
the UPPAAL version 4.1.0. Table I illustrates some TCTL
queries issued to the UPPAAL verifier used for property
analysis.

Absence of deadlocks confirms the TLC model correctly
behave despite weak synchronization and (possibly) message
loss. That the unsafe state of both lights green is never reached
is checked by asking the verifier if there exists a state in the
state graph where the g data of both lights is1. In addition,
it was verified that whenever the traffic is allowed in one
direction (the light is green or yellow), the light is red on
the other direction.

Correct sequencing of lights was verified by introducing
three additional variables in the Light template for storing the
previous status of the light, by changing the Light behaviour so
as to conserve previous status at any new assignment, and by
checking that it is always true that a green status is preceded
by the red status etc. These details and queries are omitted for
simplicity.

A few additional words relate to deadline checking. The
UPPAAL model was decorated by introducing the global
logical variable flag and the extra clockz. Variable flag is
set to true in the Ambulance template when the before event
is sent to controller, and reset in the Light template (therefore
in both instances of the template) when the green status is
installed (on the exiting edge from thetoGreen location in
Fig. 5). It was found that not only the required deadline is
fulfilled but that in reality 1 tu is always sufficient for the
controller, following a before signal, to turn green the light in
the arriving direction of the ambulance.

V. I MPLEMENTATION STATUS

RT-DEVS was prototyped in Java using an adaptation of
the ActorDEVS lean agent-based framework [9], [10]. The
following provides some implementation hints and gives a
flavour of the programming style. Both discrete and dense time
models are supported, through the class hierarchy (interfaces
are underlined):Time, AbsoluteTime, RelativeTime,
TimeInterval, AbsoluteDiscreteTime, Absolute-

DenseTime, RelativeDiscreteTime, Relative-

DenseTime, DiscreteTimeInterval, DenseTime-

Interval. A concrete time object has avalue() method
which returns along for discrete time, and adouble
for dense time. An RT-DEVS atomic component must be
programmed as a class which derives directly or indirectly
from the RTDEVS abstract base class, which provides the
contract of operations (see the extract in Fig. 8) and basic
behaviour.

A specific component must implement the abstract methods
of RTDEVS in order to specify its specific behaviour. For
simulation purposes theactivity() method can be left to
its default (no-operation) body. Phases are coded as integers.
Internal and external transitions return the int of the nextphase.
It should be noted that component methods have direct access
to the whole state by accessing the component local data
variables. Theti() method returns the (dense or discrete)
time interval associated with the given state. Methodnow()

returns theAbsoluteTime value of current time.
Typed input/output ports are supported respectively by para-

metric classesInput<V> and Output<V>. Typically, V is a

606 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

A_appr?

A_appr?

A_appr?

A_appr?

SL_toGreen!

AL_toGreen!

SL_toYellow!SL_toRed!

AL_toRed!

A_appr?

A_appr?

AL_toYellow!

AL_toRed!

x=0

x=0

x=0, amb=false

x=0

x=0

A_appr?

x=0

A_appr?

x=0, amb=false

x=0

x=0x=0

x=0

AL_toYellow!

A_before?

SL_toRed!

SL_toYellow!

AL_toGreen!

A_after?A_after?

SL_toGreen!

A_before?

x<=0
x<=5

x<=5

x<=45

x<=45

x<=0

x<=0

x<=0

x<=0

x<=0

x<=5

x<=1
x<=1

SG

SY

AAFT

AG

AY
x<=5

BR1

BRA

ABEF

BR2

SAFT SBEF

x=0

x=0

x=0

amb=true
amb=true

dir==str

amb=true

amb=true
x>=5 amb=true,x=0

x=0

x=0

amb=true

amb=true

x=0 x=0

amb=true,x=0

x>=1 && !amb

x>=5

x>=5

dir==ave

x>=1 && am bx>=1 && am b

x>=1 && !amb

x>=45

x>=5x>=45

Fig. 7. Controller template

public abstract int delta_int(int phase);
public abstract int delta_ext(int phase, RelativeTime e, Message x);
public abstract void lambda(int phase);
public abstract RelativeTime ta(int phase);
public abstract TimeInterval ti(int phase);
public void activity(int phase){}
public AbsoluteTime now();

Fig. 8. An extract of RTDEVS atomic components programming interface

user defined class which specifies the data/control symbols
which can flow through the port.Input is a subclass of
Output. Each component exports its input port types. Output
ports are created by a configurer (e.g. themain() method)
and passed to relevant components e.g. at construction time.
The configurer is also in charge of linking matching ports for
establishing a coupled model. Programming style is exempli-
fied by showing details of the Light atomic component. Light
events were modelled as instances of theLightEvent class
(Fig. 9). The Light component, shaped for prototyping and

public class LightEvent {
public static enum Symbol{ TO_RED, TO_YELLOW, TO_GREEN };
private Symbol symbol;
public Symbol getSymbol(){ return symbol; }
public void setSymbol(Symbol symbol){ this.symbol=symbol; }

}//LightEvent

Fig. 9. Class of light events

simulation purposes, is illustrated in Fig. 10.
For components with non punctual time intervals (e.g.

Ambulance and Controller) theta() method returns a number
uniformly distributed in the time interval of current phase.

Java TLC model was executed using dense time and
the RTDEVS_Simulation control engine which mimics
the RT-DEVS operational semantics.RTDEVS_Simulation
receives the (AbsoluteDenseTime) simulation time
limit (e.g. 107) and a simulation clock (here a
SimulationDenseTimeClock). RTDEVS maintains a
priority queue of timers ranked by ascending fire times
(absolutizedta values). The engine fires most imminent

ANGELO FURFARO ET. AL: EMBEDDED CONTROL SYSTEMS DESIGN BASED ON RT-DEVS AND TEMPORAL ANALYSIS USING UPPAAL 607

public class Light extends RTDEVS{
//message interface
public static class L extends Input<LightEvent>{}
//phases
private static final byte Home=0, ToRED=1, ToYELLOW=2, ToGREEN=3;
//state variables
private byte r=1, y=0, g=0, id;
private Monitor m;
public Light(byte id, Monitor m){ this.id=id; this.m=m; initialPhase(Home); }
public int delta_int(int phase){

if(phase!=Home) phase=Home;
return phase;

}//elta_int
public int delta_ext(int phase, RelativeTime e, Message x){

if(phase==Home){
LightEvent le=((L)x).get();
if(le.getSymbol()==LightEvent.Symbol.TO_RED) phase=ToRED;
else if(le.getSymbol()==LightEvent.Symbol.TO_YELLOW) phase=ToYELLOW;
else phase=ToGREEN;

}
return phase;
}//delta_ext
public RelativeTime ta(int phase){

if(phase==Home) return RelativeDenseTime.INFINITY;
return new RelativeDenseTime(1);

}//ta
public TimeInterval ti(int phase){

if(phase==Home) return new DenseTimeInterval();//[infty,infty]
return new DenseTimeInterval(1,1);

}//ti
public void lambda(int phase){

if(phase!=Home){
switch(phase){

case ToRED: r=1; y=0; g=0; break;
case ToYELLOW: r=0; y=1; g=0; break;
case ToGREEN: r=0; y=0; g=1; break;
default: throw new RuntimeException("Illegal phase");

}
m.light(id, r, y, g, ((AbsoluteDenseTime)now()).value());//to monitor

}
}//lambda
protected boolean acceptable(Message x){ return x instanceof L; }//acceptable

}//Light

Fig. 10. Class Light of the TLC

internal transitions one at a time and updates the simulation
clock to the fire time accordingly. The output function
then sends synchronously its message to the coupled
component. In the case the partner component is not ready
for synchronization, the sent message is simply lost. During
simulation, aMonitor object (transducer) gets informed of
event occurrences and checks system properties (e.g. it counts
the number of times the bad state green-green of the two
lights is reached, and measures the maximal time distance
between the occurrence time of the green light in the arriving
direction of the ambulance, and that of the immediately
preceding before event, etc.). Also under simulation, the TLC
was found to be temporally correct.

For real-time execution, RT-DEVS naturally requires a
multi-processor implementation (each component runs on its
own processor, as was assumed by temporal analysis). The
ta() function is no longer useful. Theactivity() method
should be programmed with the (sub)algorithms to be carried
out in each phase of the component. All other methods remain
unchanged. Of course, a real-time executive has to possibly
compensate for violations of activity durations. An activity

can terminate earlier than its lower bound duration or after
its upper bound. In the first case the engine can delay the
firing of the internal transition until the real time clock reaches
the lower bound. In the latter case activity interruption and
concepts of adaptive scheduling and imprecise computation
[13] could help. As a particular scenario, an RT-DEVS model
could be analyzed and executed on a single processor, by
ensuring atomicity and mutual exclusion of activities.

VI. CONCLUSION

This paper reports about specification, analysis and Java
implementation of RT-DEVS systems operated under model
continuity. Model checking is enabled by a translation onto
timed automata of UPPAAL. For large models an achieved
discrete-event simulation tool can be exploited. Java imple-
mentations rely on a minimal, efficient and customizable agent
framework [9], [10].

On-going and future work is directed at:

• experimenting with real-time executives using the Real-
time Specification for Java platform [14]

• extending the approach to the distributed context using
standard middleware like HLA/RTI or real-time CORBA

• building development tools for visual modelling, proto-
typing/simulation, and automatic generation of Java code
and UPPAAL XML code.

REFERENCES

[1] X. Hu and B. Zeigler, “Model continuity to support software devel-
opment for distributed robotic systems: A team formation example,”
Journal of Intelligent and Robotic Systems, vol. 39, no. 1, pp. 71–87,
2004.

[2] ——, “Model continuity in the design of dynamic distributed real-time
systems,”IEEE Trans. Syst., Man, Cybern. A, vol. 35, no. 6, pp. 867–
878, 2005.

[3] J. Hong, H. Song, T. Kim, and K. Park, “A real-time discrete-event
system specification formalism for seamless real-time software devel-
opment,”Discrete Event Systems: Theory and Applications, vol. 7, pp.
355–375, 1997.

[4] H. Song and T. Kim, “Application of real-time DEVS to analysis of
safety-critical embedded control systems: railroad-crossing example,”
Simulation, vol. 81, no. 2, pp. 119–136, 2005.

[5] B. P. Zeigler, H. Praehofer, and T. Kim,Theory of modeling and
simulation, 2nd ed. New York: Academic Press., 2000.

[6] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in
Formal Methods for the Design of Real-Time Systems, ser. LNCS 3185,
M. Bernardo and F. Corradini, Eds. Springer, 2004, pp. 200–236.

[7] F. Cicirelli, A. Furfaro, and L. Nigro, “Using TPN/Designer and UPPAAL

for modular modelling and analysis of time-critical systems,” Interna-
tional Journal of Simulation Systems, Science & Technology, vol. 8,
no. 4, pp. 8–20, 2007, special Issue on Frameworks and Applications in
Science and Engineering.

[8] A. Furfaro and L. Nigro, “Modelling and schedulability analysis of real-
time sequence patterns using time Petri nets and UPPAAL,” in Proc. of
International Workshop on Real Time Software (RTS’07), October 16
2007, pp. 821–835.

[9] F. Cicirelli, A. Furfaro, and L. Nigro, “A DEVS M&S framework based
on Java and actors,” inProc. of 2nd European Modeling and Simulation
Symposium (EMSS’06), Barcelona, Spain, October 4-6 2006.

[10] ——, “Actor-based simulation of PDEVS systems over HLA,” in Proc.
41st Annual Simulation Symposium (ANSS’08), 2008, pp. 229–236.

[11] S. C. V. Raju and A. C. Shaw, “A prototyping environment for specifying
and checking Communicating Real-time State Machines,”Software–
Practice and Experience, vol. 24, no. 2, pp. 175–195, 1994.

[12] Uppaal. [Online]. Available: http://www.uppaal.com

608 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

[13] W. A. Halang, “Load adaptive dynamic scheduling of tasks with hard
deadlines useful for industrial applications,”Computing, vol. 47, pp.
199–213, 1992.

[14] RTSJ. [Online]. Available: http://jcp.org/aboutJava/communityprocess/
first/jsr001/rtj.pdf

