
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 757–760

ISBN 978-83-60810-14-9
ISSN 1896-7094

IEC Structured Text programming
of a small Distributed Control System

Dariusz Rzónca∗, Jan Sadolewski∗, Andrzej Stec∗, Zbigniew Świder∗, Bartosz Trybus∗, and Leszek Trybus∗
∗Rzeszow University of Technology,

Faculty of Electrical and Computer Engineering
Wincentego Pola 2, 35-959 Rzeszów, Poland

Email: {drzonca, js, astec, swiderzb, btrybus, ltrybus}@prz-rzeszow.pl

Abstract—A prototype environment called CPDev for pro-
gramming small distributed control-and-measurement systems
in Structured Text (ST) language of IEC 61131-3 standard is
presented. The environment consists of a compiler, simulator
and configurer of hardware resources, including communications.
Programming a mini-DCS (Distributed Control System) from
LUMEL Zielona Góra is the first application of CPDev.

I. I NTRODUCTION

DOMESTIC control-and-measurement industry manufac-
tures transmitters, actuators, drives, PID (Proportional-

Integral-Derivative) and PLC (Programmable Logic) con-
trollers, recorders, etc. Connected into distributed systems,
they are used for automation of small and medium scale
plants. However, engineering tools used for programming such
devices are rather simple and do not correspond to IEC 61131-
3 standard [2] (Polish law since 2004).

This paper presents current state of work on engineering
environment called CPDev (Control Program Developer) for
programming small control-and-measurement devices and dis-
tributed mini-systems according to the IEC standard (digits
dropped for brevity). First implementation involves instru-
ments from LUMEL Zielona Góra [7]. Initial information on
CPDev was presented at the previous IMCSIT conference [5].
Similar environments have been described in [1], [6].

The CPDev environment (called also package) consists of
three programs executed by PC and one by the controller. At
the PC side we have:

- CPDev compiler of ST language,
- CPSim software simulator,
- CPCon configurer of hardware resources.
The programs exchange data through files in appropriate

formats. The CPDev compiler generates an universal code
executed by virtual machine VM at the controller side. The
machine operates as an interpreter. The code is a list of
primitive instructions of the virtual machine language called
VMASM assembler. VMASM is not related to any particular
processor, however it is close to somewhat extended typical
assemblers. In this way, portability of the compiled code for
different hardware platforms is provided. On the contrary,
other solutions are usually built around the concept of trans-
lating IEC language programs into C code [6].

Basic characteristics of VMASM and virtual machine are
given in [5]. CPSim simulator also involves the machine (in

Fig. 1. User interface in CPDev environment

this case at the PC side).
The CPDev package is developed in C# language of .NET

Framework. The virtual machine is written in ANSI C and
compiled with appriopriate, platform-dependent compilers e.g.
avr-gcc in case of the LUMEL’s mini-DCS. Other languages
and programming environments are also used in specific cases.

The implementation of CPDev components was supported
by lexical diagrams (compiler), object-oriented modelling
techniques (programming environment) and coloured Petri
nets (communication subsystem), see [5], [9].

II. A PROGRAM IN ST LANGUAGE

Main window of user interface in the CPDev environment
is shown in Fig. 1. It consists of three areas:

- tree of project structure, on the left,
- program in ST language, center,
- message list, bottom.

Tree of the START_STOP project shown in the figure
includes Program Organization Unit (POU) with the program
PRG_START_STOP, five global variables fromSTART to
PUMP, task TSK_START_STOP, and two standard function
blocksTON andTOF from IEC_61131 library.

ThePRG_START_STOP program seen in the main area is
written according to ST language rules. The first part involves

757

758 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

declarations of instancesDELAY_ON, DELAY_OFF of the
function blocksTON andTOF. Declarations of the global vari-
ables (EXTERNAL) are the second part, and four instructions
of the program body, the third one. The instructions correspond
to FBD (Function Block Diagram) shown in Fig. 2. So one
can expect that certainMOTOR is turned on immediately after
pressing a buttonSTART and a PUMP five seconds later.
PressingSTOP or activation of anALARM sensor triggers
similar turn off sequence.

III. G LOBAL VARIABLES AND TASK

Global variables can be declared in CPDev either using
individual windows or collectively at a variable list. The list
for the START_STOP project is shown in Fig. 3.

The addresses specifydirectly represented variables[2], [3]
and denote relative location in controller memory (keyword
AT declares the address in individual window). Here these
addresses are calledlocal. Variables without addresses (not
used in this project) are located automatically by the compiler.

Window with declaration of theTSK_START_STOP task
is shown in Fig. 4. A task can be executed once, cyclically
or continuously (triggered immediately after completing,as in
small PLCs). There is no limit on the number of programs
assigned to a task, however a program can be assigned only
once.

Text of the project represented by the tree is kept in
an XML text file. Compilation is executed by calling
Project->Build from the main menu. Messages appear
in the lower area of the interface display (Fig. 1). If there are
no mistakes, the compiled project is stored in two files. The
first one contains universal executable code in binary format
for the virtual machine. The second one contains mnemonic
code [5], together with some information for simulator and
hardware configurer (variable names, etc.).

IV. FUNCTIONS AND LIBRARIES

The CPDev compiler provides most of standard functions
defined in IEC standard. Six groups of them followed by
examples are listed below:

- type conversions:INT_TO_REAL, TIME_TO_DINT,
TRUNC,

- numerical functions:ADD, SUB, MUL, DIV, SQRT, ABS,
LN,

- Boolean and bit shift functions:AND, OR, NOT, SHL,
ROR,

Fig. 2. START_STOP system for control of a motor and pump (with delay
of 5 seconds)

Fig. 3. Global variable list for theSTART_STOP project.

- selection and comparison functions:SEL, MAX, LIMIT,
MUX, GE, EQ, LT,

- character string functions:LEN, LEFT, CONCAT,
INSERT,

- functions of time data types:ADD, SUB, MUL, DIV (IEC
uses the same names as for numerical functions).

SelectorSEL, limiter LIMIT and multiplexerMUX from
selection and comparison group are particularly useful. Vari-
ables of any numerical type, i.e.INT, DINT, UINT andREAL
(calledANY_NUM in IEC [2], [3]) are arguments in most of
relevant functions.

Typical program in ST language is a list of function block
calls, where inputs to successive blocks are outputs from
previous ones (see Fig. 2). So far the CPDev package provides
three libraries:

- IEC_61131 standard library,
- Basic_blocks library with simple blocks supplement-

ing the standard,
- Complex_blocks library for continuous regulation

and sequential control.

Fig. 4. Declaration ofTSK_START_STOP task

DARIUSZ RZOŃCA ET. AL: IEC STRUCTURED TEXT PROGRAMMING OF A SMALL DISTRIBUTED CONTROL SYSTEM 759

TABLE I
BLOCKS FROM IEC_61131AND BASIC_BLOCKS LIBRARIES

Table I lists blocks form the first and second libraries.
Blocks such as PID controller, servo positioner, multi-step
sequencer, dosing block, etc., belong to the third library.

The user can develop functions, function blocks and pro-
grams, and store them in his libraries. Tables of single-size
are available only.

V. CPSIM SIMULATOR

The compiled project may be verified by simulation before
downloading into the controller. The CPSim simulator can be
used in two ways:

- before configuration of hardware resources (simulation of
the algorithm),

- after configuration of the resources (simulation of the
whole system).

The first way involves logic layer of the CPDev environment.
PC computer operates as a virtual machine executing universal
code. The second way requires configuration of hardware re-
sources, so it is application dependent. The CPCon configurer
generates hardware allocation map (see below) that assigns
local addresses to physical ones and specifies conversion ofST
data formats into formats accepted by hardware. The objective
is to bring simulation close to the hardware level, so CPSim
uses both the code and the map. Simulation window of the
START_STOP project is shown in Fig. 5. The two faceplates
on the left present values of three inputs and two outputs
(TRUE is marked). The user can select faceplates, arrange them

Fig. 5. Simulation of theSTART_STOP project

Fig. 6. Test set-up of mini-DCS system with SMC controller and SM I/O
modules

on the screen and assign variables. Simulated values can be
set both in group and in individual faceplates.

So far the window of Fig. 5 is used for simulation only. In
future it will be also employed for on-line tests (commission-
ing).

VI. CPCON CONFIGURER AND MINI-DCS

The CPCon configurer defines hardware resources for par-
ticular application. The example considered here involves
mini-DCS with SMC programmable controller, I/O modules of
SM series and eventually other devices from LUMEL Zielona
Góra [7]. Modbus RTU protocol is employed [4] on both sides
of the SMC.

Fig. 6 shows test realization of the system with SMC
controller (on the left), SM5 binary input module (middle),
and SM4 binary output module (on the right). The console
with pushbuttons and LEDs (below) is used for testing. The
PC runs first the CPDev package and a SCADA (Supervisory
Control And Data Acquisition) system later. PC and SMC are
connected via USB channel configured as a virtual serial port.

The CPCon configurer functions are as follows:
- configuration of a communication between SMC and SM

I/O modules,

760 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 7. Communication configuration of theSTART_STOP project.

- creation of file with hardware resource allocation map,
- downloading the files with executable code and map to

the SMC.
Recall that having the map the CPSim can be used in the
second simulation mode.

Main window of the CPCon configurer is shown in
Fig. 7. The Transmission slot sets speed, parity
and stop bits for PC↔SMC and SMC↔SM communi-
cations.Communication task table determines what
question↔answer and command↔acknowledgment transac-
tions take place between SMC controller (master) and SM
modules (slaves). The transactions are calledcommunica-
tion tasks and represented by the rows of the table. The
DCS system is configured by filling the rows, either di-
rectly in the table or interactively through a few windows of
Creator of com. tasks (bottom).

The first row specifies communication between SMC and
SM5 binary input module (remote). SM5 is connected to
pushbuttons in the console (Fig. 6) which, in case of the
START_STOP project, set the variablesSTART, STOP and
ALARM (Figs. 1, 2). In SMC these variables have consecutive
addresses beginning from0000 (Fig. 3). SM5 places the
inputs in consecutive 16-bit registers beginning from4003.
So all variables can be read in a single Modbus transaction
with the codeFC3 (read group of registers [4]). However,
since BOOL occupies single byte in CPDev, the interface
of the virtual machine has to perform 16→8 bit conver-
sion.

Communication tasks are handled by SMC during pauses
that remain before end of the cycle, after execution of the
program. Single transaction takes 10 to 30 ms, depending
on speed (max. 115.2 kbit/s). If the pause is large, the task
can be executed a few times. It has been assumed that the
task withNORMAL priority is executed twice slower than the
task withHIGH priority, and the task withLOW priority three
times slower. As seen in Fig. 7, the communication with SM5

module hasNORMAL priority. The Timeout within which
transaction must be completed is 500 ms.

Second row of theCommunication task table de-
fines communication with the SM4 binary output module.
SM4 controls the console LEDs. Two consecutive variables,
MOTOR andPUMP, the first one with the local address0008,
are sent to SM4 by single message with the codeFC16
to remote addresses beginning from4205 (write group of
registers). This time 8→16 bit conversion is needed.

VII. C ONCLUSIONS

CPDev environment for programming industrial controllers
and other control-and-measurement devices according to
IEC 61131-3 standard has been presented. The environment
consists of ST language compiler, project simulator, and con-
figurer of hardware resources, including communications. The
user can program his own function blocks and create libraries.
Mini-DCS control-and-measurement system form LUMEL is
the first application of the package.

Programs written in the future in other IEC languages, first
of all in FBD, will also be compiled to the VMASM code and
executed by the virtual machine. Appriopriate compilers are
under development. XML format for data exchange between
languages has already been defined by PLCOpen [1], [8].

ACKNOWLEDGMENT

Support from the MNiSzW R02 058 03 grant is gratefully
acknowledged.

REFERENCES

[1] Bubacz P., Adamski M.: .NET platform and XML markup language in a
software design system for logic controllers.PAK, 2006, no. 6bis, 94–96
(in Polish).

[2] IEC 61131-3 standard,Programmable Controllers—Part 3, Programming
Languages. IEC, 2003.

[3] J. Kasprzyk:Programming Industrial Controllers. WNT, Warsaw, 2006
(in Polish).

[4] Modicon MODBUS Protocol Reference Guide. MODICON, Inc., Indus-
trial Automation Systems, Massachusetts (1996) http://www.modbus.org/
docs/PI_MBUS_300.pdf

[5] D. Rzońca, J. Sadolewski, B. Trybus: Prototype environment for controller
programming in the IEC 61131-3 ST language.Computer Science and
Information Systems, December 2007 (also 2007 IMCSIT,1041−1054).

[6] Tisserant E., Bessard L., de Sousa M.: An Open Source IEC 61131-3 In-
tegrated Development Environment.5

th Int. Conf. Industrial Informatics,
Piscataway, NJ, USA, 2007.

[7] http://www.lumel.com.pl
[8] XML Formats for IEC 61131-3 ver. 1.01 – Official Release. http://www.

plcopen.org/
[9] Rzońca D., Trybus B.: Timed CPN model of SMC controller communi-

cation subsystem, in: S. Wȩgrzyn, T. Czachïż¡rski, A. Kwiecién (Eds.):
Contemporary Aspects of Computer Networks, WKŁ, Warszawa 2008,
203–212.

