
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 649–656

ISBN 978-83-60810-14-9
ISSN 1896-7094

Minos—The design and implementation of an
embedded real-time operating system with a

perspective of fault tolerance
Thomas Kaegi-Trachsel

Native Systems Group
ETH Zurich

8092 Zurich, Switzerland
Email: thomas.kaegi@inf.ethz.ch

Juerg Gutknecht
Native Systems Group

ETH Zurich
8092 Zurich, Switzerland

Email: gutknecht@inf.ethz.ch

Abstract—This paper describes the design and implementation
of a small real time operating system (OS) calledMinos and its
application in an onboard active safety project for GeneralAvia-
tion. The focus of the operating system is predictability, stability,
safety and simplicity. We introduce fault tolerance aspects in
software by the concept of a very fast reboot procedure and by
an error correcting flight data memory (FDM). In addition, fa ult
tolerance is supported by custom designed hardware.

I. I NTRODUCTION

W E DEVELOPED Minos in the context of a European
Union Research project calledOnbass[1]. The follow-

ing quote of the Onbass homepage gives an overview of the
project goals:

The final goal of the project is to design, develop,
test and validate an on-board active real-time data
processing system that will monitor flight related
parameters and react in the case of a proliferation of
risk to the aircraft or its occupants. The system will
recognise undesirable trends or patterns in data relat-
ing to the various aircraft agents (aircraft, systems,
pilot) by analyzing and comparing current flight
data against previously accumulated aircraft-specific
behavioral data. As a result, timely interventions
could be made in order to eliminate the associated
risk(s) or to minimise the severity of the corre-
sponding effects. In addition, the system will offer
invaluable and comprehensive data for post-flight
analysis upon which aviation safety bodies could
base and/or redesign safety policies and procedures.

The interested reader may refer to [2]–[4] for further infor-
mation about the application side of the Onbass project, the
theory of Active Safety and its implementation.

In this paper we shall describe the operating system de-
veloped during the project, with an emphasis on two fault
tolerance aspects: a.) recovering from memory faults mainly
caused by radiation and b.) reliably recording flight data ina
Flight Data Memory(FDM). A FDM is a reliable persistent
storage system for flight data such as heading, temperature,
engine information, etc. recorded in real time during the flight.

The main concept used to increase dependability [5] in
our project is managed redundancy. Duplication of the main
memory (see chapter II) and of the flight data memory (see
chapter VI) lead to a substantially higher level of reliability.

II. T HE HARDWARE PLATFORM

The hardware platform was custom designed and built
for this project by IRoC Technology in Grenoble, France,
according to the requirements given by the Onbass project
specification. The FPGA implementation [6] features a CPU,
synthesised from a standard (non fault tolerant) ARM7TDMI
IP core by Actel, a fault tolerant main memory (RAM) and a
fault tolerant ROM.

Fault tolerant RAM and ROM provide safeguards against
both temporary and permanent errors. Temporary errors, for
example bit flips, are mainly induced by radiation such as
alpha particles, neutrons or heavy ions that are generated
by solar winds or by other cosmic radiation. At sea level,
these events happen rarely because most of the radiation is
filtered by the earths atmosphere. However, at typical flight
altitude (10km above sea level) or in deep space several
hundred or thousand kilometers above ground, experiments
have shown [7] that such events occur as frequently as 5.55
times per megabyte RAM per day in average. ROM is much
less susceptible to such events, but they can still occur.

Permanent errors on the other hand affect both, RAM and
ROM equally. Such errors usually manifest themselves as
failures of parts of or the entire physical memory chip. In
the former case, only certain regions are affected, in the latter
case the whole chip fails.

If a temporary fault occurs, the system should recover as
quickly as possible and continue its operation from the most
recent consistent state. In the case of a permanent error, the
system is supposed to still continue its operation, possibly in
a degraded mode, after signalling the failure to the runtime
and application.

The following sections describe the strategies chosen for
dealing with the two types of error just described.

649



650 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 1. ROM Implementation(Picture courtesy of IRoC Technology)

Memory Subsystem: As a first precaution, static RAM
was chosen instead of dynamic RAM as it is faster and more
resilient to temporary errors. Physical duplication of memory
chips combined with a CRC mechanism provides immunity
against a complete failure of any single memory chip. Read/
write operations are always performed simultaneously on
two memory chips and, if one of them fails, the error is
immediately flagged to the OS.

Furthermore, a word-based error detection mechanism was
implemented. A 36-bit wide version of SRAM was chosen,
where the 4 extra bits per word are used to store a hardware-
generatedCyclic Redundancy Check(CRC). At each read
operation, the data of both memory chips involved is compared
against each other. If the comparison fails, the CRC is used
to determine the faulty chip, and its partner chip is used to
automatically correct the faulty memory location. As these
operations are integrated into the memory controller, the
comparison can be done without performance penalty, and the
correction in case of a mismatch requires just one additional
memory access (one CPU cycle). Counters of all corrected
and uncorrected errors are provided to the runtime for further
analysis or logging.

Triplicated memory was considered an alternative to the
duplication but an unimproved level of protection regarding
temporary faults, longer Mean Time To Failure (MTTF), lower
hardware costs and lower heat dissipation favoured the chosen
approach.

Flash Memory: The binary image of the OS is stored
in flash-memory (ROM). The system ROM is physically
duplicated but, as it is less susceptible to external influences,
no extra bits for error detection are provided. Instead, two
instances of the OS image are stored on each ROM chip, one
in the first half of the address space and one (in reverse bit
order) in the second half, as shown in Figure 1. This procedure
can be justified in our case by the extremely small size of the
OS image.

In order to understand how error detection/ correction in
ROM works, we first remember that ROM chips are actually

16 bit wide1, so that two corresponding 16 bit entities from
the two ROM chips fit in one 32 bit word. At boot time,
the hardware controller uses this fact for error detection when
copying the binary OS image wordwise from ROM into RAM.
If the two 16 bit entities in a word do not match, the image
stored in the lower ROM part is considered corrupted, and the
correct data has to be retrieved from the upper ROM part. As
this procedure is only initiated once at boot up, the additional
overhead is negligible.

Calculations [6] showed that the system just described not
only features up to 99% mitigation efficiency regarding to non-
permanent (transient) errors but it also enjoys twice as long
Maintainance Free Operating Periods (MFOPs) if compared
with a non-redundant implementation. Both, a more extensive
reliability analysis and more implementation details, aregiven
in [6].

III. T HE PROGRAMMING LANGUAGE OBERON

The programming language used in the Onbass project
is Oberon 07 [8], [9], a modular descendant of Pascal and
Modula-2. Oberon 07 is a simple and safe variant ofOberon
[10] for embedded systems. For example, the option of in-
line assembler code has been removed completely from the
language and replaced with a set of safer and more structured
custom built-in functions [8]. Oberon07 also provides a mech-
anism for accelerated calls and execution of ”leaf” procedures
that do not contain (further) procedure calls. Parameters and
local variables in leaf procedures are allocated in registers
(instead of on the stack) whenever possible. The Oberon
language is especially suitable for safety critical applications
as it is completely type safe and allows no unsafe operations
such as type conversions, etc. except in explicitly marked
sections for kernel code.

IV. T HE APPLICATIONS

Before explaining the design of the Operating System, we
would like to give a short overview of the Onbass applications
that were supposed to run on the system. This gives an idea
about the requirements:

Flight Data Acquisition The Onbass system is installed in
a general aviation airplane such as a Piper Lance and directly
connected to the onboard air data computer that delivers a set
of sensor data to the Onbass system up to eight times per
second.

Black Box Recording After the data acquisition, the raw
black box data is stored in the flight data memory (see chapter
VI) for later analysis or recovery.

Data Parsing Next, the acquired data is parsed and vali-
dated according to the air data computer specification.

Flight Mode Detection The current flight mode (take off,
cruise, etc) is then evaluated. This is especially important, as
the valid airplane constraints such as speed, vertical speed, etc.
heavily depend on the flight mode.

1ROM chips use an interlaced addressing scheme, where the first 16 bits in
address space belong to the first chip, the second 16 bit belong to the second
chip, the third 16 bit to the first chip again, etc.



THOMAS KAEGI-TRACHSEL ET. AL: MINOS—THE DESIGN AND IMPLEMENTATION OF AN EMBEDDED REAL-TIME OPERATING SYSTEM 651

Airplane safety checks A set of rules is applied to the
current airplane flight state to validate the operation of the
airplane in terms of safety. In case of detected deviations,a
warning is displayed to user via the web interface.

Web Server A web server is used to display system
information such as configuration options, warnings, etc. via
a separate computer to the pilot.

Replay For post flight analysis, the system can be config-
ured to load the flight data from the FDM and and use it as
data input for the application instead of acquiring the data
from the air data computer.

Supportive tasksVarious other tasks are required to support
the system such as additional logging, polling driver tasksfor
UART and MMC etc.

The whole flight data acquisition and analysis must obvi-
ously be performed in real time and must be finished before
the next flight data set arrives. This imposes requirements on
the real time capabilities of the system.

V. THE DESIGN OFM INOS

As a starting point for the runtime system we choseHelyOS
[11], an embedded operating system for the control of au-
tonomously operating model helicopters developed at ETH
Zurich.

We did a substantial rewriting of HelyOS and customised it
towards our specific needs as it was too limiting. The resulting
system is calledMinos and enjoys the following qualities:

• Very small, simple and efficient
• Suitable for safety critical applications
• Predictable in terms of task execution time
• Easily portable to other platforms
• Highly configurable at boot time
• Fast boot up time

In the next few chapters we shall give a short introduction
to the key concepts of the Minos design.

A. Fast Boot Up

Special attention was given to system boot up time. A
hardware watchdog is used to detect ”stuck” programs caused
by a malfunction of either hardware or software. As soon as
the watchdog detects a timed-out activity of any kind, the
OS and the applications are restarted and brought into the
most recent consistent state. This is quite easily possiblein
this case because all the relevant data has by been stored in
the flight data memory by concept IV. In order to achieve
a minimum downtime it is important to implement an ultra
fast boot up mechanism that, in our case, takes less than
0.5 seconds. Unavoidably this requirement has an impact
on various subsystems such as the flight data memory (see
chapter VI).

B. Memory Management

Sytems of the Oberon family [12], [13] traditionally use
a completely type-safe ”managed” runtime including garbage
collection. However, it is widely known that garbage collec-
tion introduces unpredictable latencies in the execution of

application programs and garbage collectors for real time
systems are complex and difficult to design and implement.
As a consequence, other traditional garbage collector based
systems, i.e. Java, propose in their real time variants (Real
Time Java [14]) the addition of memory outside the scope of
the garbage collector for time critical software parts.

As explicit memory allocation and deallocation is inherently
unsafe and therefore incompatible with safety-critical applica-
tions, the only viable option is not to generate garbage at all.
We use a closed system approach that still allows applications
to allocate dynamic memory but at initialisation time only.An
additional benefit of closed systems is that they can never run
out of memory.

Unavoidably however, there is a price to pay for such
simplicity. It is the need for compensatory support for ap-
plication programming. For example, it is impossible for
Minos to permanently keep a dynamic metadata structure for
files in memory. Instead, metadata needs to be consistently
stored in flash memory, and sector caches are taken from a
preallocated buffer pool. As the pool is only used internally by
the filesystem and as blocks are automatically recycled when
the buffer pool is empty, no ”out of memory” situations can
ever occur.

C. Interrupt Handling

The interrupt handling scheme in Minos is again kept
simple. At boot time, the kernel installs a single, general
interrupt handler that is responsible for dispatching all sig-
nalled interrupts. Device drivers register their own handler
in the kernel, where only one handler per interrupt source is
currently supported. Interrupt handlers are non interruptable,
and their processing time must be kept in limits in order not
to compromise realtime guarantees. In the case of multiple
interrupts pending, the kernel calls the handlers in the order
of ascending interrupt numbers.

D. Task Model

Original Tasking Scheme:
HelyOS uses an ingeniously simple, preemptive tasking
scheme that is characterised by the following principles. First,
the scheme distinguishes four priorities corresponding tofour
different task types: Interrupt handlers, high priority periodic
tasks running at periods, low priority periodic tasks running
at periodl = k ∗ s with fixed k, and background tasks.

Second, HelyOS uses the following scheduling policy:

• Interrupt handlers have highest priority and preempt all
other tasks.

• High priority periodic tasks preempt low priority tasks
and background tasks but no interrupts.

• Low priority periodic tasks preempt background tasks but
no others.

• Background tasks do not preempt any tasks.

An interesting consequence of this scheduling policy is
the fact that each task must run to completion before any
other task of the same priority can start its execution, with
the immensely beneficial implication that a single stack is



652 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

sufficient in principle for implementing the entire scheduling
scheme.

Modified Tasking Scheme:
The scheduling policy just described is not powerful enough
for our application. In particular, the restriction to merely two
types of periodical tasks corresponding to two fixed periods
is too rigid. However, in the interest of avoiding the full
complexity of managing multiple stacks and of mastering
an intricate synchronisation mechanism, we refrained from
switching to a fully general model. Instead, we generalised
the HelyOS model appropriately. The most important
modification is a new strategy oriented towards ”earliest
deadline” scheduling. Both a period and a priority number are
preassigned to each task, where the period corresponds to the
”earliest deadline” and the priority number is used to resolve
ties. A priority number is also preassigned to background
tasks, but of no period of course.

Minos Scheduling Principles:
• Interrupt handlers have highest priority and preempt all

other tasks.
• Periodic tasks are scheduled according to their deadline

as derived from their period. If two tasks have the same
period, the execution order is defined by their priority.

• Background tasks are scheduled according to their prior-
ity.

• Tasks can only be preempted by tasks with a shorter
deadline.

A consequence of this scheme is the fact that the use of
periodic tasks for polling external events is inappropriate, and
that interrupts must be used instead. The reason is that a delay
in the order of the period (currently 5 ms, but this could be
easily changed) is often unacceptable. However, this scheme is
still suitable in our case because we are not primarily interested
in very fast reaction times but in a predictable behavior in
terms of both time and order of execution.

If a deadline was missed, then an optional delegate provided
by the task object is called. The delegate is responsible for
taking recovery actions such as, in the simplest case, merely
logging the problem. The next execution of this task is then
skipped to give the system time to recover. Note that such a
behavior is also necessary to prevent possible stack overflows.

Another nice consequence of our simple tasking model is
that accessing shared data often needs no synchronisation as
the tasks are serialised implicitly. This is notably the case if
data structures are shared among tasks of the same period
and background tasks only. In the (rarely occurring) other
cases where a locking mechanism is required, we use a global
system lock that simply disables all interrupts (includingtimer
interrupt).

Figure 2 illustrates this tasking scheme. After background
task A runs to completion, task B is automatically executed.
At this time, neither a periodic task nor an interrupt is pending.
At time 50, periodic tasks P and Q are both due, whereas Q
has the smaller period and therefore shorter deadline than P.
The task B is preempted and Q executed. When Q finishes,

Fig. 2. Scheduling example

P is automatically invoked because periodic tasks have higher
priority than background tasks. At time 63, an interrupt is
signaled by the hardware and the respective interrupt handler
is called immediately. P is resumed as soon as the interrupt
handler has finished its task. When P finishes executing, nei-
ther a periodic task nor an interrupt is pending and background
task B is resumed.

A question naturally arising here is if priority inversion is
possible that is if a scenario can be found where some high
priority task needs access to a shared resource that is locked
by a low priority task so that intervening medium priority
tasks can effectively block the execution of the high priority
task. In our tasking model, the only synchronisation primitive
provided is the global lock. When a task acquires this lock, the
task is implicitly set to highest priority (priority ceiling) and
the scheduling mechanism is disabled while the lock is held.
Because it is impossible that any task holding the global lock
is interrupted by another task, priority inversion is impossible.

The scheduler itself runs in linear time (linear in the number
O(n) of tasks as the due time has to be calculated for each
task), and it is thus easy to calculate an upper bound for the
scheduler execution time.

Our tasking model (see section V-E) pays out in a very
efficient task switching algorithm. In fact, the switch fromthe
task scheduler to any other task is synchronous and amounts to
just a procedure call (delegate), and the return to the scheduler
simply corresponds to the return from the procedure. Only
interrupts are asynchronous and therefore require saving of
registers on the stack.

E. Stack Management

The stack management is equally simple. We use a fixed
number of separate stacks, one for interrupts, one for periodic
tasks and one for background tasks respectively. In principle,
one stack would suffice because each task either runs to
completion or is preempted by a task of a higher priority,
which in turn runs to completion, so that each preempted task
finds a clean stack when resumed. However, using a fixed
number of separate stacks simplifies the handling of traps.

F. Boot Configuration Procedure

A particular requirement in our project specification is full
configurability of the system at boot time. In the interest of
readability, flexibility and ease of configuration, we chosean



THOMAS KAEGI-TRACHSEL ET. AL: MINOS—THE DESIGN AND IMPLEMENTATION OF AN EMBEDDED REAL-TIME OPERATING SYSTEM 653

XML [15] approach. For each hardware component and each
software component, a separate XML section is provided, and
a complete set of default settings for all core components is
hardcoded into the program and activated at run time before
the XML configuration parser is invoked. This serves the
purpose of putting the system into a consistent working state
even before the configuration file has been read.

Due to the restricted policy of allocating dynamic memory,
we implemented a considerably simplified SAX [16] based
parser that itself does not rely on heap memory. As the system
must be able to operate independently of any external host
computer, the configuration file can alternatively be storedin
flash memory in the device itself or downloaded from a host
terminal at boot time.

The initialization procedure resulting from all these con-
straints looks like this:

1) Kernel initialisation, platform setup.
2) Hardware configuration and initialisation by default set-

tings.
3) Mounting of RAM and ROM disc.
4) Acquisition of XML configuration file either by loading

it from the ROM disk or by downloading it via a serial
connection from a host computer.

5) Processing of the ”autostart” section in the XML file.
Can execute any arbitrary command but is especially
used to register XML handler plug-ins for the configu-
ration process.

6) The XML parser scans through the rest of the XML file
and calls the appropriate plug-ins if one is registered.

7) Enter main command loop.
The configuration scheme described above proved to be

extremely powerful and flexible. The only negative aspect is
the strict top-down parsing order imposed by SAX, which
sometimes leads to clumsy configuration clauses.

G. Modular System Structure

As shown in figure 3, Minos is a fully modular and hierar-
chically structured system. For the sake of better readability,
the (optional) boot configuration mechanism and the XML
parser are omitted in the figure. The RAM disk is modelled
as avolume objectfor filesystem containers. Other examples
of volume objects are ROM disks and Flash disks. Again in
the interest of readability, the dependencies on modulesLog
andSerialLogare also omitted.

SYSTEM This is a pseudo module provided by the Oberon
compiler; it provides potentially unsafe functionality required
for low level system programming such as memory mapped
input/ output. Utmost care must be exercised in code that uses
features from module SYSTEM because such code must be
considered as potentially unsafe.

Platform Platform specific information such as memory
layout, interrupt numbers and memory mapped I/O registers.
By merely replacing the implementation of this module, Mi-
nos can be adapted to a variety of processors of the same
architecture, including for example the Marvell PXA255 and
the Marvell PXA270.

Kernel 

SYSTEM Platform 

MAU FPU Strings 

Device 

UART Log 

OFS 

Minos 

Modules 

OFSRamVolumes 

SerialLog 

Fig. 3. Core system modules

MAU Memory Allocation Unit, provides the implementa-
tion of the memory allocation logic. This module is referenced
by the compiler and should not be used directly.

FPU Floating Point Emulation. This Module implements
runtime support for basic Math operations on floating point
numbers as well as for integer division. It is used by the
compiler rather than by applications.

Strings Basic functionality for copy, search, add, etc. oper-
ations on strings. This module is added to the kernel for reuse
to avoid code duplication.

Kernel The Kernel provides platform-specific tasks such as
system initialisation, interrupt handling, timers, etc. It is highly
unportable and must be adapted to every platform individually.

Device An abstract Character Device used as an abstract
interface by plug-in device drivers. It allows the dynamic
addition or change of input/ output devices such as (real or
virtual) serial ports at runtime.

Uart UART device driver, implements a Device.Device
plug-in object.

Log An abstract logging device that can be used to display
log output on different devices such as serial port or Web
browser.

SerialLog Log over the serial connection. A concrete im-
plementation of module Log.

OFS Oberon File System. Provides file operations such as
creating, deleting, reading or writing files. It also implements
the Oberon File System that is based on the notion of volumes,
where a volume is an abstract file system container that
provides read/ write access to blocks of fixed size.

OFSRamVolumesRAM Disk support. Implements a vol-
ume declared as an abstract object in OFS

Modules Dynamic module loader. Allows to dynamically
download, link and execute modules at runtime.

Minos Implements the scheduler and the trap handler and
offers user interface commands to be activated via a remote
terminal.



654 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

The set of modules presented here is a basic and self-
contained subset of all Minos modules. The modular concept
allows software developers to seamlesly add new functionality
to the system at any time by simply linking the appropriate
modules to the current image. Minos also allows modules to
be downloaded, linked and executed dynamically at runtime.
This is very convenient for prototyping, testing and debugging.
For example, a flexible testing environment can be built by
merely flashing to ROM a version of the basic Minos runtime
that automatically downloads application code at boot time.

The size of the full operating system including all the
above listed modules, the XML configuration parser and the
boot configuration mechanism is ca. 100 Kbytes. This is
less than half the size of a comparable commercial system
such as, for example, VxWorks by Wind River (Size of
VxWorks 6.2 without XML parser is about 250 Kbytes Basic
OS profile [17]).

VI. FLIGHT DATA MEMORY

A. Introduction

An avionics Flight Data Memory (FDM), also called a
”black box”, is an extremely robust and reliable flight data
recorder that is typically used in aircrafts for post flight/post
disaster analysis. The current trend in General Avionics goes
towards declaring FDM mandatory even in small aircrafts [18].
FDMs often get their input streamed down from an air data
computer (ADC) that, in turn, collects the data from a variety
of sensors across the airplane. Optionally, FDMs can also be
connected to other input sources.

Streams of sensor data like heading, height, fuel flow,
etc. must be recorded reliably on long life and non-volatile
medium such as flash memory or special magnetic tape [18].
Data redundancy schemes such as CRC-32 [19] for error
detection, or Reed Solomon for error detection and correction
are commonly used to further enhance the reliability of the
FDM. Our own choice in Onbass was using CRC-32 for error
detection and data duplication on two separate multimedia
cards (MMC) for error correction.

The FDM in Onbass was designed with the following
requirements in mind:

• Simple design
• Fast data storage and retrieval
• Minimum 15 years life time
• Fast recovery after unexpected reboot & transparent flight

resuming
• Transparent MMC device recovery in case of faulty read

or write operation
• Small memory footprint
• Support for replaying stored flights
• Human decipherable format
• Space efficiency

B. MMC vs Compact Flash

We had to decide between multimedia cards (MMC) [20]
and compact flash cards (CF) [21]. MMC has the advantage
of physical compactness and of a low pin count (7 pins),

whereas CF comes with a built in wear-leveling algorithm but
has a high pin count (50 pins). We decided in favor of a low
pin count because physical connections are arguably the most
critical components in any system from a reliability point of
view.

C. Flash Properties and Limitations

Flash memory is organised in blocks (usually 512 bytes)
and in erase unitsconsisting of a number of adjacent blocks
(usually 32 or 64 [22]. Reads and writes are performed
blockwise, and writes must be made only to previously erased
blocks. Blocks can either be erased automatically or manually,
where the former option is more comfortable while the latter
is faster. The number of erases per unit before ”wearing out”is
limited, typically to some number between 10000 and 100000.
In the interest of longevity of the flash card, the use of a ”wear
leveling” strategy is highly advisable. Wear-leveling means
that erase cycles and write cycles are evenly distributed across
the memory chip. Traditional file systems are unsuitable for
flash cards because they exhibithot spotssuch as meta data
fields that are frequently updated.

D. Analysis and Design Considerations

In Onbass we can take advantage of the fact that the size of
records to be stored is fixed (flight data frame plus warnings).
As mentioned above, the use of a standard file system is
unsuitable as it typically exhibits hot spots. Much of the
research [23] into overcoming this problem introduces some
virtual-to-physical block number mapping. Two kinds of data
structures are typically suggested for this purpose.Direct maps
map a logical block number (indexi) to its physical sector
number. Unfortunately, such data structures have typically a
footprint in the order of several megabytes [24].Inverse maps
store in locationi the virtual block number corresponding
to sectori. These maps are usually stored on the flash disk
itself and are mainly used for regenerating the direct map
at boot time. However, after an unexpected reboot, it would
take considerable time to rebuild the direct and indirect maps,
which is incompatible with the request of a fast reboot time.
Also, many of these algorithms are patented.

While algorithms based on virtual block mapping can
greatly extend the lifetime of flash memory, this comes at the
price of increased complexity, of a large memory footprint,
and of a garbage collection mechanism for reclaiming invalid
sectors. As this is again incompatible with realtime constraints,
it is not an option in our case.

Another approach is the use of a log structured file sys-
tem such asJFFS [25]. Log structured file systems do not
structurally separate metadata and payload data but instead
maintain a comprehensive log of all performed operations in
chronological order. While wear leveling is implicit in such
systems, they still suffer from the garbage collection problem,
which again disqualifies them for the use in our project.

We should also remember that one of the Onbass require-
ments (see chapter VI-A) is readability of the data recordedin
an FDM without the help of a software decoder. A FDM must



THOMAS KAEGI-TRACHSEL ET. AL: MINOS—THE DESIGN AND IMPLEMENTATION OF AN EMBEDDED REAL-TIME OPERATING SYSTEM 655

Fig. 4. FDM Implementation Overview

by law be fully recoverable from scratch. This requirement de
facto excludes any sophisticated allocation scheme because
recovering data without decoder software would either be
impossible at all or at least take considerable efforts.

Therefore, we refrained from using such advanced storing
schemata and decided in favor of a simple circular buffer
structure, where each flight data record occupies the same
number of flash card blocks. Whenever a new erase unit is
entered, an erase operation is performed as a preparation for
subsequent writing. The obvious drawback of this scheme is
internal fragmentation if the size of a data element is not an
exact multiple of the elementary block size. We considered this
as acceptable in particular because more sensor data will have
to be stored in the future, which reduces the fragmentation
overhead.

E. Implementation

In addition to the actual flight data, some metadata is
recorded on the FDM: The FDM header occupies one erase
block and describes the current contents of the FDM. It
contains a fingerprint, the number of flights currently stored in
the FDM, the flight numbers of the oldest and newest flights
currently stored in the FDM, and a list of flight indexes. A
flight index in turn points to the first and the last header block
of the corresponding flight. Flight header blocks again contain
a fingerprint (for the support of a scavenging process), the
flight number, the starting time of the flight and the date.

During flight recording, the pointer to the last block of
the current flight index is declared invalid before the flight
has properly been closed. This allows the system to detect
unexpected reboots and, as each flight data block is stamped
with the corresponding flight number, to use a binary search
procedure for locating the most recently recorded flight data
block.

Prior to writing, the FDM software must check whether the
next sector is free or the start of the oldest flight in the circular

buffer. In the latter case, the FDM software deletes the oldest
flight and continues recording.

F. Module View

Figure 4 shows the implementation of the FDM as a layered
modular system.

Flight Data Memory (FDM) This module provides an
API for starting and ending the recording of flight data, for
storing and retrieving flight data frames and for performing
other administrative tasks.

The standard procedure to initialise the flight data memory
is registering the FDM module with the XML configuration
mechanism by calling theInstall procedure and then config-
uring the flight data memory according to the specification in
the XML configuration file. A replay mode (replay of a stored
flight) can also be enabled via the configuration file.

BBCapture This module is responsible for acquiring the
flight data from the application and for periodically storing it.
For this purpose,BBCaptureinstalls a periodic task.

Serialisation The Serialisationmodule is responsible for
serialising flight data frames into a contiguous data streamto
be fed to the FDM.

BBReplication This layer partly implements the error de-
tection/correction algorithms. In detail, the module is respon-
sible for computing the CRC-32 for each block. The CRC-
32 is automatically generated during write operations and
automatically checked during read operations. All read/ write
operations are performed sequentially on two configurable
partitions on two distinct flash cards. At each read operation,
data integrity is checked automatically. If a faulty CRC-32is
detected, the healthy copy is used to fix the data by merely
rewriting the faulty block and an error indication is returned.
If one of the flash cards fails permanently, the system still
continues to record data on the healthy card, and a log message
plus an appropriate status code are generated to indicate the
failure.

BBVolumesFlash disks usually come with a standard parti-
tion table and thereby support the coexistence of an FDM and
standard file systems on the same disk.BBVolumesimplements
a disk volume object that represents a logical volume, in our
case a partition, and extends its functionality with the ability
of erasing erase units on the flash disk.

In case of a malfunctioning MMC controller or card, both,
the controller and the cards are automatically reset and the
failing operation is retried. If it fails again, an error code is
returned to indicate the failure.

MMC Interface / MMC Driver These two modules
implement the multimedia card driver, an interface for reading,
writing and erasing blocks and some administrative support
such as acquiring cards.

VII. C ONCLUSION AND FUTURE WORK

We have built a small and highly reliable realtime operating
system that is targeted at safety-critical applications such as the
onboard monitoring purpose specified by the Onbass project
specification. In numerous real and simulated flight trials (with



656 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

simulated hazards), the system has proved to operate correctly
and reliably. However, some scenarios pushed the system to
its limits, especially the MMC subsystem. Because recording
of flight data is of prime importance in Onbass, it is performed
by a periodic real time task. This is possible because writing a
disk sector usually takes less than 500 usec. However, in case
of any failure, the MMC specification defines a default timeout
value of 250 msec [22], which easily goes beyond the time
limit of the corresponding periodic task. Our system proved
to work reliably even in such cases but only thanks to the low
system load. It is advisable to extend the tasking mechanism
by an option of suspending a task while waiting for some
hardware event. Alternatively, accesses to the MMC controller
could be encapsulated in a separate periodically polling task.
However, this would lead to a degradation of the sequential
read/ write performance as the maximum throughput would
be limited by the minimum polling period of the task.

The FDM has proved to work reliably as well. Tests
performed by intentional modifications of the stored flight
data on one or both of the MMC cards showed that all tested
inconsistencies (data errors) are reliably detected and (where
possible) fixed. A potential improvement in terms of wear
leveling could be achieved by periodically moving the FDM
header (which is a hot spot) across the medium. Adding spare
sectors or entire erase units for a potential replacement of
blocks with permanent errors could also improve the lifetime
of the system.

ACKNOWLEDGMENT

The authors would like to thank Felix Friedrich and Florian
Negele for their help in designing and implementing the
system and for the many hours of intense collaboration and
discussions. Many thanks also go to Brian Kirk and to Igor
Schagaev for their inspiration and all the contiguous critical
and constructive discussions.

REFERENCES

[1] Onbass consortium, “Onbass website,” http://www.onbass.org, 2007.
[2] Onbass consortium, “Onbass D1.2 pass functional&reliability-models,”

Onbass consortium, Tech. Rep., 2007.
[3] I. Schagaev, B. Kirk, and V. Bukov, “Applying the principle of active

safety to aviation,” EUCASS 2nd European Conference for Aerospace
Sciences, Tech. Rep., 2007.

[4] V. Bukov, V. Chernyshov, B. Kirk, and I. Schagaev, “Principle of
active system safety for aviation: Challenges, supportivetheory, im-
plementation, application and future,” ASTEC’07 ”New challenges in
aeronautics”, Tech. Rep., August 19-23, Moscow, 2007.

[5] A. Avizienis, J.-C. Laprie, and B. Randell, “Fundamental concepts of
computer system dependability,” IARP/IEEE-RAS Workshop on Robot
Dependability, Tech. Rep., 2001.

[6] D. Alexandrescu, “Onbass deliverable 4.1: Hardware architecture defi-
nition,” IRoC Technologies, Tech. Report, 2006.

[7] P. P. Shirvani, “Cots technology & issues-space environments,” Center
for Reliable Computing, Stanford University, Tech. Rep., 2003.

[8] N. Wirth, “Oberon-SA, language and compiler,” ETH Zurich, Tech.
Rep., 2007.

[9] N. Wirth, “An Oberon Compiler for the ARM Processor,” ETHZurich,
Tech. Rep., 2008.

[10] N. Wirth, “Oberon language report,” ETH Zurich, Tech. Rep., 1990.
[11] M. Sanvido, “A computer system for model helicopter flight control,”

ETH Zurich, Tech. Rep., 1999.
[12] N. Wirth and J. Gutknecht,Project Oberon, 2005th ed., 2005.
[13] P. J. Muller, “The active object system—design and multiprocessor

implementation,” Ph.D. dissertation, ETH Zurich, 2002.
[14] G. Bollella, P. Dibble, and et al., “JSR 1: Real-time specification for

java,” RTSJ Technical Interpretation Committee, Tech. Rep., 2006.
[15] C. M. S.-M. E. M. F. Y. e. a. Time Bray, Jean Paoli, “Extensible markup

language (xml) 1.0 (fourth edition),” W3C, Tech. Rep., 2006.
[16] W. S. Means and M. A. Bodie,The Book of SAX. No Starch Press, 2002.
[17] Wind River Systems, “Wind River General Purpose Platform, VxWorks

Edition 3.6,” Wind River Systems, Inc, Tech. Rep., 2007.
[18] Onbass consortium, “Onbass D1.1 application domain definition,” On-

bass consortium, Tech. Rep., March 2005.
[19] M. S. et al., “Reversing CRC—theory and practice,” HU Berlin, Tech.

Rep., May 2006.
[20] SanDisk, “Multimediacard product manual,” SanDisk, Tech. Rep., 2001.
[21] C. F. Association, “CF+ and compact flash specification revision 4.1,”

Compact Flash Association, Tech. Rep., 2007.
[22] SanDisk, “Host design considerations: NAND MMC and SD-based

products,” SanDisk, Tech. Rep., 2002.
[23] E. Gal and S. Toledo, “Algorithms and data structures for flash memo-

ries,” Tel-Aviv University, Tech. Rep., 2005.
[24] L. Chang and T. Kuo, “An efficient management scheme for largescale

flashmemory storage systems,” National Taiwan University,Taipei, Tai-
wan 106, Tech. Rep., 2004.

[25] D. Woodhouse, “Jffs : The journalling flash file system,”Red Hat, Inc.,
Tech. Rep., 2001.


