ISBN 978-83-60810-14-9
ISSN 1896-7094

Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 649-656

Minos—The design and implementation of an
embedded real-time operating system with a
perspective of fault tolerance

Thomas Kaegi-Trachsel
Native Systems Group
ETH Zurich
8092 Zurich, Switzerland
Email: thomas.kaegi@inf.ethz.ch

Juerg Gutknecht
Native Systems Group
ETH Zurich
8092 Zurich, Switzerland
Email: gutknecht@inf.ethz.ch

The main concept used to increase dependability [5] in
our project is managed redundancy. Duplication of the main
memory (see chapter Il) and of the flight data memory (see
chapter VI) lead to a substantially higher level of relidtpil

Abstract—This paper describes the design and implementation
of a small real time operating system (OS) calledMinos and its
application in an onboard active safety project for GeneralAvia-
tion. The focus of the operating system is predictability, &bility,
safety and simplicity. We introduce fault tolerance asped in
software by the concept of a very fast reboot procedure and by
an error correcting flight data memory (FDM). In addition, fa ult
tolerance is supported by custom designed hardware.

Il. THE HARDWARE PLATFORM

The hardware platform was custom designed and built
for this project by IRoC Technology in Grenoble, France,

E DEVELOPED Minos in the context of a Europearaccording to the requirements given by the Onbass project

Union Research project callédnbasq1]. The follow- specification. The FPGA implementation [6] features a CPU,
ing quote of the Onbass homepage gives an overview of #gnthesised from a standard (non fault tolerant) ARM7TDMI
project goals: IP core by Actel, a fault tolerant main memory (RAM) and a

I. INTRODUCTION

The final goal of the project is to design, develop,
test and validate an on-board active real-time data
processing system that will monitor flight related
parameters and react in the case of a proliferation of
risk to the aircraft or its occupants. The system will
recognise undesirable trends or patterns in data relat-
ing to the various aircraft agents (aircraft, systems,
pilot) by analyzing and comparing current flight
data against previously accumulated aircraft-specific
behavioral data. As a result, timely interventions
could be made in order to eliminate the associated
risk(s) or to minimise the severity of the corre-
sponding effects. In addition, the system will offer
invaluable and comprehensive data for post-flight
analysis upon which aviation safety bodies could

base and/or redesign safety policies and procedures.

fault tolerant ROM.

Fault tolerant RAM and ROM provide safeguards against
both temporary and permanent errors. Temporary errors, for
example bit flips, are mainly induced by radiation such as
alpha particles, neutrons or heavy ions that are generated
by solar winds or by other cosmic radiation. At sea level,
these events happen rarely because most of the radiation is
filtered by the earths atmosphere. However, at typical flight
altitude (10km above sea level) or in deep space several
hundred or thousand kilometers above ground, experiments
have shown [7] that such events occur as frequently as 5.55
times per megabyte RAM per day in average. ROM is much
less susceptible to such events, but they can still occur.

Permanent errors on the other hand affect both, RAM and
ROM equally. Such errors usually manifest themselves as
failures of parts of or the entire physical memory chip. In

The interested reader may refer to [2]-[4] for further inforthe former case, only certain regions are affected, in ttierla
mation about the application side of the Onbass project, thase the whole chip fails.
theory of Active Safety and its implementation. If a temporary fault occurs, the system should recover as
In this paper we shall describe the operating system dguiickly as possible and continue its operation from the most
veloped during the project, with an emphasis on two faulecent consistent state. In the case of a permanent ereor, th
tolerance aspects: a.) recovering from memory faults mairgystem is supposed to still continue its operation, pogsibl
caused by radiation and b.) reliably recording flight dataina degraded mode, after signalling the failure to the runtime
Flight Data Memory(FDM). A FDM is a reliable persistent and application.
storage system for flight data such as heading, temperatureThe following sections describe the strategies chosen for
engine information, etc. recorded in real time during thghtli dealing with the two types of error just described.

649

650 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Address MSB

16 bit wide, so that two corresponding 16 bit entities from

Hold l Comparator the two ROM chips fit in one 32 bit word. At boot time,
“ controll Error — the hardware controller uses this fact for error detectibenv
=3 """ [oetection Buses copying the binary OS image wordwise from ROM into RAM.
Control | If the two 16 bit entities in a word do not match, the image
rl stratt | 15 hatt stored in the lower ROM pgrt is considered corrupted, and the
Data correct data has to be retrieved from the upper ROM part. As
<: ------------ this procedure is only initiated once at boot up, the addiio
Bus S| | overhead is negligible.
Calculations [6] showed that the system just described not
1 T only features up to 99% mitigation efficiency regarding te-no

Address Bus

permanent (transient) errors but it also enjoys twice ag lon
Maintainance Free Operating Periods (MFOPSs) if compared
with a non-redundant implementation. Both, a more extensiv
Fig. 1. ROM Implementationpicure courtesy of IRoc Technaiogy) reliability analysis and more implementation details, gikeen

in [6].

!)
1
FLASH Memory Chips

. . . Ill. THE PROGRAMMING LANGUAGE OBERON
Memory Subsystem: As a first precaution, static RAM

was chosen instead of dynamic RAM as it is faster and moreThe programming language used in the Onbass project
resilient to temporary errors. Physical duplication of neeyn i Oberon 07[8], [9], a modular descendant of Pascal and
chips combined with a CRC mechanism provides immunify}odula-2. Oberon 07 is a simple and safe varianOtieron
against a complete failure of any single memory chip. Read0] for embedded systems. For example, the option of in-
write operations are always performed simultaneously df€ assembler code has been removed completely from the

two memory chips and, if one of them fails, the error i§nguage and replaced with a set of safer and more structured
immediately flagged to the OS. custom built-in functions [8]. Oberon07 also provides a mec

Furthermore, a word-based error detection mechanism wHLS™ for accelerated calls and execution of "leaf” procedu
at do not contain (further) procedure calls. Parameteds a

implemented. A 36-bit wide version of SRAM was choser{ | variables in leaf procedures are allocated in remiste
where the 4 extra bits per word are used to store a hardw ral varlanies eal p g

generatedCyclic Redundancy CheciCRC). At each read instead of on the stack) whenever possible. The Oberon

operation, the data of both memory chips involved is comﬂ)arleanguage is especially suitable for safety critical appluns

against each other. If the comparison fails, the CRC is usgg 1S completely type safe and allows no unsafe operations

to determine the faulty chip, and its partner chip is used ?(!.imh as type conversions, efc. except in explicitly marked

automatically correct the faulty memory location. As thes%ec'[Ions for kernel code.

operations are integrated into the memory controller, the IV. THE APPLICATIONS

comparison can be done without performance penalty, and theBefore explaining the design of the Operating System, we
correction in case of a mismatch requires just one addition !

Would like to give a short overview of the Onbass application

memory access (one CPU cycle). Counters of all correctﬁ] t were supposed to run on the system. This gives an idea

and un_correcteo! errors are provided to the runtime for &mhabout the requirements:
analysis or logging.

Flight Data Acquisition The Onbass system is installed in
Triplicated memory was considered an alternative to thggeneral aviation airplane such as a Piper Lance and girect|
duplication but an unimproved level of protection regagdinconnected to the onboard air data computer that delivers a se
temporary faults, longer Mean Time To Failure (MTTF), lowepf sensor data to the Onbass system up to eight times per

hardware costs and lower heat dissipation favoured theethogecond.

approach. Black Box Recording After the data acquisition, the raw
Flash Memory: The binary image of the OS is storedblack box data is stored in the flight data memory (see chapter

in flash-memory (ROM). The system ROM is physically/I) for later analysis or recovery.

duplicated but, as it is less susceptible to external inftasen Data Parsing Next, the acquired data is parsed and vali-

no extra bits for error detection are provided. Instead, twaated according to the air data computer specification.

instances of the OS image are stored on each ROM chip, on€light Mode Detection The current flight mode (take off,

in the first half of the address space and one (in reverse bitiise, etc) is then evaluated. This is especially impostas

order) in the second half, as shown in Figure 1. This proeeduhe valid airplane constraints such as speed, verticabspée

can be justified in our case by the extremely small size of theavily depend on the flight mode.

OS image.
| d d dh d ion/ . . 1ROM chips use an interlaced addressing scheme, where théitsits in
n order to understan ow error detection/ correction Udress space belong to the first chip, the second 16 bitdébothe second

ROM works, we first remember that ROM chips are actuallyip, the third 16 bit to the first chip again, etc.

THOMAS KAEGI-TRACHSEL ET. AL: MINOS—THE DESIGN AND IMPLEMENTATION OF AN EMBEDDED REAL-TIME OPERATING SYSTEM 651

Airplane safety checksA set of rules is applied to the application programs and garbage collectors for real time
current airplane flight state to validate the operation @& thsystems are complex and difficult to design and implement.
airplane in terms of safety. In case of detected deviatiansAs a consequence, other traditional garbage collectordbase
warning is displayed to user via the web interface. systems, i.e. Java, propose in their real time variantsl(Rea

Web Server A web server is used to display systenTime Java [14]) the addition of memory outside the scope of
information such as configuration options, warnings, eia. vthe garbage collector for time critical software parts.

a separate computer to the pilot. As explicit memory allocation and deallocation is inhehgnt

Replay For post flight analysis, the system can be configinsafe and therefore incompatible with safety-criticadlega-
ured to load the flight data from the FDM and and use it @®ns, the only viable option is not to generate garbagelat al
data input for the application instead of acquiring the dal&e use a closed system approach that still allows applitsitio
from the air data computer. to allocate dynamic memory but at initialisation time oy

Supportive tasksVarious other tasks are required to suppo#dditional benefit of closed systems is that they can newver ru
the system such as additional logging, polling driver tasks out of memory.

UART and MMC etc. Unavoidably however, there is a price to pay for such

The whole flight data acquisition and analysis must obvsimplicity. It is the need for compensatory support for ap-
ously be performed in real time and must be finished befopication programming. For example, it is impossible for
the next flight data set arrives. This imposes requirememts Blinos to permanently keep a dynamic metadata structure for
the real time capabilities of the system. files in memory. Instead, metadata needs to be consistently
stored in flash memory, and sector caches are taken from a
preallocated buffer pool. As the pool is only used integnbif

As a starting point for the runtime system we chbldyOS the filesystem and as blocks are automatically recycled when
[11], an embedded operating system for the control of athe buffer pool is empty, no "out of memory” situations can
tonomously operating model helicopters developed at ETéyer occur.

Zurich.

We did a substantial rewriting of HelyOS and customised 72
towards our specific needs as it was too limiting. The rasglti The interrupt handling scheme in Minos is again kept
system is calledinos and enjoys the following qualities: simple. At boot time, the kernel installs a single, general

V. THE DESIGN OFMINOS

Interrupt Handling

« Very small, simple and efficient interrupt handler that is responsible for dispatching &t s

. Suitable for safety critical applications nalled interrupts. Device drivers register their own handl

. Predictable in terms of task execution time in the kernel, where only one handler per interrupt source is
« Easily portable to other platforms currently supporte_d. Interrupt handlers are non i_ntea’ula!l;

« Highly configurable at boot time and their processing time must be kept in limits in order not
« Fast boot up time to compromise realtime guarantees. In the case of multiple

In the next few chapters we shall give a short introductio'ﬂfterrupts _pen_dlng, the kernel calls the handlers in theeiord
ascending interrupt numbers.

to the key concepts of the Minos design. 0
D. Task Model

A. Fast Boot Up
Original Tasking Scheme:

Special attention was given to system boot up time. ﬁ NVOS uses an indeniouslvy simole. preemptive taskin
hardware watchdog is used to detect "stuck” programs cause%;l]y 9 y e, p P 9

by a malfunction of either hardware or software. As soon cheme that is characterised by the following principlést/

the watchdog detects a timed-out activity of any kind, th e scheme distinguishes four priorities correspondinigtm

OS and the applications are restarted and brought into ttlgerent task types: Interrupt handiers, high priorityipdic

most recent consistent state. This is quite easily possible asks running at pe.”Odi low priority periodic tasks running
. 8t' eriod! = k * s with fixed k, and background tasks.
this case because all the relevant data has by been stored’| econd. HelvOS uses the following seheduling policy-
the flight data memory by concept IV. In order to achieve » el _ 9 o g poficy.
a minimum downtime it is important to implement an ultra * 'Nterrupt handlers have highest priority and preempt all
fast boot up mechanism that, in our case, takes less than Other tasks. o o
0.5 seconds. Unavoidably this requirement has an impace High priority periodic tasks preempt low priority tasks
on various subsystems such as the flight data memory (see @nd background tasks but no interrupts.

chapter VI). « Low priority periodic tasks preempt background tasks but
no others.
B. Memory Management « Background tasks do not preempt any tasks.

Sytems of the Oberon family [12], [13] traditionally use An interesting consequence of this scheduling policy is
a completely type-safe "managed” runtime including gagbaghe fact that each task must run to completion before any
collection. However, it is widely known that garbage collecother task of the same priority can start its execution, with
tion introduces unpredictable latencies in the executibn the immensely beneficial implication that a single stack is

652

Timeline, 5 msec

sufficient in principle for implementing the entire schedt —

scheme. A 58] .. Background Tasks A, B
1 A
i o
«pn . 1 1
Modified Tasking Scheme: v .o Tack P, Period 50
. 1 1 I ask P, Perio msec
The scheduling policy just described is not powerful en ' bl
1 1 1
1 1 1
v v

————>

crrecccccopy

R ————

for our application. In particular, the restriction to migrawc
types of periodical tasks corresponding to two fixed pe @
is too rigid. However, in the interest of avoiding the
complexity of managing multiple stacks and of mast
an intricate synchronisation mechanism, we refrained
switching to a fully general model. Instead, we genere Fig. 2. Scheduling example
the HelyOS model appropriately. The most impo
modification is a new strategy oriented towards “ea
deadline” scheduling. Both a period and a priority numbe

3

Task Q, Period 25 msec

E

Interrupt

P is automatically invoked because periodic tasks haveehigh
) . priority than background tasks. At time 63, an interrupt is
e At 43, e he pefo CoieshONh S by e e and e espectve et band
ties. A priority number is also preassigned to backgrou e called |mm_e<_j|ately: P is resumed as soon as the !nterrupt
task.s but of no period of course "Nandler h_as flnlshed its ta_sk. Wher) P f|n|§hes executing, nei-
> : S oo ther a periodic task nor an interrupt is pending and backaptou
Minos Scheduling Principles: task B is resumed
. In:‘erruptl?andlers have highest priority and preempt aﬁlA question naturally arising here is if priority inversios i
ot er tgs s : . possible that is if a scenario can be found where some high
* Penod,c tasks are s.ched.uled according to their dead:E‘ﬁority task needs access to a shared resource that isdocke
as derived from their period. If two tasks have the sa a low priority task so that intervening medium priority

genid, thede;(eckuuon ordr(]er(;s ldzflned bgll. th(?r fhm_mty‘_ tasks can effectively block the execution of the high ptjori
« Dackground tasks are scheduled according to IeIFPrksy 1n our tasking model, the only synchronisation priigit

ity. : . : .
. rovided is the global lock. When a task acquires this loog, t
» Tasks can only be preempted by tasks with a ShorI‘l%rsk is implicitly set to highest priority (priority ceilg) and

deadline.

f thi h is the f hat th thf scheduling mechanism is disabled while the lock is held.
A consequence of this scheme is the fact that the use gl; ;e it is impossible that any task holding the globa loc
periodic tasks for polling external events is inapprogiand

: .) is interrupted by another task, priority inversion is imgibte.
that interrupts must be used instead. The reason is thaBgt del 11,5 schequler itself runs in linear time (linear in the numbe

in the order of the period (currently 5 ms, but this could bg,,y of tasks as the due time has to be calculated for each
egsny .chang.ed) is often unacceptable. Howev.er, th's,semi‘mtask), and it is thus easy to calculate an upper bound for the
still suitable in our case because we are not primarily exesd scheduler execution time

in very fast reaction times but in a predictable behavior in 5 tasking model (see section V-E) pays out in a very
terms of bo_th time an_d order of execution. . efficient task switching algorithm. In fact, the switch frahe

If a deadline was m|ssed, then an optional _delegate Provia&ly scheduler to any other task is synchronous and amaunts t
by _the task object is called. The_delega’Fe is responsible qgt a procedure call (delegate), and the return to the stéed
taking recovery actions such as, in the simplest case, ye Simply corresponds to the return from the procedure. Only

Iogglng the problem. The next execution of this task is the?Hterrupts are asynchronous and therefore require saving o
skipped to give the system time to recover. Note that SUCI'}@gisters on the stack

behavior is also necessary to prevent possible stack owstflo

Another nice consequence of our simple tasking model s Stack Management
that accessing shared data often needs no synchronisation ahe stack management is equally simple. We use a fixed
the tasks are serialised implicitly. This is notably theec#s number of separate stacks, one for interrupts, one for gierio
data structures are shared among tasks of the same pefiggts and one for background tasks respectively. In prigcip
and background tasks only. In the (rarely occurring) othghe stack would suffice because each task either runs to
cases where a locking mechanism is required, we use a gloéli\hpletion or is preempted by a task of a higher priority,
system lock that simply disables all interrupts (includiimger which in turn runs to completion, so that each preempted task
interrupt). finds a clean stack when resumed. However, using a fixed

Figure 2 illustrates this tasking scheme. After backgrounfimber of separate stacks simplifies the handling of traps.
task A runs to completion, task B is automatically executed.

At this time, neither a periodic task nor an interrupt is egd F- Boot Configuration Procedure

At time 50, periodic tasks P and Q are both due, whereas QA particular requirement in our project specification isl ful
has the smaller period and therefore shorter deadline tharcéhfigurability of the system at boot time. In the interest of
The task B is preempted and Q executed. When Q finishesadability, flexibility and ease of configuration, we chase

THOMAS KAEGI-TRACHSEL ET. AL: MINOS—THE DESIGN AND IMPLEMENTATION OF AN EMBEDDED REAL-TIME OPERATING SYSTEM 653

XML [15] approach. For each hardware component and each ’ Minos \
software component, a separate XML section is provided, and
a complete set of default settings for all core components is CrERE PNz

hardcoded into the program and activated at run time before
the XML configuration parser is invoked. This serves the
purpose of putting the system into a consistent workingestat
even before the configuration file has been read.

Due to the restricted policy of allocating dynamic memory,
we implemented a considerably simplified SAX [16] based
parser that itself does not rely on heap memory. As the system
must be able to operate independently of any external host
computer, the configuration file can alternatively be stdred] S"i"QS\] L H R \] MY \
flash memory in the device itself or downloaded from a host i t t 1 t
terminal at boot time. SYSTEM | | Platform |

The initialization procedure resulting from all these con- ' %
straints looks like this:

1) Kernel initialisation, platform setup. Fig. 3. Core system modules

2) Hardware configuration and initialisation by default-set

ings.
3) t,v,gjmmg of RAM and ROM disc. MAU Memory Allocation Unit, provides the implementa-
4) Acquisition of XML configuration file either by loading tion of the memory allocation logic. This quule is referedc

it from the ROM disk or by downloading it via a serialby the compiler and should not be used directly.

connection from a host computer. FPU Floating Point Emulation. This Module implements
5) Processing of the "autostart” section in the XML fileruntime support for basic Math operations on floating point

Can execute any arbitrary command but is especiaﬂwmbel’s as well as for integer division. It is used by the

used to register XML handler plug-ins for the configucompiler rather than by applications.

ration process. Strings Basic functionality for copy, search, add, etc. oper-

6) The XML parser scans through the rest of the XML fil@tions on strings. This module is added to the kernel foraeus

and calls the appropriate plug-ins if one is registered.to avoid code duplication.

7) Enter main command loop. Kernel The Kernel provides platform-specific tasks such as

The configuration scheme described above proved to $¢stem initialisation, interrupt handling, timers, etdslhighly
extremely powerful and flexible. The only negative aspect igportable and must be adapted to every platform indiviglual
the strict top-down parsing order imposed by SAX, which Device An abstract Character Device used as an abstract
sometimes leads to clumsy configuration clauses. interface by plug-in device drivers. It allows the dynamic
G. Modular System Structure a_ddition or change of inpyt/ output devices such as (real or

virtual) serial ports at runtime.

As shown in figure 3, Minos is a fully modular and hierar- 5+ yART device driver, implements a Device.Device
chically structured system. For the sake of better reaitigbil Elug-in object.

the (optional) boot configuration mechanism and the XM Log An abstract logging device that can be used to display

barser are Om'F‘ed n _the figure. The RAM disk is modelle%g output on different devices such as serial port or Web
as avolume objecfor filesystem containers. Other examplegrowSer

of volume objects are ROM disks and Flash disks. Again in
the interest of readability, the dependencies on modutes SerlaILo_g Log over the serial connection. A concrete im-
and SerialLogare also omitted. plementation of module Log.)))
SYSTEM This is a pseudo module provided by the Oberon OFS Oberon File System. Provides file operations such as
compiler; it provides potentially unsafe functionalityqréred Créating, deleting, reading or writing files. It also implents
for low level system programming such as memory mappg@,e Oberon File System that is based on the notion of volumes,
input/ output. Utmost care must be exercised in code that u¥§'€reé @ volume is an abstract file system container that
features from module SYSTEM because such code must Bj@vides read/ write access to blocks of fixed size.
considered as potentially unsafe. OFSRamVolumesRAM Disk support. Implements a vol-
Platform Platform specific information such as memoryme declared as an abstract object in OFS
layout, interrupt numbers and memory mapped 1/O registersModules Dynamic module loader. Allows to dynamically
By merely replacing the implementation of this module, Midownload, link and execute modules at runtime.
nos can be adapted to a variety of processors of the sam#linos Implements the scheduler and the trap handler and
architecture, including for example the Marvell PXA255 andffers user interface commands to be activated via a remote
the Marvell PXA270. terminal.

Modules ‘ ’ OFs ‘

Device

L

4

654 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

The set of modules presented here is a basic and selhereas CF comes with a built in wear-leveling algorithm but
contained subset of all Minos modules. The modular concems a high pin count (50 pins). We decided in favor of a low
allows software developers to seamlesly add new functitgnalpin count because physical connections are arguably thé mos
to the system at any time by simply linking the appropriateritical components in any system from a reliability poitfit o
modules to the current image. Minos also allows modules wiew.
be downloaded, linked and executed dynamically at runtime.) o
This is very convenient for prototyping, testing and delingg ©: Flash Properties and Limitations
For example, a flexible testing environment can be built by Flash memory is organised in blocks (usually 512 bytes)
merely flashing to ROM a version of the basic Minos runtimand inerase unitsconsisting of a number of adjacent blocks
that automatically downloads application code at boot time(usually 32 or 64 [22]. Reads and writes are performed

The size of the full operating system including all thdlockwise, and writes must be made only to previously erased
above listed modules, the XML configuration parser and thocks. Blocks can either be erased automatically or ménual
boot configuration mechanism is ca. 100 Kbytes. This ighere the former option is more comfortable while the latter
less than half the size of a comparable commercial systésifaster. The number of erases per unit before "wearingisut”
such as, for example, VxWorks by Wind River (Size ofimited, typically to some number between 10000 and 100000.
VxWorks 6.2 without XML parser is about 250 Kbytes Basidn the interest of longevity of the flash card, the use of a 'wea
OS profile [17]). leveling” strategy is highly advisable. Wear-leveling mea
that erase cycles and write cycles are evenly distributeasac
the memory chip. Traditional file systems are unsuitable for
A. Introduction flash cards because they exhibiit spotssuch as meta data

An avionics Flight Data Memory (FDM), also called &fields that are frequently updated.

"black box”, is an extremely robust and reliable flight data
recorder that is typically used in aircrafts for post flight/st D. Analysis and Design Considerations

disaster analysis. The current trend in General Avioniassgo In Onbass we can take advantage of the fact that the size of
towards declaring FDM mandatory even in small aircraft§.[18'ecords to be stored is fixed (flight data frame plus warnings)
FDMs often get their input streamed down from an air datas mentioned above, the use of a standard file system is
computer (ADC) that, in turn, collects the data from a varietunsuitable as it typically exhibits hot spots. Much of the
of sensors across the airplane. Optionally, FDMs can also tgsearch [23] into overcoming this problem introduces some
connected to other input sources. virtual-to-physical block number mapping. Two kinds of alat

Streams of sensor data like heading, height, fuel flowiructures are typically suggested for this purp@8ect maps
etc. must be recorded reliably on long life and non-volatil@ap a logical block number (indei} to its physical sector
medium such as flash memory or special magnetic tape [18Umber. Unfortunately, such data structures have typicall
Data redundancy schemes such as CRC-32 [19] for erfoptprintin the order of several megabytes [24iverse maps
detection, or Reed Solomon for error detection and cowectistore in locationi the virtual block number corresponding
are commonly used to further enhance the reliability of tHe sectori. These maps are usually stored on the flash disk
FDM. Our own choice in Onbass was using CRC-32 for errdiself and are mainly used for regenerating the direct map
detection and data duplication on two separate multimedis boot time. However, after an unexpected reboot, it would

VI. FLIGHT DATA MEMORY

cards (MMC) for error correction. take considerable time to rebuild the direct and indirecpsna
The FDM in Onbass was designed with the followingvhich is incompatible with the request of a fast reboot time.
requirements in mind: Also, many of these algorithms are patented.
« Simple design While algorithms based on virtual block mapping can
. Fast data storage and retrieval greatly extend the lifetime of flash memory, this comes at the
« Minimum 15 years life time price of increased complexity, of a large memory footprint,
« Fast recovery after unexpected reboot & transparent flightd of a garbage collection mechanism for reclaiming idvali
resuming sectors. As this is again incompatible with realtime caists,
« Transparent MMC device recovery in case of faulty redliS not an option in our case.
or write operation Another approach is the use of a log structured file sys-
« Small memory footprint tem such asIFFS [25]. Log structured file systems do not
« Support for replaying stored flights structurally separate metadata and payload data but thstea
« Human decipherable format maintain a comprehensive log of all performed operations in
. Space efficiency chronological order. While wear leveling is implicit in duc
systems, they still suffer from the garbage collection peoh
B. MMC vs Compact Flash which again disqualifies them for the use in our project.

We had to decide between multimedia cards (MMC) [20] We should also remember that one of the Onbass require-
and compact flash cards (CF) [21]. MMC has the advantagents (see chapter VI-A) is readability of the data recoiided
of physical compactness and of a low pin count (7 pinsn FDM without the help of a software decoder. A FDM must

IME OPERATING SYSTEM 655

Data acquisition FDM buffer. In the latter case, the FDM software deletes thesilde
flight and continues recording.

v F. Module View
('\ + | BBReplication ‘ Figure 4 shows the implementation of the FDM as a layered
BBCapt

lLl— l l modular system.

Flight Data Memory (FDM) This module provides an

| API for starting and ending the recording of flight data, for

‘ BBVolumes storing and retrieving flight data frames and for performing
other administrative tasks.
The standard procedure to initialise the flight data memory
Serialisation | MMC interface | is registering the FDM module with the XML configuration
mechanism by calling thénstall procedure and then config-
l l uring the flight data memory according to the specification in

the XML configuration file. A replay mode (replay of a stored
| MMC driver | flight) can also be enabled via the configuration file.

BBCapture This module is responsible for acquiring the
flight data from the application and for periodically stayiit.
For this purposeBBCaptureinstalls a periodic task.

by law be fully recoverable from scratch. This requirement d Serialisation The Serialisationmodule is responsible for
facto excludes any sophisticated allocation scheme becaggrialising flight data frames into a contiguous data stream
recovering data without decoder software would either ¢ fed to the FDM. _
impossible at all or at least take considerable efforts. BBReplication This layer partly implements the error de-
Therefore, we refrained from using such advanced storiffgFtion/correction algorithms. In detail, the module ispen-
schemata and decided in favor of a simple circular buff§fole for computing the CRC-32 for each block. The CRC-
structure, where each flight data record occupies the sarfe IS automatically generated during write operations and
number of flash card blocks. Whenever a new erase unitggtomatically checked during read operations. All readtewr
entered, an erase operation is performed as a preparationOerations are performed sequentially on two configurable
subsequent writing. The obvious drawback of this schemeR@rtitions on two distinct flash cards. At each read opematio
internal fragmentation if the size of a data element is not & integrity is checked automatically. If a faulty CRCA82
exact multiple of the elementary block size. We considemesi t 9€tected, the healthy copy is used to fix the data by merely
as acceptable in particular because more sensor data wél hEWriting the faulty block and an error indication is retada

to be stored in the future, which reduces the fragmentatignone Of the flash cards fails permanently, the system still
overhead. continues to record data on the healthy card, and a log messag

plus an appropriate status code are generated to indicate th
failure.
BBVolumes Flash disks usually come with a standard parti-
In addition to the actual flight data, some metadata i®n table and thereby support the coexistence of an FDM and
recorded on the FDM: The FDM header occupies one erasgndard file systems on the same dBRVolumesmplements
block and describes the current contents of the FDM. dtdisk volume object that represents a logical volume, in our
contains a fingerprint, the number of flights currently stiore case a partition, and extends its functionality with thdigbi
the FDM, the flight numbers of the oldest and newest flights erasing erase units on the flash disk.
currently stored in the FDM, and a list of flight indexes. A In case of a malfunctioning MMC controller or card, both,
flight index in turn points to the first and the last header bloghe controller and the cards are automatically reset and the
of the corresponding flight. Flight header blocks again amnt fajling operation is retried. If it fails again, an error @db
a fingerprint (for the support of a scavenging process), thgturned to indicate the failure.
flight number, the starting time of the flight and the date. MMC Interface / MMC Driver These two modules
During flight recording, the pointer to the last block oimplement the multimedia card driver, an interface for irgd
the current flight index is declared invalid before the flighiriting and erasing blocks and some administrative support
has properly been closed. This allows the system to detgotch as acquiring cards.
unexpected reboots and, as each flight data block is stamped
with the corresponding flight number, to use a binary search VII. CONCLUSION AND FUTURE WORK
procedure for locating the most recently recorded flightadat We have built a small and highly reliable realtime operating
block. system that is targeted at safety-critical applicatiorthsas the
Prior to writing, the FDM software must check whether thenboard monitoring purpose specified by the Onbass project
next sector is free or the start of the oldest flight in thewdac specification. In numerous real and simulated flight trialgh(

Fig. 4. FDM Implementation Overview

E. Implementation

656

simulated hazards), the system has proved to operate tigrrec

PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

REFERENCES

and re"ably' However, some scenarios pUShed the system [Eﬁ) Onbass consortium, “Onbass website,” http://www.@sharg, 2007.

its limits, especially the MMC subsystem. Because recaydin[2]
of flight data is of prime importance in Onbass, it is perfodme .
by a periodic real time task. This is possible because writin
disk sector usually takes less than 500 usec. However, & cas
of any failure, the MMC specification defines a default timeoul4!
value of 250 msec [22], which easily goes beyond the time
limit of the corresponding periodic task. Our system proved
to work reliably even in such cases but only thanks to the lowp]
system load. It is advisable to extend the tasking mechanism
by an option of suspending a task while waiting for somes]
hardware event. Alternatively, accesses to the MMC coletrol
could be encapsulated in a separate periodically pollis. ta 71
However, this would lead to a degradation of the sequentigs]
read/ write performance as the maximum throughput WOUIPg]
be limited by the minimum polling period of the task.

The FDM has proved to work reliably as well. Test$10]
performed by intentional modifications of the stored flight!
data on one or both of the MMC cards showed that all testgg,
inconsistencies (data errors) are reliably detected arfebr@v [13]
possible) fixed. A potential improvement in terms of Weﬁ:iﬂ']
leveling could be achieved by periodically moving the FD
header (which is a hot spot) across the medium. Adding sparg
sectors or entire erase units for a potential replacement %‘]
blocks with permanent errors could also improve the lifeti

17]

of the system.
(18]

ACKNOWLEDGMENT

The authors would like to thank Felix Friedrich and Floriarklg]
Negele for their help in designing and implementing thio]
system and for the many hours of intense collaboration alfd!
discussions. Many thanks also go to Brian Kirk and to 1ggsy
Schagaev for their inspiration and all the contiguous aalti
and constructive discussions. (23]

[24]

[25]

Onbass consortium, “Onbass D1.2 pass functional&pélig-models,”
Onbass consortium, Tech. Rep., 2007.

I. Schagaeyv, B. Kirk, and V. Bukov, “Applying the prind& of active
safety to aviation,” EUCASS 2nd European Conference foro8gace
Sciences, Tech. Rep., 2007.

V. Bukov, V. Chernyshov, B. Kirk, and I. Schagaev, “Priple of
active system safety for aviation: Challenges, supportheory, im-
plementation, application and future,” ASTEC'07 "New dbabes in
aeronautics”, Tech. Rep., August 19-23, Moscow, 2007.

A. Avizienis, J.-C. Laprie, and B. Randell, “Fundamdntancepts of
computer system dependability,” IARP/IEEE-RAS WorkshopRobot
Dependability, Tech. Rep., 2001.

D. Alexandrescu, “Onbass deliverable 4.1: Hardwarenigecture defi-
nition,” IRoC Technologies, Tech. Report, 2006.

P. P. Shirvani, “Cots technology & issues-space envirents,” Center
for Reliable Computing, Stanford University, Tech. Re@02.

N. Wirth, “Oberon-SA, language and compiler,” ETH ZuricTech.
Rep., 2007.

N. Wirth, “An Oberon Compiler for the ARM Processor,” ETRurich,
Tech. Rep., 2008.

N. Wirth, “Oberon language report,” ETH Zurich, Techef, 1990.
M. Sanvido, “A computer system for model helicopter liligcontrol,”
ETH Zurich, Tech. Rep., 1999.

N. Wirth and J. Gutknecht?roject Oberon 2005th ed., 2005.

P. J. Muller, “The active object system—design and iptdcessor
implementation,” Ph.D. dissertation, ETH Zurich, 2002.

G. Bollella, P. Dibble, and et al., “JSR 1: Real-time dfieation for
java,” RTSJ Technical Interpretation Committee, Tech. .R2p06.

C. M. S.-M. E. M. F. Y. e. a. Time Bray, Jean Paoli, “Extials markup
language (xml) 1.0 (fourth edition),” W3C, Tech. Rep., 2006

W. S. Means and M. A. Bodielhe Book of SAXNo Starch Press, 2002.
Wind River Systems, “Wind River General Purpose PlatfoVxWorks
Edition 3.6,” Wind River Systems, Inc, Tech. Rep., 2007.

Onbass consortium, “Onbass D1.1 application domaiimitien,” On-
bass consortium, Tech. Rep., March 2005.

M. S. et al., “Reversing CRC—theory and practice,” HUrlBe Tech.
Rep., May 2006.

SanDisk, “Multimediacard product manual,” SanDiskch. Rep., 2001.
C. F. Association, “CF+ and compact flash specificatievision 4.1,
Compact Flash Association, Tech. Rep., 2007.

SanDisk, “Host design considerations: NAND MMC and 8&sed
products,” SanDisk, Tech. Rep., 2002.

E. Gal and S. Toledo, “Algorithms and data structuresffash memo-
ries,” Tel-Aviv University, Tech. Rep., 2005.

L. Chang and T. Kuo, “An efficient management scheme dogéscale
flashmemory storage systems,” National Taiwan Univer3igypei, Tai-
wan 106, Tech. Rep., 2004.

D. Woodhouse, “Jffs : The journalling flash file systerRgd Hat, Inc.,
Tech. Rep., 2001.

