
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 453–457

ISBN 978-83-60810-14-9
ISSN 1896-7094

Unicore 6 as a Platform for Desktop Grid
Jakub Jurkiewicz∗‡, Krzysztof Nowínski∗, Piotr Bała∗ †

∗ Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw
Pawínskiego 5a, 02-106 Warsaw, Poland

†Faculty of Mathematics and Computer Science, Nicolaus Copernicus University
Chopina 12/18, 87-100 Toruń, Poland

‡Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
Banacha 2, 02-907 Warsaw, Poland

Abstract—The paper shows a possibility of arranging a desktop
grid based on the UNICORE 6 which is a well established grid
middleware. The grid consists of a number of PC computers
which can communicate with the server in a secure way and
perform scheduled computational tasks. The main advantage
of this system is ease of deployment, flexibility and ease of
integration with the large scale grid. We present here results
of a simple performance test as well.

I. I NTRODUCTION

Nowadays the community grid computing becomes more
and more popular with a number of architectures available.
Boinc [2] package, Condor [3] are good examples here. At
the same time we observe rapid development of full featured
grid middlewares such as Unicore and Globus Toolkit. Intense
works are carried out which aim at connecting desktop grids
and full size grid infrastructures. One of the simplest proposi-
tions is to create an interface that would allow to run Globus
or Unicore jobs on the desktop grid. Condor/G is a good
example here. Currently, interfaces that would allow usingfull
size grid nodes for desktop grid are available. Both solutions
have one great disadvantage—they make a connection between
two different systems and middlewares which causes technical
problems. Of course there are some current works which uses
this solutions, however they usually mean creating some kind
of bridge between middlewares[4][5][6].

In our work we present a new solution: Unicore 6 middle-
ware is used to create a desktop grid. This solution makes
the connection of systems really easy, simplifies all problems
related with authorisation and authentication and minimises
cost of middleware. This, only a very beginning stage of
creating a desktop grid middleware proves that Unicore suits
well as a middleware for creation of a desktop grid.

II. U NICORE

Unicore is a Java based grid middleware. Early versions
of the system (up to Unicore 5) had communication based
on the exchange of serialised Java objects. This solution was
very fast and easy to implement, but it worked only if both
sides of a given communication used the same version of
Java. Unicore 5 has been still in use, and one of its main
advantages is good separation of the user from the computing
system executing his job. This allows connecting computing
nodes with completely different architectures. For a certain

Fig. 1. Example Unicore installation

time now a completely new version of Unicore has been
available with the communication based on web-services. It
combines simplicity of previous version with portability and
independence of Java version from web services. In this paper
we refer to Unicore 6 [1].

The Unicore system consists of the following parts:

• Gateway - a module that allows other modules to connect
to the grid. It ensures that no unauthenticated user has any
access to the protected part of a grid.

• Virtual site (VSite) and a target system (i.e. UnicoreX)
- the part of Unicore that is responsible for execution of
applications.

• Registry - a holder of information on services used by
clients.

• Storage - used for data storage on the grid.
• XUUDB - user database for authentication of users.
• Client - part of Unicore which runs on client’s side.

An example Unicore 6 installation is presented on Fig. 1.
A virtual site splits into UnicoreX and Legacy TSI which

provides for connecting to target systems built using Unicore
5.

Additionally Unicore has been extended by UVOS system
for Virtual Organisations [7]. This extension will allow inte-
grating created desktop grid with the computational grid, as
one of possible sites.

978-83-60810-14-9/08/$25.00c© 2008 IEEE 453

454 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

1) Why Unicore?: Unicore and Globus Toolkit are two
most popular grid middlewares. They both, in their new
versions are based on web services. Unicore has two great
advantages—it is easy to be configured and run, and it has
a simple but very extensible and powerful authentication and
authorisation infrastructure which have been based on industry
standards such as the X.509 PKI.

III. D ESKTOPGRID ARCHITECTURE

The goal of this work is to build, using Unicore modules,
an architecture model consisting of:

• computing element (desktop node, potentially unreliable)
• manager node

Current architecture of desktop grid is presented in the
Fig. 2.

A. Computing Element—Node

Computing element which does the most of computations
has been built based on gateway and target system—UnicoreX.
It uses XUUDB that works as manager for authorisation.

The problem was to minimise the application so that to
make it running on the computing element under the target
system. An ideal application consists of code that could be
downloaded with a job to be executed. Unfortunately, this
leads to serious security problems. It is possible only if the
application run inside the target system, has the same security
as unsecured java applet. This means that the application can
not:

• run or read from disk,
• connect to host other then a Desktop Grid Manager,
• use only a secure classloader.

At the early stage of project we still use a disk for keeping logs
and keystores, but in the future, after all optimisations weplan
to totally disallow the application to use disk for execution.
Data for computation is kept on the manager computer and
downloaded straight to the memory space of application.

1) Application Runner:All jobs submitted to computing
element could be divided into three parts:

1) obtaining data from grid storage using the key provided
in the job description,

2) doing actual computations using a module described in
the job description (Application),

3) sending back the data to the grid storage.

All data is kept in the memory, thus involving no need to use
a disk. The private key used for data transferring is encoded
into the ASCII string and it could be given to the application
as a normal run time argument.

B. Manager Node

Desktop Grid Manager node software consists of the fol-
lowing elements:

• gateway—which allows accessing to the registry and
storage,

• registry,
• grid storage accessible via RBYTEIO,

• XUUDB which is accessible on its own port,
• Desktop Grid Manager.

Additionally, on the manager node we separate the storage
space for finished tasks results. It would increase the security,
because Desktop Grid Manager is responsible for moving the
results there and, after such moving, is the only one who has
access to the data. More detailed description of Desktop Grid
Manager is presented in III-C.

It is also possible to split Desktop Grid Manager among
registry, storage, XUUDB and computations manager. This
would allow running jobs from a computer that has no external
IP address and/or open ports. Of course, another solution is
to create Desktop Grid Manager that works as a service under
Unicore.

The architecture we have chosen is very good at this stage of
development of desktop grid. It allows us to easily experiment
and change parameters of tested architecture.

C. Desktop Grid Manager

Desktop Grid Manager is a multithreaded application. It
uses threads for controlling different aspects of desktop grid
work. It allows running a job on a desktop grid and getting
results, and is responsible for:

1) checking available nodes in registry,
2) dividing job into sub-tasks and merging results,
3) submitting tasks to a computing element,
4) fetching sub-tasks results,
5) monitoring state of nodes.

Desktop Manager uses separate threads for:

• checking registry—this thread is used for checking if any
new computing element has registered, and if there is a
new node, thread tries to do the rescheduling.

• checking node—checks if node is still alive, and what is
state of computations. If node is down, or if it has finished
computations, the thread tries to do rescheduling.

• running manager tasks—some tasks have to be done on
the manager server, i.e. dividing job into sub-tasks and
merging the results. There is a specially designated thread
with its own queue for doing such job. When it finishes
a task it tries to do the rescheduling.

1) Checking Available Nodes in the Registry:When the
owner of a private computer turns on desktop grid infrastruc-
ture on his computer, the UnicoreX registers in the Registry
located at the Desktop Grid Manager. A thread that checks
the registry finds out whenever a new node becomes available
and, if so it runs a new thread for checking the node.

2) Dividing Job Into Subtask and Merging the Results:
When the desktop grid receives a job to do, it divides it
into sub-tasks. It is performed by a thread used for running
manager tasks. This thread also runs a part that merges results
after they are fetched.

3) Submission of Task to a Computing Element:If any of
the following events happen in the system, such as:

• node is up or node is down,
• new job has been submitted,

JAKUB JURKIEWICZ ET. AL: UNICORE 6 AS A PLATFORM FOR DESKTOP GRID 455

Fig. 2. Architecture of desktop grid

• node has finished computations,
• manager task has finished,

the Desktop Manager tries to run a new task on free computing
elements. It runs a scheduler module which is responsible
for matching tasks with the computing elements. The actual
running and fetching of a task to a private computer is done
by Node Manager which is part of Desktop Manager.

4) Fetching Sub-Tasks Results:When a job finishes com-
putations, which means that all data is sent to a grid storage
(see III-A1),the node monitoring thread receives information
that the job has finished (by executing Unicore check job state
call). Then, it copies all data from desktop grid storage to the
finished job storage, and tries to perform the rescheduling.Or,
possibly, if all tasks for the job have finished, it tries to queue
a new manager thread for merging the results.

5) Monitoring State of Nodes:The system monitors two
indicators for node activity:

• node down or up,
• state of job on the node

Because the registry can have out-of-date information about
nodes, we have to monitor its status by our own. For this
purpose, we call the Unicore check node time call, which
is a common method of testing if the whole node Unicore
infrastructure is running.

6) Use of Desktop Grid Manager:Desktop Grid Manager
is built of two parts—core manger described above and the
User interface which can be easily modified and adopted to
the user’s needs. Different possible settings of usage of the
desktop grid are presented in Fig. 3, Fig. 4, Fig. 5 and Fig. 6.

In Fig. 3 Desktop Grid Manager plays a role of target
system. Additionally, because the desktop grid uses the same
middleware as Unicore grid, we can utilise free time of
Unicore grid computing nodes.

In Fig. 4 there is presented a desktop grid as a standalone
system. This would be achieved by changing authorisation
database for Desktop Grid Manager from Unicore grid au-
thorisation database to local one.

Standalone settings could be slightly modified by allowing
clients to be computing units at the same time. Such settings
are presented in Fig. 5.

Fig. 3. Desktop grid manager server as target system for Unicore

Fig. 4. Desktop grid manager as standalone server

Fig. 5. Desktop grid manager as standalone cooperative system

456 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

Fig. 6. Desktop grid system—development setting

Finally, Fig. 6 presents a currently implemented develop-
ment setting.

With respect to this setting we created a simple GUI
for Desktop Grid Manager. This solution makes monitoring
of jobs execution really easy and, moreover, it simplifies
debugging.

7) Scheduler:Scheduler used in our Desktop Manager is a
random scheduler with added backup policy. It tries to assign
tasks with lower number of running instances first. If tasks
have the same number of running instances, then the one
belonging to job that was assigned first is run.

D. HttpsDistributedProxy

As it is presented in Fig. 2, the system could contain dis-
tributed https proxy. This part has already been implemented
but it hasn’t been incorporated into the desktop grid yet.
Because the computing elements could be put behind firewall
or NAT, we introduce https distributed proxy. This proxy is
built of two parts:

• server part—where https client connects and asks for page
• computing node part—the part that opens a connection

to a server part and waits for data coming from server,
that should be tunnelled to a site.

Because https protocol does not allow looking into packets by
the proxy, the tunnelling is the only available option. Because
the whole communication is started by a computing node part,
the computing node may be located behind NAT gateway and
be not visible from Internet.

E. Security

The security in the Desktop Grid is based on X.509
certificates. Desktop Server has one certificate, and every
computing elements group should have their own one, too.
Because certificates should be generated when the owner of
computers gets a software package, and we cannot guarantee
that few instances of one package will not work at the same
time, we introduce a computing elements group—i.e. different
computers working with the same certificate set.

Additionally, every sub-task is given its own certificate that
will allow getting and putting on the desktop grid storage only
such files which belong to it.

Currently, our desktop grid works with one set of
certificates—all parts use the same certificate.

 2
 3

 4
 5

 6
 7

 0
 5

 10

 15

 20

 25

 30

 60

 80

 100

 120

 140

 160

 180

 200

Number of
 subtasks

Total execution time (s)

Number of nodes

Fig. 7. Efficiency of presented system

IV. EFFICIENCY TESTS

Desktop grid was tested on naive implementation of con-
current Mandelbrot set computing algorithm. For purposes of
tests we used jobs that took 236 seconds on a single computer
(run locally).

In Fig. 7 there are presented results of efficiency tests for
the created system. On one axis there is presented the number
of working nodes (manager node is not counted), on another
one the number of sub-tasks which the job was divided to.
What seems unclear here is a fact that the minimum time of
execution has been achieved for a number of tasks larger than
the number of nodes(not slightly larger but double or triple).
This is caused by pure balancing of tasks in naive concurrent
version of algorithm.

In Fig. 8 there is presented the speedup of computations
as a function of number of nodes. Speedup is a time taken
by computations on one machine, divided by minimum total
execution time for specified number of nodes. Below 5 nodes
this function is of linear nature, however worse than optimum
line y = x. Above 5 nodes, the constant cost gains in
importance, thus making the difference in speedup between
6 and 7 nodes much smaller than that between 3 and 4 nodes.
These results show that our system is quite effective, although
it should be optimised.

V. CONCLUSIONS

Our work shows that Unicore 6 could be used as a basic
middleware for desktop grid. It is easy to be configured and
it needs only small efforts to develop Desktop Grid Manager.

VI. FUTURE WORK

In the future we plan to:
• incorporate https distributed proxy to desktop grid,
• incorporate architecture for managing certificates from

project Chemomentum [8], and add Uvos in a further
step,

• complete detaching the application run by nodes from
disks—by using Java policy,

JAKUB JURKIEWICZ ET. AL: UNICORE 6 AS A PLATFORM FOR DESKTOP GRID 457

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 2 3 4 5 6 7

S
p

ee
d

u
p

Number of nodes

Fig. 8. Scalability of system—speed up

• attaching Java code to be executed, as an part of a task,
to the task submission.

ACKNOWLEDGMENT

Work supported by the joint project of ICM UW and Teleko-
munikacja Polska S.A. 22/06/6727/K/2006/YCZ268 Grid Sys-
tem Monitoring and Control Tools under grant FSO 023/2006.

REFERENCES

[1] Installation and Configuration of UNICORE 6http://www.unicore.eu/
documentation/manuals/unicore6/files/Installation_UNICORE6.pdf

[2] David P. Anderson,BOINC: A System for Public-Resource Computing
and Storage, 5th IEEE/ACM International Workshop on Grid Computing.
November 8, 2004, Pittsburgh, USA.

[3] Douglas Thain, Todd Tannenbaum, and Miron Livny,Distributed Comput-
ing in Practice: The Condor Experience, Concurrency and Computation:
Practice and Experience, Vol. 17, No. 2–4, pages 323–356, February–
April, 2005.

[4] Konstantinos Georgakopoulos, Konstantinos Margaritis, Integrating Con-
dor Desktop Clusters with Grid, Distributed and Parallel Systems In
focus: Desktop Grid Computing, September 2008.

[5] Zoltán Farkas, Péter Kacsuk, Manuel Rubio,Utilizing EGEE for Desktop
Grids, Distributed and Parallel Systems In focus: Desktop Grid Comput-
ing, September 2008.

[6] Ian Kelley, Ian Taylor,Bridging the Data Management Gap Between
Service and Desktop Grids, Distributed and Parallel Systems In focus:
Desktop Grid Computing, September 2008.

[7] A. Faroughi, R. Faroughi, P. Wieder, W. Ziegler,Attributes and VOs:
Extending the UNICORE authorisation capabilities, Proceedings of 3rd
UNICORE Summit 2007 in conjunction with EuroPar 2007, Rennes,
France, LNCS 4854, pages 121–130.

[8] B. Schuller, B. Demuth, H. Mix, K. Rasch, M. Romberg, S. Sild,
U. Maran, P. Bala, E. del Grosso, M. Casalegno, N. Piclin, M. Pintore,
W. Sudholt, K. Baldrige,Chemomentum—UNICORE 6 based infrastruc-
ture for complex applications in science and technology, Proceedings of
3rd UNICORE Summit 2007 in conjunction with EuroPar 2007, Rennes,
France, LNCS 4854, pages 82–93.

