
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 9–15

ISBN 978-83-60810-14-9
ISSN 1896-7094

Tackling Complexity of Distributed Systems:
towards an Integration of Service-Oriented

Computing and Agent-Oriented Programming
Giacomo Cabri,Member IEEE, Letizia Leonardi and Raffaele Quitadamo

Dipartimento di Ingegneria dell’Informazione
Università di Modena e Reggio Emilia

Via Vignolese, 905 41100 Modena – Italy
Email: {giacomo.cabri, letizia.leonardi, raffaele.quitadamo}@unimore.it

Abstract—The development of distributed systems poses differ-
ent issues that developers must carefully take into consideration.
Web Services and (Mobile) Agents are two promising paradigms
that are increasingly exploited in distributed systems design: they
both try, albeit with very different conceptual abstractions, to
govern unpredictability and complexity in wide-open distributed
scenarios. In this paper, we compare the two approaches with
regard to different aspects. Our aim is to provide developers with
critical knowledge about the advantages of the two paradigms,
stressing also the need for an intelligent integration of the two
approaches.

I. I NTRODUCTION

I N RECENT years, the interest in distributed computing
has been ever-increasing both in industry and academia.

Distributed computing offers advantages in its potential for
improving availability and reliability through replication; per-
formance through parallelism; sharing and interoperability
through interconnection; flexibility and scalability through
modularity. In order to gain these potential benefits, soft-
ware engineers have been coping with new issues arising
from distribution: components are scattered across network
nodes and the control of the system is complicated by such
a partitioned “system state”, particularly challenging when
dealing with failure and recovery; in addition, the interactions
between the concurrent components give rise to issues of non-
determinism, contention and synchronization. The key concept
in distributed systems has been theservice, implemented and
provided by servers to clients that may dynamically join
systems, locate and use required services and then depart.
The last years’ trend is toward the conception of services that
can be globally accessible by remote clients over the Internet.
Therefore, the technological and methodological background
developed for conventional distributed systems often failto
scale up when applied to the design of large-scale systems.
Languages for distributed programming were introduced so
that each component could be described and used through an
establishedinterface, but language constructs turned out to
be not enough. New paradigms were needed in order to tackle
the growingcomplexityof software. Throughout this paper, we
will discuss some of the critical aspects of modern distributed
applications, showing where Agent-Oriented Programming

(AOP) and Service-Oriented Computing (SOC) take different
roads and how research efforts are being made to reconcile
them.

II. BACKGROUND

The aim of distributed systems design is to identify the
distributable components and their mutual interactions that to-
gether fulfil the system requirements. The client-server model
is undoubtedly the most consolidated and applied paradigm
in distributed computer system design. Pretty much every
variation of application architecture that ever existed has an
element of client-server interaction within it. Nevertheless,
the last year trend has been in breaking up the monolithic
client executable into object-oriented components (located
part on the client, part on the server), trying to reduce the
deployment headaches by centralizing a greater amount of
logic on server-side components. The benefits, derived from
the extensive use of the component-based approach, came at
the cost of an increased complexity and ended up shifting
ever more effort from deployment issues to maintenance and
administration processes. The issues to tackle are not related
only to how to partition the complex problem domain (i.e.
the problem space decomposition) or where the identified
components should reside (i.e. thelocation awareness), but
an increasing emphasis is shifting on how these components
should interact and should be maintained. As a consequence,
researchers in software engineering are investigating thepos-
sibility to introduce paradigms born to deal with complexity
even at the abstract model level. The two paradigms briefly
discussed in the following subsections (i.e.Service-Oriented
ComputingandAgent-Oriented Programming) try to radically
change the model entities upon which software designers use
to build complex distributed systems. They introduced the
powerful concepts of services and mobile software agents as
the building blocks of the design, establishing then precise
rules for their composition and interaction.

A. Agent-Oriented Programming

An agent is basically defined as an entity that enjoys the
properties ofautonomy, reactivity, proactivity, social abil-

978-83-60810-14-9/08/$25.00c© 2008 IEEE 9



10 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

ity [27]. Software agents are significantly powerful when they
live in communities made up of several interacting agents.
Every agent is an active entity, situated in an environment,
able to perceive and to react in a timely fashion to changes that
occur in the environment. They are autonomous in the sense
that they have the total control of their encapsulated stateand
are capable of taking decisions about what to do based on this
state, without a third party intervention. In addition, agents
exhibit goal-directed behaviour by proactively taking theini-
tiative in pursuit of their design objectives.In an agent-oriented
view, in order to represent the decentralized nature of many
distributed systems, multiple agents are required and theywill
need to interact for the fundamental reason of achieving their
individual objectives. Establishing collaborations withother
partner agents, they obtain the provision of other services(i.e.
social ability). An obvious problem is how to conceptualize
systems that are capable of rational behavior. One of the most
appreciated solutions to this problem involves viewing agents
as intentional entities, whose behavior can be predicted and
explained in terms ofattitudes such as belief, desire, and
intention (BDI) [20]. In AOP the idea is that, as in declarative
programming, we state our goals, and let the built-in control
mechanisms figure out what to do in order to achieve them.
In BDI agents the computational model corresponds to the
human intuitive understanding of beliefs and desires, and so
the designer needs no special training to use it.

Another optional, but equally powerful, feature of software
agents ismobility [10]. Conventional distributed systems as-
sume that the various portions of the distributed application
run on their own network node and are bound to it for
their whole life. Mobile Agents (MA)reshape the logical
structure of distributed systems, by providing a system in
which components can dynamically change their location,
migrating with them a part or the entire agent’s state [4], [5].

B. Service-Oriented Computing

Service-Oriented Computing(SOC) [23] proposes a logical
view of a software system as a set ofservices, provided to end-
users or other services. This recent paradigm proposes itself
as the next evolutionary step of the client-server architecture
applied to the modern highly distributed and dynamic business
scenario.

SOC has the purpose of unifying business processes modu-
larizing large applications into services. Any client, indepen-
dently of its operating system, architecture or programming
language, can access the services in the Service-Oriented
Architecture (SOA) and compose them in more sophisticated
business processes.Reusabilityhas the benefit of lowering
development costs and speeding time to market, but achieving
high reusability is a hard task. SOC emphasizes the reuse
of services, which have to be createdagnostic to both the
business and the automation solutions that utilize them; in
addition they need to preserve the maximum degree ofstate-
lessnesstowards their current requestor. Moreover, one of the
key concepts proposed by service-orientation isloose-coupling
between the entities playing the role of client and server:

limiting service dependencies to theservice contractallows
the underlying provider and requestor logic to remain loosely
coupled.Web Servicestechnology is, without any doubts, the
most promising and industry-supported standard technology,
adopted to implement all the service-orientation design prin-
ciples, discussed more deeply throughout this paper.

III. T WO APPROACHES TODEAL WITH COMPLEXITY

The evolution of distributed software development has been
largely driven by the need to accommodate increasing degrees
of dynamicity, decentralization and decoupling between dis-
tributed components. Software paradigms should take care of
the new requirements of distribution and handle complexity
from the early stages of the design. In the following subsec-
tions, we are going to analyze some aspects, related to the
development of complex distributed systems [14], showing
what design-level tools the two compared paradigms provide
to the designer.

A. Decomposing the Problem Space

Experience in software engineering taught that complex
systems are inherently decomposable and many details can
be ignored in the higher-level representations, thus limiting the
scope of interest of the designer at a given time. Model entities
can be grouped together and their relationships described
trying to always provide the highest degree of autonomy
between the components.

In the Service-Oriented Computing(SOC) paradigm, de-
composition is based on the concept of services, which en-
capsulate units of logic that can be small or large. Service
logic can encompass the logic provided by other services,
when one or more services are composed into a collection.
A typical automation solution is represented by a business
process, whose logic is decomposed into a series of steps
that execute in predefined sequences according to business
rules and runtime conditions. Services can be designed to
encapsulate a task performed by an individual step or a sub-
process comprised of a set of steps.

Agent-Oriented Programmingproposes an approach in
which the problem space should be decomposed introducing
multiple, autonomous components (i.e. agents) that can actand
interact in a flexible way to achieve their set of goals. This sort
of goal-driven decomposition has been even acknowledged by
object-oriented community [16] as being more intuitive and
easier than decomposition based on objects. It means that
individual agents should localize and encapsulate their own
control: in other words, they should beactive, owning their
thread of control, andautonomous, taking exclusive control
over their own actions.

Although distributing automation logic is nothing new, the
two approaches are both stressing the importance ofloose-
couplingwhen designing distributed components. The first in-
adequacy of previous paradigms derives from allowing compo-
nents to form tight connections that result in constrictiveinter-
dependencies. By decomposing businesses into self-contained
and loosely-coupled services, SOC helps achieving the key



GIACOMO CABRI ET. AL: TACKLING COMPLEXITY OF DISTRIBUTED SYSTEMS 11

goal of being able to respond to unforeseen changes in an
efficient manner: a service acquires knowledge of another
one by means ofservice contracts; interactions take place
only with predefined parameters, but the two services still
remain independent of each other. In AOP, software agents are
likewise self-governing entities, with well-defined boundaries
and interfaces, situated in an environment over which they
have partial control and observability; their encapsulated state
is not accessible to other agents and mutual interactions occur
by means of some kind of agent communication language
(ACL).

Nevertheless, the strategies adopted by the two approaches
make them inherently different. SOC keeps following the well-
establishedfunctionalphilosophy, while Multi-Agent Systems
(MASs) can be classified asreactive software systems. A
service-oriented business process is started by the actionof
the end-user or by another client process; it performs its
computations following a predefined execution flow (possibly
invoking other services inside or outside the enterprise bound-
aries) and returns the results to the caller. In contrast, MASs
are reactive because their components (i.e. agents) often do not
terminate, but rather maintain ongoing interactions with their
environment. Such interactions are also characterized bypro-
activeness, since an agent tries different ways to achieve its
goals and is, consequently, able to influence its environment.

It is commonly agreed that the natural way to modularize
most complex systems is in terms of multiple autonomous
components, acting and interacting in flexible ways and ex-
hibiting a goal-directed behaviour. This makes perhaps the
agent-oriented approach the best fit to this ideal. Moreover,
although the intrinsic complexity of thefunctional mapping
may be great (e.g. in the case of very dynamic systems, such as
air traffic control systems), functional programs are, in general,
simpler to specify, design and implement than reactive ones.

B. Modelling Interactions

It was argued that distributed applications are increasingly
built out of highly decoupled components. Nevertheless, com-
ponents need to interact to achieve the required behaviour.
Interactions pose some demanding issues at design time,
related mainly to thenature of interactions, the degree of
flexibility to provide and thelocationof the interacting entities,
which we are going to detail in the following subsections.

1) Nature of Interactions:With regard to thenature of
interactions, the service-oriented paradigm is still more bound
to the past than the agent-oriented one. Services interact
with each other almost barely at a “syntactic level”, with
one service invoking an operation exposed by another one
and, after a given time, retrieving the produced result. We
said “almost”, because, compared to the classical “method
invocation” philosophy provided by OO systems, SOC gives
increased importance to the dynamic selection and binding of
operations. Using a special intelligent lookup service (e.g. the
UDDI registry), a component can search for another service
that satisfies a set of key requirements, such as quality of
service, accuracy of results or response time. This kind of

enhanced reflection technique becomes a fundamental asset
from the standpoint of robustness and flexibility: it allows
components to dynamically select or reconfigure their bind-
ings, saving a proper amount of independence with respect to
the traditional static binding approach. Service discoverability
can be considered a promising semantic evolution of the OO
polymorphism, since services are expected to match based
more on their semantics (e.g. service behaviour under certain
conditions, delays, reliability, etc.) rather than on their syntax
(e.g. operation prototypes, parameter types, etc.). However,
although currently the publisher can define certain service
policies to express preferences and assertions about the service
behaviour, research efforts are currently underway to contin-
ually extend the semantic information provided by service
description documents.

The agent-oriented paradigm definitely chooses an in-
teraction model based on semantics and human sociality.
Software agents interactions occur at the knowledge level,
through a declarative communication language, inspired by
the speech act theory [8]. Interacting via this kind of agent-
communication language, an agent has the capability to engage
in social activities, such as cooperative problem solving or
negotiation. The sequence of actions performed by an agent
is therefore not statically defined, but depends mainly on its
goals and on the environment where it lives. In AOP, the
idea is that, as in declarative programming, the designer states
her goals and lets the built-in control mechanism figure out
what to do, at what time and by whom, in order to achieve
them. Moreover, the resources available in the environmentcan
modify the kind of action performed. The control mechanism
implements some computational model, like the BDI model,
which is undoubtedly more intuitive to the designer than the
procedural model.

It must be pointed out that, increasing the abstraction level
of interactions, as AOP does, introduces new challenging
issues. For agents to interact productively, they must have
a bit of knowledge about the expected behaviour of inter-
acting partners, as well as the passive components of their
environment. A consistent development effort must focus on
modelling the environment, the world in which agents operate
and of whom they have beliefs. Knowledge representation
languages [17] are proving to be a promising way of describing
the environment model, so that social agents can act and
interact starting from common views of the world.

Unfortunately, the agents’ models will be often mutually
incompatible in syntax and semantics, thus stressing the im-
portance for semantic reconciliation (e.g. by means of some
kind of ontology composition technique [26]).

2) Flexibility of Interactions: Although many complex
systems are decomposable, complexity means also that it is
impossible to know a priori about all potential links between
the distributed components: interactions often occur at un-
predictable times and trying to consider all the possibility at
design time is a futile effort.

AOP provides a high degree offlexibility as regards the
engineering of complex systems: it adopts the policy of



12 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

deferring to runtime decisions about component interactions,
endowing agents with the ability to initiate interactions and
deal with unanticipated requests in a flexible manner.

Services, even if carefully designed, cannot provide such
level of dynamic interactions, because they are passive en-
tities with respect to agents. In the SOA world, interactions
have to be planned and coordinated using choreography or
orchestration techniques, recently standardized as Web Service
extensions. The WS-BPEL (Web Services Business Process
Execution Language) is an example of how a business process
can be governed, specifying which services should be called,
in which sequence and at what conditions.

3) Interactions and Component Location:When thinking
about the architecture of a distributed application, interac-
tions among the various components are usually considered
independent of the components’ location. Location is simply
regarded as an implementation detail. Many technologies, such
as CORBA, intentionally hide the location of components,
making no distinction between interactions of components
residing on the same host and components scattered among
distant network nodes. However, in many distributed applica-
tions, location needs to be considered also during the design
stage, since interactions can be remarkably different in terms
of latency, partial failure and concurrency.

In the SOC model, services interact with each other, ex-
changing information through a communications framework
that is capable of preserving a loosely-coupled relationship.
This framework is based onmessaging. Messages (e.g. ex-
pressed using SOAP protocol) are formatted following the ser-
vice contract specifications in order to be correctly understood
and processed by the target service. The size and number of
the exchanged messages depend on the service contract and
can be significant when big pieces of information must be
exchanged or complex interactions are carried out. Moreover,
the widespread use of wireless networks is making available
communication channels with low bandwidth or reliability.
The design of distributed applications becomes therefore more
complex, in that it must aim at avoiding as much as possible
the generation of traffic over the weaker links.

The SOC paradigm has only one way to achieve this goal,
that is, to increase the granularity of the offered services. In
this way, a single interaction between client and server must be
sufficient to specify a large number of lower level operations,
which are performed locally on the target service and do not
need to pass across the physical link. Coarse granularity re-
duces dependencies between the interacting parts and produces
fewer messages of greater significance [12]. Furthermore, the
trend to create interfaces for the services that are coarserthan
those traditionally designed for RPC-based components has
been encouraged by vendors as a means of overcoming some
of the performance challenges associated with XML-based
processing (e.g., SOAP messages are XML-based documents).
However, the coarser the granularity of an interface, the less
reuse it may be able to offer. If multiple functions are bundled
in a single operation, it may be undesirable for clients that
only require the use of one of those functions. Then, service

interface granularity is a key strategic decision point that
deserves a good deal of attention during the design phase.

Mobile Agents (a special kind of software agents presented
in Section 2.1) could help because they allow, by their nature,
to specify complex computations that can move across a
network [10]. Hence, the services that have to be executed
by a server that resides in a portion of the network, reachable
only through an unreliable and slow link, could be described
using a mobile agent; this agent, thanks to its mobility,
can be injected into the destination network, thus passing
once through this link. There, it could execute autonomously,
needing no more connection with the node that sent it, except
for the transmission of the final results of its computation (i.e.
disconnected operations).

C. Component Reuse and Customization

Nowadays, business process automation is proving that the
centralization of control, persistency and authorizationis often
inefficient, impractical or simply inapplicable. The so called
“buy vs. build” or “incremental development” is becoming
more and more valid, albeit interpreted in the new scenarios:
only a part of the components involved in a distributed compu-
tation are under the control of the designer, while the rest may
be pre-existing off-the-shelf components that is mandatory or
convenient to exploit. If the reuse of components is thus an
important aspect, their customization is fundamental as well:
an extensible service is likely to be reused more than a rigid
one, since it is expected to meet the requirements of much
more users/clients. In the following we shall analyse these
two aspects.

1) Service Reusability:One of the great promises of SOC
is that service reuse will lower development costs and speed
up time to market. Service-orientation encourages reuse inall
services, regardless whether immediate requirements for reuse
exist. By applying design standards that make each service
potentially reusable, the chances of being able to accommodate
future requirements with less development effort are increased.
If the service is designed following the SOC principles of au-
tonomy and loose coupling, these weaker dependencies make
the applicability of its functionality broader. Furthermore, if
the service is designed to bestateless, this helps promoting
reusability as well as great scalability: if a service is respon-
sible for retaining activity state for long periods of time,its
ability to remain available to other requestors will be impeded.
Service statelessness supports reuse because it maximizedthe
availability of a service and typically promotes a generic
service design that defers activity-specific processing outside
service logic boundaries. In turn, the reusability requirement
facilitates all forms of reuse, including inter-application inter-
operability and composition (e.g. service orchestrationsand
choreographies).

The AOP view promotes instead reusability in different
ways. Rather than stopping at reuse of subsystem components
and rigidly preordained interactions, agents enable whole
subsystems and flexible interactions to be reused within and
between applications. Flexible interaction patterns, such as



GIACOMO CABRI ET. AL: TACKLING COMPLEXITY OF DISTRIBUTED SYSTEMS 13

those enabled by the BDI model, and various forms of
resource-allocation and auctions patterns have been reused in
a significant number of applications.

2) Service Customization:As already said, any service
operation in a SOA can be invoked and returns results using,
for example, SOAP messaging. Message structure has been
carefully thought to enable service reusability and customiz-
ability: the idea is to equip the message with embedded
processing instructions and business rules, which allow them
to dictate to recipient services how they should be processed.
These allow messages to become increasingly self-reliant by
grouping metadata details (in the SOAP header) with message
content into a single package (the SOAP envelope). The
processing-specific logic embedded in a message alleviates
the need for a service to contain this logic. In other words,
services in the SOC view should adapt their behavior to the
requirements of their current clients, in order to provide the
greatest chances of reuse. As a consequence, SOC imposes
that service operations become more generic and less activity-
specific. The more generic a service’s operations are, the more
reusable the service.

Likewise, agent mobility encourages the implementation of
more generic, and thus highly reusable, service providers [6].
Servers providing an a priori fixed set of services accessible
through a statically defined interface are inadequate in those
distributed scenarios where new clients can request unforeseen
operations at any time. Upgrading the server with new func-
tionalities is only a temporary and inefficient solution, since
it increases complexity and reduces flexibility. Mobile code
technologies enable a scenario in which the server actually
provides a unique service: the execution of mobile code. This
feature allows the user to customize and extend the services
according to its current needs, bringing the know-how (i.e.,
the method code) along its way roaming the network.

The possibility of customization granted by mobile code
paradigms is therefore more powerful and expressive com-
pared to embedding processing logic in SOAP messages; this,
however, comes at the cost of an intrinsic fragility of the
execution environment hosting external mobile agents (not
only in the case of intentionally malicious agents, but also
in the case of bad-designed or misbehaving code [25]).

D. Coping with Interoperability and Heterogeneity

The problem of interoperability between heterogeneous
technologies is gaining great interest in the academia but,first
and foremost, among the major software vendors.

Web services standards have demonstrated the power of
standardization and platform-vendor neutrality. The emerging
SOC paradigm took the principle of openness of standards
as one of its foundation stones: the cost and effort of cross-
application integration are significantly lowered when appli-
cations being integrated are SOC-compliant.

The landscape of agent-oriented software seems to be more
fragmented, although many efforts towards the definition of
standards are growing in the research community. Several
(Mobile) agent platforms have been developed, but one of the

weaknesses of those platforms is the lack of true interoperabil-
ity, being the strength of Service-Oriented systems. Many of
the proposed agents platforms provide support for migration,
naming, location and communication services, but they differ
widely in architecture and implementation, thereby impeding
interoperability and rapid deployment of mobile agent tech-
nology in the marketplace. To promote interoperability, some
aspects of mobile agent technology have been standardized.
Currently there are two standards for mobile agent technology:
the OMG’s Mobile Agent System Interoperability Facility
(MASIF) and the specifications promulgated by the Founda-
tion for Intelligent Physical Agents (FIPA). MASIF [15] is
based on agent platforms and it enables agents to migrate
from one platform to another, while FIPA [9] is based on
remote communication services. The former is primarily based
on mobile agents travelling among agent systems via CORBA
interfaces and does not address inter-agent communications.
The latter focuses on intelligent agent communications via
content languages and deals with the mobility aspect of agents
only since the FIPA 2000 release. In order to achieve the de-
gree of outstanding platform neutrality and interoperability of
SOC, some research programs are studying the possibility of
an integration of MASIF/FIPA specifications into a commonly
agreed standard for MAPs [1].

E. Security

When application logic is spread across multiple physical
boundaries, implementing fundamental security measures such
as authentication and authorization becomes more difficult. In
the traditional client-server model, the server is the owner
of any security information, needed to recognize user’s cre-
dentials and to assign privileges for the use of any protected
resources. Well-established techniques, such as SSL (Secure
Socket Layer), granted a so-calledtransport-levelsecurity,
where the whole channel, by which requests and responses
are transmitted, is protected.

SOC departs from this model by introducing substantial
changes to how security is incorporated and applied. Relying
heavily on the extensions and concepts established by the WS-
Security framework, the security models used within SOC
emphasize the placement of security logic onto themessaging
level. SOAP messages provide header blocks in which security
logic can be stored (e.g. by means of X509 certificates). So,
wherever the message goes, so its security information does.
This approach is required to preserve individual autonomy and
loose coupling between services, as well as the extent to which
a service can remain fully stateless.

The “mobility” concept in the agent-oriented paradigm
poses new and more challenging security issues. Moving code,
in addition to data, brings security problems that fit into two
main categories: protecting host systems and networks from
malicious agents and protecting agents form malicious hosts.
Digital signatures and trust-management approaches may help
to identify the agents and how much they should be trusted.
The malicious host that attacks a visiting mobile agent is
the most difficult and largely unsolved: such a host can steal



14 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

private information from the agent or modify it to misbehave
when it jumps to other sites.

Security is perhaps the most critical factor that has limited
a widespread acceptance of the mobile agent paradigm for
strategic applications, such as e-commerce, where sensitive
transactions have to be performed with the highest level of
security. Services interact with each other without movingany
piece of application logic (e.g. a thread), but simply moving
inert parameters data to invoke exposed service operations.
Protecting passive data is usually more straightforward than
protecting mobile code, albeit several research efforts [24] are
being made to reduce the gap between the two approaches.

IV. I NTEGRATING SERVICES AND AGENTS

We have analyzed, throughout this paper, some of the
similarities and differences, strengths and weaknesses of
two emerging paradigms in distributed software engineering:
Service-Oriented Computing and Agent-Oriented Program-
ming. It has been observed that they tackle complexity in
software, often from very distant points of view, promising
advantages to designers but also introducing architectural
headaches. We are convinced that the silver bullet of dis-
tributed software paradigms cannot be identified in any of
these individual paradigms: distributed systems in the future
will likely benefit of ideas drawn from both of them, but this
demands for some intelligent form of integration of the two
approaches.

In the recent years, the emphasis of service-oriented archi-
tectures has been on the execution of services, as building
blocks to decompose and automate complex and distributed
business problems. The Web Service infrastructure is widely
accepted, standardized, and is likely to be the dominant tech-
nology over the coming years. However, the next evolutionary
step for services will be driven by the need to deal with target
environments that become even more populous, distributed
and dynamic. Therefore, many approaches are emerging for
the future of these models and they all agree on one point:
the integration between services and agents is more than
feasible. For example, in the last issue of the AgentLink III
Agent Technology Roadmap, Web Services are presented “as
“a ready-made infrastructure that is almost ideal for use in
supporting agent interactions in a multi-agent system” [2]. In
this direction, different approaches to integration have been
proposed and, in many cases, tested with some prototypal
applications.

A first idea of integration consists in the mere enabling
of interactions between the two worlds. In other words, some
researchers [11] have experimented techniques to make agents
and web services interoperate. In order to make web services
invoke agent capability and vice versa, these systems try
to formalize a proper mapping between the WSDL service
contract and the Agent Communication Language (ACL).
These approaches, however, have been criticized, since they
try to blur the distinction between agency and service-oriented
concepts: if agents are accessed through pre-defined, fixed in-
terface operations (accepting parameters and returning results),

they are implicitly treated as services, and as a consequence
they loose the autonomy and intelligence belonging to agents.
Vice versa, if a service behaves in a non-deterministic way
and other services must interact with it using some high-level
ACL, this service should be regarded conceptually as an agent
instead. A more clear integration approach [7], [19] recog-
nizes the conceptual difference between agents and services
and proposes a functional layered view of their interactions.
Services are the functional building blocks, which can be
composed to form more complex services, but they remain
passive entities used by agents in distributed applications:
the agent are given some high-level goals; they are primarily
responsible for adopting strategies or plans and translatethem
into concrete actions, such as invoking an atomic service or
composing other services into new functional aggregates. In a
few words, many researchers are expressing the relationship
between services and agents, saying that services provide the
computational resources, while agents provide the coordina-
tion framework [3].

A new research roadmap [13] is proposing a radical evolu-
tion of the concept of service, rather than an integration: the
main idea is to give more “life” to services so that, instead
of passively waiting for discovery, they could proactively
participate in the distributed application, just like agents in
multi-agent systems. Making services increasingly alive and
enabling more dynamical interactions, services are expected to
function as computational mechanism, enhancing our ability
to model and manage complex software systems. As already
said, a service knows only about itself, but not about its clients;
agents are self-aware, but gain awareness of the capabilities
of other agents as interactions among agents occur. Equipped
with such an awareness, it has been advised that a service
would be able to take advantage of new capabilities in its
environment and could customize its service to a client, for
example, improving itself accordingly.

V. CONCLUSIONS

This paper presented a comparison between the Services-
Oriented vision and the (Mobile) Agents one, as concerns
the several issues in the development of complex distributed
systems. We pointed out that each approach offers its own
advantages, but some rules of thumbs emerge from the com-
parison: model entities of SOC are better fitting “closed”
distributed systems, where the components are explicitly de-
signed to organize themselves in a predefined (i.e. chore-
ographic or orchestrated) fashion to achieve the fulfillment
of a certain business process or workflow. “Open” systems
are instead better manageable if a mobile agent approach
is taken: in application scenarios, like pervasive computing
or online auctions, it can be impossible to know a priori
all potential interdependencies between components (what
services are required at a given point of the execution and
with what other components to interact), as a functional-
oriented behavior perspective typically requires. In the latter
case, agents can consider also the possibility of competitive



GIACOMO CABRI ET. AL: TACKLING COMPLEXITY OF DISTRIBUTED SYSTEMS 15

behavior in the course of the interactions and the dynamic
arrival of unknown agents.

Nevertheless, we think that an integration of the two
paradigms is more than desirable. In our vision, services
constitute an established, platform-neutral and robust compu-
tational infrastructure, made up of highly reusable building
blocks, from which a new breed of distributed software
paradigms, derived from the agent-oriented world, can emerge.
This new phase seems to be already started, for example if we
look at the research in the field of autonomic services [18],
where researchers are exploring the possibility of embedding
some form of self-management in the components that will
provide the services of the future.

ACKNOWLEDGMENT

Work supported by the Italian MiUR in the frame of
the PRIN project “MEnSA—Agent oriented methodologies:
engineering of interactions and relationship with the infras-
tructures”.

REFERENCES

[1] http://olympus.algo.com.gr/acts/dolphin/AC-baseline.html
[2] http://www.agentlink.org/roadmap/index.html
[3] P. A. Buhler and J. M. Vidal,Towards adaptive workflow enactment

using multi-agent systems, in Information Technology and Management,
6:6187, 2005.

[4] G. Cabri, L. Leonardi, M. Mamei, F. Zambonelli,Location-dependent
Services for Mobile Users, IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems And Humans, Vol. 33, No. 6, pp. 667–681,
November 2003.

[5] G. Cabri, L. Ferrari, L. Leonardi, R. Quitadamo,Strong Agent Mobility
for Aglets based on the IBM JikesRVM, in the Proc. of the 21st Annual
ACM Symposium on Applied Computing (SAC), Dijon, France, April
23–27, 2006.

[6] G. Cugola, C. Grezzi, G.P. Picco and G. Vigna,Analyzing Mobile Code
Languages, Mobile Object Systems n. 1222, Springer, 1997.

[7] I. Dickinson, M. Wooldridge,Agents are not (just) web services: consid-
ering BDI agents and web services, in Service-Oriented Computing And
Agent-Based Engineering (SOCABE ’05), 2005.

[8] T. Finin, Y. Labrou, J. Mayfield,KQML as an agent communication
language, in J. Bradshaw, ed., Sofware agents, MIT Press, Cambridge,
MA, 1995.

[9] http://www.fipa.org/
[10] A. Fuggetta, G. P. Picco, G. Vigna,Understanding Code Mobility, IEEE

Transactions on Software Engineering, Vol. 24, 1998.
[11] D. Greenwood, M. Calisti,An Automatic, Bi-Directional Service Inte-

gration Gateway, In Proc. of the Workshop on Web Services and Agent-
Based Engineering (WSABE 2004), 2004.

[12] M. Huhns, M. P. Singh,Service-Oriented Computing: Key Concepts
and Principles, in IEEE Internet Computing, Service-Oriented Computing
Track, January-February 2005.

[13] M. Huhns, M. P. Singh et al.,Research Directions for Service-Oriented
Multiagent Systems, in IEEE Internet Computing, November–December
2005.

[14] J. Kramer, Distributed Software Engineering, In Proc. of the 16th
International Conference on Software Engineering, Sorrento (Italy), May
1994.

[15] Mobile Agent System Interoperability Facility specifications (MASIF),
http://www.omg.org/docs/orbos/97-10-05.pdf

[16] B. Meyer, Object-Oriented Software Construction, Prentice Hall, 1988.
[17] A. Newell, The knowledge level, in Artificial Intelligence 18, 1982.
[18] H. Liu, V. Bhat, M. Parashar and S. Klasky,An Autonomic Service

Architecture for Self-Managing Grid Applications, in the Proc. of the
6th IEEE/ACM International Workshop on Grid Computing (Grid 2005),
Seattle, USA, November 2005.

[19] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau and P. Traverso,Planning
and Monitoring Web Service Composition, In Workshop on Planning and
Scheduling for Web and Grid Services, 2004.

[20] A. Rao and M. Georgeff,BDI Agents: From Theory to Practise, In
the Proc. of the 1st International Conference on Multi-Agent Systems
(ICMAS-95), 1995.

[21] L. Ruimin, F. Chen and H. Yang,Agent-based Web Services Evolution
for Pervasive Computing, in the Proc. of the 11th Asia-Pacific Software
Engineering Conference (APSEC’04), 2004.

[22] M. Shaw and D. Garlan,Software Architecture: Perspective on an
Emerging Discipline, Prentice Hall, 1996.

[23] M. P. Singh and M.N. Huhns,Service-Oriented Computing: Semantics,
Processes, Agents, John Wiley and Sons, 2005.

[24] C. F. Tschudin,Mobile agent security, In Intelligent Information Agents,
Springer-Verlag, 1999.

[25] G. Vigna, Mobile Agents: Ten Reasons For Failure, in the Proc. of
the 2004 IEEE International Conference on Mobile Data Management
(MDM’04), Berkeley, California, USA, January 2004

[26] G. Wiederhold, An Algebra for Ontology Composition, in Proc. of
Monterey Workshop on Formal Methods, pp. 56–61, 1994.

[27] M. Wooldridge, Agent-based software engineering, in IEEE Proc. of
Software Engineering pp. 26-3-7, 1997.


