Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
Computer Science and Information Technology pp. 9-15 ISSN 1896-7094

Tackling Complexity of Distributed Systems:
towards an Integration of Service-Oriented
Computing and Agent-Oriented Programming

Giacomo CabriMember IEEE Letizia Leonardi and Raffaele Quitadamo
Dipartimento di Ingegneria dell'Informazione
Universitad di Modena e Reggio Emilia
Via Vignolese, 905 41100 Modena — Italy
Email: {giacomo.cabri, letizia.leonardi, raffaele.quitadgi@unimore.it

Abstract—The development of distributed systems poses differ- (AOP) and Service-Oriented Computing (SOC) take different

ent issues that developers must carefully take into considation. roads and how research efforts are being made to reconcile
Web Services and (Mobile) Agents are two promising paradigms them.

that are increasingly exploited in distributed systems degn: they

both try, albeit with very different conceptual abstractions, to Il. BACKGROUND

govern unpredictability and complexity in wide-open distributed)

scenarios. In this paper, we compare the two approaches with The aim of distributed systems design is to identify the

regard to different aspects. Our aim is to provide developes with distributable components and their mutual interactioas tib-
critical knowledge about the advantages of the two paradigs, gather fylfil the system requirements. The client-servedeho
stressing also the need for an intelligent integration of te two . . i
approaches. is ur_1do_ubted|y the most consolldate_d and applied paradigm
in distributed computer system design. Pretty much every
l. INTRODUCTION variation of application architecture that ever existed ha
N RECENT years, the interest in distributed computinglement of client-server interaction within it. Neverthss,
has been ever-increasing both in industry and acadenttze last year trend has been in breaking up the monolithic
Distributed computing offers advantages in its potent@l f client executable into object-oriented components (ldat
improving availability and reliability through replicat; per- part on the client, part on the server), trying to reduce the
formance through parallelism; sharing and interoperigbilideployment headaches by centralizing a greater amount of
through interconnection; flexibility and scalability tlugh logic on server-side components. The benefits, derived from
modularity. In order to gain these potential benefits, softhe extensive use of the component-based approach, came at
ware engineers have been coping with new issues aristhg cost of an increased complexity and ended up shifting
from distribution: components are scattered across n&twaver more effort from deployment issues to maintenance and
nodes and the control of the system is complicated by suabiministration processes. The issues to tackle are ndedela
a partitioned “system state”, particularly challengingemh only to how to partition the complex problem domain (i.e.
dealing with failure and recovery; in addition, the intdiaes the problem space decompositioor where the identified
between the concurrent components give rise to issues of noamponents should reside (i.e. thacation awarenegs but
determinism, contention and synchronization. The key ephc an increasing emphasis is shifting on how these components
in distributed systems has been trvice implemented and should interact and should be maintained. As a consequence,
provided by servers to clients that may dynamically joinesearchers in software engineering are investigatingtse
systems, locate and use required services and then depslility to introduce paradigms born to deal with complgxit
The last years’ trend is toward the conception of servicas treven at the abstract model level. The two paradigms briefly
can be globally accessible by remote clients over the leterndiscussed in the following subsections (i%ervice-Oriented
Therefore, the technological and methodological backgdouComputingand Agent-Oriented Programmingry to radically
developed for conventional distributed systems often @il change the model entities upon which software designers use
scale up when applied to the design of large-scale systens.build complex distributed systems. They introduced the
Languages for distributed programming were introduced powerful concepts of services and mobile software agents as
that each component could be described and used throughte building blocks of the design, establishing then peecis
establishedinterface but language constructs turned out teules for their composition and interaction.
be not enough. New paradigms were needed in order to tackle . i
the growingcomplexityof software. Throughout this paper, we’* Agent-Oriented Programming
will discuss some of the critical aspects of modern distedu An agentis basically defined as an entity that enjoys the
applications, showing where Agent-Oriented Programmingoperties ofautonomy reactivity, proactivity, social abil-

978-83-60810-14-9/08/$25.00 2008 IEEE 9

10 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

ity [27]. Software agents are significantly powerful when thelymiting service dependencies to ttservice contractallows
live in communities made up of several interacting agenthie underlying provider and requestor logic to remain Ibose
Every agent is an active entity, situated in an environmerupled.Web Servicetechnology is, without any doubts, the
able to perceive and to react in a timely fashion to changas timost promising and industry-supported standard techyplog
occur in the environment. They are autonomous in the sersiopted to implement all the service-orientation design-pr
that they have the total control of their encapsulated state ciples, discussed more deeply throughout this paper.
are capable of taking decisions about what to do based on this
state, without a third party intervention. In addition, age !!l- T WO APPROACHES TODEAL WITH COMPLEXITY
exhibit goal-directed behaviour by proactively taking the The evolution of distributed software development has been
tiative in pursuit of their design objectives.Iln an ageriented largely driven by the need to accommodate increasing degree
view, in order to represent the decentralized nature of maaf dynamicity, decentralization and decoupling betwees: di
distributed systems, multiple agents are required andwhiey tributed components. Software paradigms should take dare o
need to interact for the fundamental reason of achieving théhe new requirements of distribution and handle complexity
individual objectives. Establishing collaborations witther from the early stages of the design. In the following subsec-
partner agents, they obtain the provision of other services tions, we are going to analyze some aspects, related to the
social ability). An obvious problem is how to conceptualizdevelopment of complex distributed systems [14], showing
systems that are capable of rational behavior. One of the mafat design-level tools the two compared paradigms provide
appreciated solutions to this problem involves viewingrage to the designer.
as intentional entities whose behavior can be predicted and .
explained in terms ofattitudes such as belief, desire, and” P&composing the Problem Space
intention (BDI) [20]. In AOP the idea is that, as in declavati ~ Experience in software engineering taught that complex
programming, we state our goals, and let the built-in cdntreystems are inherently decomposable and many details can
mechanisms figure out what to do in order to achieve thele ignored in the higher-level representations, thusilmithe
In BDI agents the computational model corresponds to tilseope of interest of the designer at a given time. Modeliestit
human intuitive understanding of beliefs and desires, and &an be grouped together and their relationships described
the designer needs no special training to use it. trying to always provide the highest degree of autonomy
Another optional, but equally powerful, feature of softearbetween the components.
agents ismobility [10]. Conventional distributed systems as- In the Service-Oriented ComputinSOC) paradigm, de-
sume that the various portions of the distributed applicati composition is based on the concept of services, which en-
run on their own network node and are bound to it fotapsulate units of logic that can be small or large. Service
their whole life. Mobile Agents (MA)reshape the logical logic can encompass the logic provided by other services,
structure of distributed systems, by providing a system imhen one or more services are composed into a collection.
which components can dynamically change their locatioA, typical automation solution is represented by a business
migrating with them a part or the entire agent’s state [4], [5Sprocess, whose logic is decomposed into a series of steps
]]] that execute in predefined sequences according to business
B. Service-Oriented Computing rules and runtime conditions. Services can be designed to
Service-Oriented Computin@OC) [23] proposes a logical encapsulate a task performed by an individual step or a sub-
view of a software system as a setsefrvicesprovided to end- process comprised of a set of steps.
users or other services. This recent paradigm proposdt itse Agent-Oriented Programmingroposes an approach in
as the next evolutionary step of the client-server architec which the problem space should be decomposed introducing
applied to the modern highly distributed and dynamic bussnemultiple, autonomous components (i.e. agents) that caanatt
scenario. interact in a flexible way to achieve their set of goals. Thig s
SOC has the purpose of unifying business processes modiigoal-driven decomposition has been even acknowledged by
larizing large applications into services. Any client, @pén- object-oriented community [16] as being more intuitive and
dently of its operating system, architecture or prograngmireasier than decomposition based on objects. It means that
language, can access the services in the Service-Orieritaetividual agents should localize and encapsulate thein ow
Architecture (SOA) and compose them in more sophisticatedntrol: in other words, they should keetive owning their
business processeReusabilityhas the benefit of lowering thread of control, andutonomoustaking exclusive control
development costs and speeding time to market, but aclgievover their own actions.
high reusability is a hard task. SOC emphasizes the reus@lthough distributing automation logic is nothing new, the
of services, which have to be creatagnosticto both the two approaches are both stressing the importanckoade-
business and the automation solutions that utilize them; déouplingwhen designing distributed components. The first in-
addition they need to preserve the maximum degregtate- adequacy of previous paradigms derives from allowing compo
lessnessowards their current requestor. Moreover, one of theents to form tight connections that result in constrictiver-
key concepts proposed by service-orientatidn@se-coupling dependencies. By decomposing businesses into self-cedtai
between the entities playing the role of client and serveand loosely-coupled services, SOC helps achieving the key

GIACOMO CABRI ET. AL: TACKLING COMPLEXITY OF DISTRIBUTED SYSTEMS 11

goal of being able to respond to unforeseen changes in emhanced reflection techniqgue becomes a fundamental asset
efficient manner: a service acquires knowledge of anothieom the standpoint of robustness and flexibility: it allows
one by means ofervice contractsinteractions take place components to dynamically select or reconfigure their bind-
only with predefined parameters, but the two services siiflgs, saving a proper amount of independence with respect to
remain independent of each other. In AOP, software ageats #re traditional static binding approach. Service discabdgity
likewise self-governing entities, with well-defined boani@s can be considered a promising semantic evolution of the OO
and interfaces, situated in an environment over which theplymorphism, since services are expected to match based
have partial control and observability; their encapsda@ate more on their semantics (e.g. service behaviour undericerta
is not accessible to other agents and mutual interactiotisrocconditions, delays, reliability, etc.) rather than on thsintax
by means of some kind of agent communication langua¢eg. operation prototypes, parameter types, etc.). Hewev
(ACL). although currently the publisher can define certain service
Nevertheless, the strategies adopted by the two approachelicies to express preferences and assertions aboutrthieese
make them inherently different. SOC keeps following thelwelbehaviour, research efforts are currently underway toigent
establishedunctionalphilosophy, while Multi-Agent Systems ually extend the semantic information provided by service
(MASs) can be classified ameactive software systems. A description documents.
service-oriented business process is started by the acfion The agent-oriented paradigm definitely chooses an in-
the end-user or by another client process; it performs imraction model based on semantics and human sociality.
computations following a predefined execution flow (possiblSoftware agents interactions occur at the knowledge level,
invoking other services inside or outside the enterprisende through a declarative communication language, inspired by
aries) and returns the results to the caller. In contrastSkIAthe speech act theory [8]. Interacting via this kind of agent
are reactive because their components (i.e. agents) afteantd communication language, an agent has the capability togenga
terminate, but rather maintain ongoing interactions withit in social activities, such as cooperative problem solving o
environment. Such interactions are also characterizegrtyy negotiation. The sequence of actions performed by an agent
activenesssince an agent tries different ways to achieve iis therefore not statically defined, but depends mainly en it
goals and is, consequently, able to influence its envirommegoals and on the environment where it lives. In AOP, the
It is commonly agreed that the natural way to modularizdea is that, as in declarative programming, the desigrgest
most complex systems is in terms of multiple autonomoier goals and lets the built-in control mechanism figure out
components, acting and interacting in flexible ways and ewhat to do, at what time and by whom, in order to achieve
hibiting a goal-directed behaviour. This makes perhaps tleem. Moreover, the resources available in the environcemt
agent-oriented approach the best fit to this ideal. Moreoverodify the kind of action performed. The control mechanism
although the intrinsic complexity of th&unctional mapping implements some computational model, like the BDI model,
may be great (e.g. in the case of very dynamic systems, suclwdmch is undoubtedly more intuitive to the designer than the
air traffic control systems), functional programs are, ingral, procedural model.
simpler to specify, design and implement than reactive ones It must be pointed out that, increasing the abstractionl leve
of interactions, as AOP does, introduces new challenging
issues. For agents to interact productively, they must have
It was argued that distributed applications are incredginga bit of knowledge about the expected behaviour of inter-
built out of highly decoupled components. Nevertheless)-co acting partners, as well as the passive components of their
ponents need to interact to achieve the required behavicemvironment. A consistent development effort must focus on
Interactions pose some demanding issues at design timmdelling the environment, the world in which agents operat
related mainly to thenature of interactionsthe degree of and of whom they have beliefs. Knowledge representation
flexibility to provide and théocationof the interacting entities, languages [17] are proving to be a promising way of desagibin
which we are going to detail in the following subsections. the environment model, so that social agents can act and
1) Nature of Interactions:With regard to thenature of interact starting from common views of the world.
interactions the service-oriented paradigm is still more bound Unfortunately, the agents’ models will be often mutually
to the past than the agent-oriented one. Services interactompatible in syntax and semantics, thus stressing the im
with each other almost barely at a “syntactic level”, witlportance for semantic reconciliation (e.g. by means of some
one service invoking an operation exposed by another okiad of ontology composition technique [26]).
and, after a given time, retrieving the produced result. We 2) Flexibility of Interactions: Although many complex
said “almost”, because, compared to the classical “methegstems are decomposable, complexity means also that it is
invocation” philosophy provided by OO systems, SOC givampossible to know a priori about all potential links betwee
increased importance to the dynamic selection and bindingthe distributed components: interactions often occur at un
operations. Using a special intelligent lookup servicg.(the predictable times and trying to consider all the possipbiit
UDDI registry), a component can search for another servidesign time is a futile effort.
that satisfies a set of key requirements, such as quality ofAOP provides a high degree difexibility as regards the
service, accuracy of results or response time. This kind efigineering of complex systems: it adopts the policy of

B. Modelling Interactions

12 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

deferring to runtime decisions about component interastio interface granularity is a key strategic decision pointt tha
endowing agents with the ability to initiate interactionsda deserves a good deal of attention during the design phase.
deal with unanticipated requests in a flexible manner. Mobile Agents (a special kind of software agents presented
Services, even if carefully designed, cannot provide suahSection 2.1) could help because they allow, by their reatur
level of dynamic interactions, because they are passive én-specify complex computations that can move across a
tities with respect to agents. In the SOA world, interactiometwork [10]. Hence, the services that have to be executed
have to be planned and coordinated using choreographybgra server that resides in a portion of the network, reaehabl
orchestration techniques, recently standardized as Welic8e only through an unreliable and slow link, could be described
extensions. The WS-BPEL (Web Services Business Procesing a mobile agent; this agent, thanks to its mobility,
Execution Language) is an example of how a business proceaa be injected into the destination network, thus passing
can be governed, specifying which services should be calleshce through this link. There, it could execute autonomgusl
in which sequence and at what conditions. needing no more connection with the node that sent it, except
3) Interactions and Component LocatioWhen thinking for the transmission of the final results of its computatioe. (
about the architecture of a distributed application, iter disconnected operatiohs
tions among the various components are usually considered o
independent of the components’ location. Location is sjmpfc- Component Reuse and Customization
regarded as an implementation detail. Many technologiety s Nowadays, business process automation is proving that the
as CORBA, intentionally hide the location of componentsentralization of control, persistency and authorizatooften
making no distinction between interactions of componenigefficient, impractical or simply inapplicable. The so ledl
residing on the same host and components scattered amtngy vs. build” or “incremental development” is becoming
distant network nodes. However, in many distributed ajpplicmore and more valid, albeit interpreted in the new scenarios
tions, location needs to be considered also during the desinly a part of the components involved in a distributed compu
stage, since interactions can be remarkably differentrimge tation are under the control of the designer, while the rest m
of latency, partial failure and concurrency. be pre-existing off-the-shelf components that is mangator
In the SOC model, services interact with each other, egonvenient to exploit. If the reuse of components is thus an
changing information through a communications framewoikiportant aspect, their customization is fundamental alk we
that is capable of preserving a loosely-coupled relatigmshan extensible service is likely to be reused more than a rigid
This framework is based omessagingMessages (e.g. ex-one, since it is expected to meet the requirements of much
pressed using SOAP protocol) are formatted following the senore users/clients. In the following we shall analyse these
vice contract specifications in order to be correctly uniberd two aspects.
and processed by the target service. The size and number df) Service ReusabilityOne of the great promises of SOC
the exchanged messages depend on the service contractisuidat service reuse will lower development costs and speed
can be significant when big pieces of information must bgp time to market. Service-orientation encourages reusd in
exchanged or complex interactions are carried out. Momgovservices, regardless whether immediate requirementgérser
the widespread use of wireless networks is making availal@gist. By applying design standards that make each service
communication channels with low bandwidth or reliabilitypotentially reusable, the chances of being able to accomateod
The design of distributed applications becomes therefamem future requirements with less development effort are insed.
complex, in that it must aim at avoiding as much as possihliethe service is designed following the SOC principles of au
the generation of traffic over the weaker links. tonomy and loose coupling, these weaker dependencies make
The SOC paradigm has only one way to achieve this go#iie applicability of its functionality broader. Furtherneo if
that is, to increase the granularity of the offered servites the service is designed to Imatelessthis helps promoting
this way, a single interaction between client and servertimeis reusability as well as great scalability: if a service ispas
sufficient to specify a large number of lower level operationsible for retaining activity state for long periods of tims
which are performed locally on the target service and do nability to remain available to other requestors will be iripé.
need to pass across the physical link. Coarse granularity Service statelessness supports reuse because it maxitnezed
duces dependencies between the interacting parts andgg®davailability of a service and typically promotes a generic
fewer messages of greater significance [12]. Furthermbee, service design that defers activity-specific processingide
trend to create interfaces for the services that are cotraar service logic boundaries. In turn, the reusability requieat
those traditionally designed for RPC-based components Hasilitates all forms of reuse, including inter-applicatiinter-
been encouraged by vendors as a means of overcoming saperability and composition (e.g. service orchestratiand
of the performance challenges associated with XML-basetoreographies).
processing (e.g., SOAP messages are XML-based documentsfhe AOP view promotes instead reusability in different
However, the coarser the granularity of an interface, tlss leways. Rather than stopping at reuse of subsystem components
reuse it may be able to offer. If multiple functions are bl and rigidly preordained interactions, agents enable whole
in a single operation, it may be undesirable for clients thatibsystems and flexible interactions to be reused within and
only require the use of one of those functions. Then, servibetween applications. Flexible interaction patterns,hsas

GIACOMO CABRI ET. AL: TACKLING COMPLEXITY OF DISTRIBUTED SYSTEMS 13

those enabled by the BDI model, and various forms efeaknesses of those platforms is the lack of true interdyilera
resource-allocation and auctions patterns have beendeéuseity, being the strength of Service-Oriented systems. Mahy o
a significant number of applications. the proposed agents platforms provide support for mignatio
2) Service CustomizationAs already said, any servicenaming, location and communication services, but theyediff
operation in a SOA can be invoked and returns results usingidely in architecture and implementation, thereby impedi
for example, SOAP messaging. Message structure has beeeroperability and rapid deployment of mobile agent tech
carefully thought to enable service reusability and cusem nology in the marketplace. To promote interoperabilitynso
ability: the idea is to equip the message with embeddedpects of mobile agent technology have been standardized.
processing instructions and business rules, which all@mth Currently there are two standards for mobile agent teclgyolo
to dictate to recipient services how they should be processthe OMG’s Mobile Agent System Interoperability Facility
These allow messages to become increasingly self-reliant MASIF) and the specifications promulgated by the Founda-
grouping metadata details (in the SOAP header) with messdigm for Intelligent Physical Agents (FIPA). MASIF [15] is
content into a single package (the SOAP envelope). Thased on agent platforms and it enables agents to migrate
processing-specific logic embedded in a message allevidt@sn one platform to another, while FIPA [9] is based on
the need for a service to contain this logic. In other wordsgmote communication services. The former is primarilyeloas
services in the SOC view should adapt their behavior to tlo@ mobile agents travelling among agent systems via CORBA
requirements of their current clients, in order to provitle t interfaces and does not address inter-agent communisation
greatest chances of reuse. As a consequence, SOC impddes latter focuses on intelligent agent communications via
that service operations become more generic and lesstgctivcontent languages and deals with the mobility aspect oftagen
specific. The more generic a service’s operations are, thre monly since the FIPA 2000 release. In order to achieve the de-
reusable the service. gree of outstanding platform neutrality and interopeighbdf
Likewise, agent mobility encourages the implementation &OC, some research programs are studying the possibility of
more generic, and thus highly reusable, service providdrs [an integration of MASIF/FIPA specifications into a commonly
Servers providing an a priori fixed set of services accessitdgreed standard for MAPs [1].
through a statically defined interface are inadequate iseho ,
distributed scenarios where new clients can request usdere £+ Security
operations at any time. Upgrading the server with new func- When application logic is spread across multiple physical
tionalities is only a temporary and inefficient solutioma@ boundaries, implementing fundamental security measues s
it increases complexity and reduces flexibility. Mobile eodas authentication and authorization becomes more diffibult
technologies enable a scenario in which the server actudife traditional client-server model, the server is the awne
provides a unique service: the execution of mobile codes Thif any security information, needed to recognize user's cre
feature allows the user to customize and extend the servickesitials and to assign privileges for the use of any protecte
according to its current needs, bringing the know-how (i.eesources. Well-established techniques, such as SSL rsecu
the method code) along its way roaming the network. Socket Layer), granted a so-calledhnsport-level security,
The possibility of customization granted by mobile codehere the whole channel, by which requests and responses
paradigms is therefore more powerful and expressive coare transmitted, is protected.
pared to embedding processing logic in SOAP messages; thisSOC departs from this model by introducing substantial
however, comes at the cost of an intrinsic fragility of thehanges to how security is incorporated and applied. Rglyin
execution environment hosting external mobile agents (nmavily on the extensions and concepts established by the WS
only in the case of intentionally malicious agents, but alssecurity framework, the security models used within SOC
in the case of bad-designed or misbehaving code [25]). emphasize the placement of security logic ontortiessaging
level SOAP messages provide header blocks in which security
logic can be stored (e.g. by means of X509 certificates). So,
The problem of interoperability between heterogeneouserever the message goes, so its security information. does
technologies is gaining great interest in the academiafiostt, This approach is required to preserve individual autononty a
and foremost, among the major software vendors. loose coupling between services, as well as the extent tohwhi
Web services standards have demonstrated the poweradfervice can remain fully stateless.
standardization and platform-vendor neutrality. The eggimer The “mobility” concept in the agent-oriented paradigm
SOC paradigm took the principle of openness of standangsses new and more challenging security issues. Moving,code
as one of its foundation stones: the cost and effort of crose-addition to data, brings security problems that fit intatw
application integration are significantly lowered when lapp main categories: protecting host systems and networks from
cations being integrated are SOC-compliant. malicious agents and protecting agents form maliciousshost
The landscape of agent-oriented software seems to be mDigital signatures and trust-management approaches nipy he
fragmented, although many efforts towards the definition ¢ identify the agents and how much they should be trusted.
standards are growing in the research community. Sevefdle malicious host that attacks a visiting mobile agent is
(Mobile) agent platforms have been developed, but one of ttiee most difficult and largely unsolved: such a host can steal

D. Coping with Interoperability and Heterogeneity

14 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

private information from the agent or modify it to misbehavéhey are implicitly treated as services, and as a consequenc
when it jumps to other sites. they loose the autonomy and intelligence belonging to agent
Security is perhaps the most critical factor that has lichitéVice versa, if a service behaves in a non-deterministic way
a widespread acceptance of the mobile agent paradigm &md other services must interact with it using some higkilev
strategic applications, such as e-commerce, where sensif\CL, this service should be regarded conceptually as antagen
transactions have to be performed with the highest level ioistead. A more clear integration approach [7], [19] recog-
security. Services interact with each other without mowang nizes the conceptual difference between agents and sgrvice
piece of application logic (e.g. a thread), but simply mgvinand proposes a functional layered view of their interagtion
inert parameters data to invoke exposed service operatioBsrvices are the functional building blocks, which can be
Protecting passive data is usually more straightforwagesh thcomposed to form more complex services, but they remain
protecting mobile code, albeit several research effod$ §fe passive entities used by agents in distributed application
being made to reduce the gap between the two approachethe agent are given some high-level goals; they are priynaril
responsible for adopting strategies or plans and transiata
into concrete actions, such as invoking an atomic service or
We have analyzed, throughout this paper, some of tkemposing other services into new functional aggregatea. |
similarities and differences, strengths and weaknesses f@f words, many researchers are expressing the relatpnshi
two emerging paradigms in distributed software enginggerinbetween services and agents, saying that services prdwde t
Service-Oriented Computing and Agent-Oriented Programemputational resources, while agents provide the coardin
ming. It has been observed that they tackle complexity tion framework [3].
software, often from very distant points of view, promising A new research roadmap [13] is proposing a radical evolu-
advantages to designers but also introducing architdctuian of the concept of service, rather than an integratibe: t
headaches. We are convinced that the silver bullet of disrain idea is to give more “life” to services so that, instead
tributed software paradigms cannot be identified in any ef passively waiting for discovery, they could proactively
these individual paradigms: distributed systems in ther&ut participate in the distributed application, just like atem
will likely benefit of ideas drawn from both of them, but thismulti-agent systems. Making services increasingly alind a
demands for some intelligent form of integration of the twenabling more dynamical interactions, services are erpeot
approaches. function as computational mechanism, enhancing our wbilit
In the recent years, the emphasis of service-oriented-ardio model and manage complex software systems. As already
tectures has been on the execution of services, as buildg¥d, a service knows only about itself, but not about itsnts;
blocks to decompose and automate complex and distributggents are self-aware, but gain awareness of the capesbiliti
business problems. The Web Service infrastructure is widelf other agents as interactions among agents occur. Eqliippe
accepted, standardized, and is likely to be the dominaht tequith such an awareness, it has been advised that a service
nology over the coming years. However, the next evolutignawould be able to take advantage of new capabilities in its
step for services will be driven by the need to deal with targenvironment and could customize its service to a client, for
environments that become even more populous, distributedample, improving itself accordingly.
and dynamic. Therefore, many approaches are emerging for
the future of these models and they all agree on one point: V. CONCLUSIONS
the integration between services and agents is more than
feasible. For example, in the last issue of the AgentLink Il This paper presented a comparison between the Services-
Agent Technology Roadmap, Web Services are presented @isented vision and the (Mobile) Agents one, as concerns
“a ready-made infrastructure that is almost ideal for use the several issues in the development of complex distribute
supporting agent interactions in a multi-agent system? [2] systems. We pointed out that each approach offers its own
this direction, different approaches to integration haeerb advantages, but some rules of thumbs emerge from the com-
proposed and, in many cases, tested with some prototypatison: model entities of SOC are better fitting “closed”
applications. distributed systems, where the components are explicédly d
A first idea of integration consists in the mere enablingigned to organize themselves in a predefined (i.e. chore-
of interactions between the two worlds. In other words, sonographic or orchestrated) fashion to achieve the fulfillmen
researchers [11] have experimented techniques to makésageh a certain business process or workflow. “Open” systems
and web services interoperate. In order to make web serviegs instead better manageable if a mobile agent approach
invoke agent capability and vice versa, these systems tsytaken: in application scenarios, like pervasive conupti
to formalize a proper mapping between the WSDL serviagg online auctions, it can be impossible to know a priori
contract and the Agent Communication Language (ACL3ll potential interdependencies between components (what
These approaches, however, have been criticized, singe thervices are required at a given point of the execution and
try to blur the distinction between agency and servicertee with what other components to interact), as a functional-
concepts: if agents are accessed through pre-defined, fixedariented behavior perspective typically requires. In thter
terface operations (accepting parameters and returnéodfsg case, agents can consider also the possibility of comyetiti

IV. INTEGRATING SERVICES ANDAGENTS

GIACOMO CABRI ET. AL: TACKLING COMPLEXITY OF DISTRIBUTED SYSTEMS 15

behavior in the course of the interactions and the dynamég http:/mvww.fipa.org/
arrival of unknown agents. [10] A. Fuggetta, G. P. Picco, G. Vigniinderstanding Code MobilityEEE

. . . Transactions on Software Engineering, Vol. 24, 1998.
Nevertheless, we think that an integration of the tWB.l] D. Greenwood, M. CalistiAn Automatic, Bi-Directional Service Inte-

paradigms is more than desirable. In our vision, services gration GatewayIn Proc. of the Workshop on Web Services and Agent-
constitute an established, platform-neutral and robustpeo Based Engineering (WSABE 2004), 2004.

. [12] M. Huhns, M. P. SinghService-Oriented Computing: Key Concepts
tational infrastructure, made up of highly reusable buitdi and Principlesin IEEE Internet Computing, Service-Oriented Computing

blocks, from which a new breed of distributed software Track, January-February 2005.

parading, derived from the agent-oriented world, can gmer[13] M. _Huhns, M. P. S_lngh et alResearch Dlrec_tlons for Service-Oriented
. . Multiagent Systemsn IEEE Internet Computing, November—December

This new phase seems to be already started, for example if we,qgs5.

look at the research in the field of autonomic services [18}4] J. Kramer, Distributed Software Engineeringln Proc. of the 16th

where researchers are exploring the possibility of emegdi International Conference on Software Engineering, Storéitaly), May
1994.

some form of seIf-management in the components that W[Hls] Mobile Agent System Interoperability Facility specdtions (MASIF),
provide the services of the future. http://www.omg.org/docs/orbos/97-10-05.pdf
[16] B. Meyer, Object-Oriented Software ConstructioRrentice Hall, 1988.
ACKNOWLEDGMENT [17] A. Newell, The knowledge levein Artificial Intelligence 18, 1982.

. . . 18] H. Liu, V. Bhat, M. Parashar and S. Klask#§n Autonomic Service
Work supported by the lItalian MiUR in the frame Of[Architecture for Self-Managing Grid Applicationsn the Proc. of the

the PRIN project “MEnSA—Agent oriented methodologies: 6th IFTEE/ACM Internagional Workshop on Grid Computing (62005),
i ; i ; ; ; ; ; Seattle, USA, November 2005.

englneer'lyng of interactions and relatlonshlp with the asfr [19] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau and Pv@nso,Planning

tructures”. and Monitoring Web Service Compositjdn Workshop on Planning and

Scheduling for Web and Grid Services, 2004.

REFERENCES [20] A. Rao and M. GeorgeffBDI Agents: From Theory to Practisdn
the Proc. of the 1st International Conference on Multi-Ag&ystems
(ICMAS-95), 1995,

[21] L. Ruimin, F. Chen and H. Yangigent-based Web Services Evolution
for Pervasive Computingn the Proc. of the 11th Asia-Pacific Software
Engineering Conference (APSEC’04), 2004.

[22] M. Shaw and D. GarlanSoftware Architecture: Perspective on an
Emerging Discipline Prentice Hall, 1996.

ct23] M. P. Singh and M.N. HuhnsService-Oriented Computing: Semantics,
Processes, Agentdohn Wiley and Sons, 2005.

[24] C. F. TschudinMobile agent securityln Intelligent Information Agents,
Springer-Verlag, 1999.

[25] G. Vigna, Mobile Agents: Ten Reasons For Failur the Proc. of
the 2004 IEEE International Conference on Mobile Data Manaent
(MDM’'04), Berkeley, California, USA, January 2004

[1] http://olympus.algo.com.gr/acts/dolphin/AC-baselhtml

[2] http://lwww.agentlink.org/roadmap/index.html

[3] P. A. Buhler and J. M. Vidal,Towards adaptive workflow enactment
using multi-agent systemm Information Technology and Management,
6:6187, 2005.

[4] G. Cabri, L. Leonardi, M. Mamei, F. Zambonelli,ocation-dependent
Services for Mobile UserslEEE Transactions on Systems, Man, an
Cybernetics-Part A: Systems And Humans, Vol. 33, No. 6, 67—681,
November 2003.

[5] G. Cabri, L. Ferrari, L. Leonardi, R. Quitadam8trong Agent Mobility
for Aglets based on the IBM JikesRYM the Proc. of the 21st Annual
ACM Symposium on Applied Computing (SAC), Dijon, France, rihp
23-27, 2006.

(6] (L;én(;ﬂ%g:éﬁbﬁf%&;iggg&: rr:d :gz\zﬁgggz.ﬁ%zelr gl%%l?"e Code [26] G. Wiederhold, An Algebra for Ontology Compositiorin Proc. of

= : . S . Monterey Workshop on Formal Methods, pp. 56-61, 1994.
[7] I. Dickinson, M. Wooldridge Agents are not (just) web services: consid- : : o
ering BDI agents and web servicaa Service-Oriented Computing And 27] Sl\c/)lﬁwvz?é)lcérr:d?ﬁég?nent-baszeg;;)ft\ivgagrt; engineering IEEE Proc. of
Agent-Based Engineering (SOCABE '05), 2005. 9 9 pp- ' '
[8] T. Finin, Y. Labrou, J. Mayfield, KQML as an agent communication
language in J. Bradshaw, ed., Sofware agents, MIT Press, Cambridge,
MA, 1995.

