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Abstract—In this paper, a novel radial basis function (RBF) 
neural network is proposed and applied successively for online 
stable  identification  and  control  of  nonlinear  discrete-time 
systems.  The  proposed  RBF network is  a  one  hidden  layer 
neural network (NN) with its all parameters being adaptable. 
The  RBF  network  parameters  are  optimized  by  gradient 
descent  method  with  stable  learning  rate  whose  stable 
convergence  behavior  is  proved  by  Lyapunov  stability 
approach.  The  parameter  update  is  succeeded  by  a  new 
strategy adapted from Levenberg-Marquardth (LM) method. 
The aim of construction of the proposed RBF network is to 
combine power of the networks which have different mapping 
abilities. These networks are auto-regressive exogenous input 
model, nonlinear static NN model and nonlinear dynamic NN 
model. To apply the model to control of the nonlinear systems, 
a known sliding mode control is applied to generate input of 
the  system.  From simulations;  it  is  sown that  the  proposed 
network is an alternative model for identification and control 
of nonlinear systems with accurate results.

Keywords—RBF network, stable learning rate, sliding mode 
control, online system identification and control. 

I.  INTRODUCTION

YSTEM identification is an important associative field for 
the control theory. A mathematical model of the system 

or artificial intelligent model which has same input-output 
characteristic with model is necessary to analyze and control 
the system. Modeling which is based on physical laws forms 
a mathematical model for the system. But for the identifica-
tion, there is no need to use previous knowledge and physi-
cal structure of the system, so they are known as the black-
box identification process [1]. The input-output characteris-
tic of the nonlinear systems is changing naturally with high 
noise disturbance and its time varying behavior. So there is 
need  to  employ fine  identifier  models.  The  most  applied 
methods in identification and control of the nonlinear sys-
tems are  neural  networks  (NNs)  and  fuzzy logic  systems 
(FLSs). The known supports of these methods are their abil-
ity to learn and good performance for the approximation of 
the nonlinear functions. These methods does perform highly 
nonlinear static mapping. However, for linear or less nonlin-
ear systems, these nonlinear models are not well suited and 
so there is resulted less accurate of identification. To extract 
dynamics we need to use combinatorial models of linear and 
nonlinear  models.  In  the  development  of  the  neural  net-
works, new structures are introduced in everyday. New stat-
ic and dynamic types  of NNs and local and global recur-
rences and other mixed structures are developed numerously 
to  get  better  identification  [2].  The  available  information 

S

about the system is used in two ways for the identification. 
One way is the off-line procedure and the other way is on-
line procedure. Off-line working is performed by collecting 
a batch of data to train the network and then this trained net-
work is used for new data to obtain new responses. Howev-
er, in online procedure,  data is simultaneously used to get 
current output and to optimize the model parameters at the 
same time. To work online is actually a challenging task for 
strongly  nonlinear  systems  and  frequently  considered  im-
portant than off-line work. To capture the change in operat-
ing conditions and noise disturbances is also important task 
of  the identification.  In  this work,  online identification is 
aimed that so there is no explicit learning phase needed. In 
other words, the network is utilized for learning-while-func-
tioning task, instead of learning then functioning.

II. RADIAL BASIS FUNCTION NEURAL NETWORKS

Radial basis function neural networks (RBFNNs) are the 
one of the different  functionalized type of NNs with high 
approximation and regularization capability [3]. The RBFs 
are preferred as the basic structure of neural networks be-
cause of their good local specialization and global general-
ization ability [4]. The design of a RBFN in its most basic 
form consists of three separate layers. The first layer is the 
input layer.  The second layer is the hidden layer and it is 
structured with high dimension to provide better approxima-
tion. The last layer gives the output of the network. There 
exists nonlinear transformation between the input layer and 
hidden layer. However, from hidden layer to the output lay-
er it is linear transformation [2]. There are used some radial 
basis functions as functions of RBFNNs such that Gaussian 
RBFs,  multiquadratic  RBFs,  inverse multiquadratic  RBFs, 
thin plate splines RBFs, cubic splines RBFs, linear splines 
RBFs. However, Gaussian RBFs are employed frequently, 
since  it  is  bounded,  strictly  positive  and  continuous  on 
ℜn [2].  Moreover,  they are known with noise suppression 
properties [5]. So in this study, Gaussian RBFs are utilized 
in the network. 
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x is the input vector,  iu is the center and iσ is the standard 

deviation of the Gaussian function, respectively.  The opti-
mization of the network for  the adaptation of centers  and 
standard deviation provides better approximation and inter-
polation  capability  as  compared  to  the  sigmoid  func-
tions [3]. To optimize the RBFNN parameters,  there were 
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used some different  methods such that online gradient de-
scent in [6], fast orthogonal search in [7], recursive orthogo-
nal least squares in [8], Extended Kalman filter in [9], ant 
colony optimization in [10], respectively. In this study, the 
proposed network is optimized by gradient descent method 
with a new stable learning rate.

III.  PROPOSED RBF NETWORK

The  modeling  scheme  with  two  inputs  and  one  output 
model is  represented in Fig.1.  After  the realization of the 
construction,  the  network  can  be  designed  with  different 
number of inputs and outputs. The proposed RBF network is 
constructed by two parts. First part is auto-regressive exoge-
nous inputs (ARX) part.  There exist past values of input-
output terms. The second part is the static NN part and then 
dynamic  recurrent  NN part  which  are  excited  with  same 

ARX terms.  In  the Fig.1,  the ARX inputs  are  1 1,k ku y− −  

and 2ky − . However, 1ku − and 1ky − inputs are used to excite 

the static and dynamic parts of the RBF network. These are 
known NN models; however they are not introduced togeth-
er previously. Using the suitable optimization, the network 
is seen as a well alternative model for modeling. The dy-
namic NN part is called “Block-Diagonal Neural Network” 
in [11]. Because of the construction we also called the pro-
posed network as “Mixed Structured RBF Network”.  The 
network has general properties as followings.

A. The Utilities of the Network

One Hidden Layer: The network is constructed especially, 
one hidden layer to reduce the complexity. So it is more ap-
plicable for the online identification for linear and nonlinear 
estimation models. 

ARX part: To extract  the linear dynamics of the system 
and to capture  the change in  system by past  input-output 
terms, this part important for the approximation.

Static Part: The general  neural  network construction by 
two inputs is exemplified by this part. It  is important and 
necessary for nonlinear static mapping. 

Dynamic Part: The local recurrence of this block-diagonal 
part brings to the network a dynamic mapping. To extract 
internal dynamics of the nonlinear system, there are used lo-
cal recurrences. So there exists good approximation. 

RBF Functions: It  is stated above that the importance of 
the RBF functions  for  approximation and  interpolation  is 
known superior properties of RBFs. Also it  is empirically 
seen here that  this  same network is  constructed with sig-
moid functions and it has resulted poor approximation when 
compared to the RBFs. The general  output formula of the 
network is given by,

(2)

where the  nd and  np are selected delays  of the inputs and 
outputs. Also nk and nr are the number of the RBFs used for 
static and dynamic parts of the network, respectively.  

,  ,   and i j k lα β γ ξ  are  the  output  layer  weights.  In  the 

network, they are seen as 1w  to 7w .
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Figure 1. The proposed RBF network

The RBF function inputs are as follows;

for the static part which is indexed as 1,

1 1 1
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1 1 1
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for dynamic part which is indexed as 2,
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where superscript 2 represents block 2, i.e.  
2
1,1w  is weight 

from input 1 to the first RBF of block 2.

IV. STABLE LEARNING METHODS

The stability of the identification is as much important as 
the controller stability. To extract the dynamics of the sys-
tem with well optimized parameters  in stable sense is the 
basic necessity for identification.  Identification stability is 
first related to the optimization method convergence to a lo-
cal or global minimum. The convergence does not consider 
about  the  parameters  magnitude  or  other  characteristics. 
Therefore,  when training  the  NNs and  FLSs,  the  conver-
gence of the error to the minimum does not show the stabili-
ty  of  the  system  except  some  other  stability  conditions. 
Therefore, there has to be a law for stability in optimizing 
the parameters. This law is derived by the Lyapunov stabili-
ty,  Input-to-state stability,  Bounded-Input Bounded-Output 
stability,  passivity  approach  and  etc.  The  other  important 
thing is the time-variance of the learning rate. Before, some 
previously determined, constant stability guaranteed learn-
ing  rates  are  used  in  algorithms.  But  the  rate  is  chosen 
heuristically, so it does not provide the good convergence in 
the algorithm. However, if it is determined by online current 
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knowledge of the inputs, the change in the parameters de-
pends on the current change in the dynamics of the network. 
The convergence of the gradient descent with descent lem-
ma [12] and the constraint in the learning rate with Lipschitz 
constant [13] and also Widrow-Hoff Learning [13] are the 
first important works about the learning rate selection. Some 
of  the  recent  works  about  stable  learning  rate  have  been 
used for fuzzy neural network [14-16] such that,

 (5)

where J(.) is the jacobian of the inputs. The author is in his 
another work [17] enhanced this learning rate as 

 
k
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c
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k
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where 0 1 and  c>0µ<� . The new term in denominator is 
used to regulate convergence speed. The other work [18] de-
termines the learning rate by Lyapunov Stability approach 
as 

  (7)

where the e is error, pJ  (.) is jacobian and ε  is convergence 

speed regulator term, respectively.  In that work, it  is also 
proved that the local minimum is avoided in optimization. 
It  is noticed that stability condition could also be satisfied 
without learning rate adaptation. Some of the other methods 
are about using structurally stable models [11,19] and dif-
ferent optimization algorithms combinations [20,21]. 

A. Learning Algorithm 

The  network  is  optimized  by  gradient  descent  algo-
rithm [5] with stable learning rate. 

(8)

where Ŵ(t)  is current parameter vector, E(t) is the quadrat-

ic cost function, i.e. 2E(t)=0.5e (t)  . The employed learning 

rate tη  is selected as 

k 2

k

1

|| J(x(k)) ||
 η

ε
=

+ (9)

and  µ is a constant as 1 in (5). However, kε  parameter is 

adapted in the modeling of the system as LM method. So 
that the identification takes part a few iterations before con-
trol  input  is  generated.  The  LM optimization  [22]  of  the 
weights is 

1
1 ( )T T

n n n n n nw w I J J J eµ −
+ = − + (10)

where nJ is the jacobian of cost function w.r.t. the parame-

ters, I(nxn) identity matrix,  and  µ is adaptation parameter 

for the  convergence. The  kε parameter is updated as fol-

lows.
If ( 1) ( ) E k E k+ >=  

Set : k kε ε δ=  

Else if  ( 1)  ( ) E k E k+ <  

Set: /k k δε ε=  

End

Where  E(k)  is  the cost  value and  δ is  the user  defined 
small constant as 0<δ <1.  This parameter is updated up to 
the cost decrease is succeeded. Here, it is limited with 5 in-
ner  iterations  and  then  control  input  is  generated.  After 
some iteration, because of correct parameters are obtained, 
there needs only one inner iteration. Its change does affect 

k
η  and it has time-varying behavior for a certain decrease in 

cost. It is plotted in the simulations. 

B. Control Problem

One of the models of nonlinear systems representations is,

( 1) [ ( ),..., ( )] ( ( ),..., ( )). ( )
p p p p p

y k f y k y k np g y k y k np u k+ = − + −  
                      (11)

where  np and  nd delays of the inputs, and f(.) and g(.) are 
nonlinear functions of inputs. The modeling is applied to ap-
proximate the nonlinear parts f(.) and of the system. For the 
sake of simplicity, the model is used here to have direct in-
put force as 

( ), ..., ( )( 1) ( ) ( ) ( )
p p

y k y k npy k f u k d kp −+ = + + (12)

where f(k) is the nonlinear part of the system, u(k) is the 
control input and d(k) is the unknown but bounded distur-

bance such that ( )d k dm< . The sum of the f(k) and d(k), 

( ) ( ) ( )fd k f k d k= + gives  the  unknown nonlinear  part  of 
the system to be identified.  Using the proposed RBF net-

work to identify the (k)
d

f , the control effort u(k) is gener-

ated by a controller. 

IV. SLIDING MODE CONTROL

Sliding mode control is frequently used for nonlinear sys-
tems  control.  Stability,  reaching  condition  and  chattering 
phenomena are known important difficulties [23]. For math-
ematically known models it is used directly to track the ref-
erence  signals.  However,  for  unknown  models  or  much 
noised systems there is need to use an identifier to modeling 
the system and then sliding mode control is used to generate 
control input. Before stated above that the sliding mode is 
used with fuzzy systems [5] and neural networks [24, 25]. 
The introduction of sliding mode control with neural  net-
works is taken from these works.  
The state space representation of the n-th order discrete-time 
plant is given by,
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(13)

and

( 1) ( ( )) ( ) ( )x k f x k u k d kn + = + + (14)

where 
1 2( ) [ ( ) x (k) ....x (k)]n

Tx k x k= is the state vector and 

is  the  unknown nonlinear  function.  Bar  shows 

the vector parameter. Let us define the sliding surface s(k) 
as

( ) [ ( ) ( )]  ( )ds k c x k x k c e k= − =  (15)

where  ( )
d

x k  desired  value  of  the  ( )x k at  time  k  and 

1[ ... ]nc c c=  is a constant vector and all roots must keep in 

the unit disk. Then s(k+1) is

1 1 2 2

1 1

( 1) ( 1) ( 1) ...

               ... ( 1) ( 1)n n n n

s k c e k c e k

c e k c e k− −

+ = + + + +

+ + + + (16)

Substitute the (13), (14) and (15) into (16) and sliding sur-
face will become,

1 2 1
( 1) ( ) ............ ( )

              [ ( ) ( ) ( 1)]

n n

n d nd

s k c e k c e k

c f k u k x k

−+ = + + +

+ + − +   (17)

For sliding surface, the reaching condition is defined as 

( 1) ( )s k s kν+ = − (18)

where the  ν parameter is defined in  0 1ν< < .  From (18) 
and (17) it is derived that,

1 2 1
( ) ( ) ............ ( )

              [ ( ) ( ) ( 1)]

n n

n d nd

s k c e k c e k

c f k u k x k

ν −− = + + +

+ + − + (19)

the control input can be found as follows.

1 2 1

1

( ) ( 1) ( )

        - [ ( ) ... ( ) ( )]

nd d

n ncn

u k x k f k

c e k c e k s kν−

= + −

+ + +
(20)

In (20) the unknown part is the ( )df k  and it is approxi-

mated  as  ˆ ( )df k with  an  identifier.  Here,  its  approximate 

value is found by the proposed RBF network at each time 
index k. The control input is produced online and used to 

track the ( )ndx k .  It  is seen that from (20), to produce the 

fine control input for the control system, the approximated 

value ˆ ( )df k  has crucial importance. 

V. SIMULATION STUDY

In simulations, first a nonlinear system is identified by the 
proposed network and compared with previous works. Sec-
ond, a  nonlinear  functioned system is  identified and con-

trolled by proposed methods and results are shown by fig-
ures. 

A) Identification Simulation 

In this part, Box-Jenkins gas furnace system identification 
is used to compare model capability before to employ for 
control. 
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Figure 2. Figure 2. Box-Jenkins Data Identification

Here, because of online identification all data comes sam-
ple by sample and all  of 290 samples of data is  used for 
identification. The identification of Box-Jenkins system is 
shown in Fig.2. The resulting MSE is 7.9e-3 and that is a 
good result for online identification for this system.

B) Identification and Control Simulation 

In this part of the simulation, identification and control is 
succeeded in the same time. The selected a two dimensional 
system [26] is;

1 2( 1) ( )x k x k+ =  

2 ( 1)  ( ( )) ( ) ( )x k f x k u k d k+ = + + (21)

where

2 1

1
2

2
2

( )( ( ) 1)

1 ( ) ( )
( ( ))

x k x k

x
f x

k
k

k x

+

+ +
= (22)

The unknown disturbance is defined as a shot noise and con-
tinuous disturbance such that,

(23)

where N is the number of total samples.

The controller is produced to force the state 2 ( )x k  to the 

reference signal is,

(24)
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The  parameters  of  the  controller  are  selected  as 

1 20.1,  c = 0.2c = and  0.2ν = .The  identifier  model  is  se-

lected as in Fig.1 and its inputs are ( 1)df k − and 1( 1)x k − . 

In Fig.3 the tracking result of the simulation is represented 
and it is seen that the even the disturbances occur in the sys-
tem, it  is  controlled well  to track the reference signal.  In 
Fig.4  the  network  identification  and  modeling  errors  are 
plotted.  From this  figure,  it  is  resulted  that  the  proposed 
RBF model is modeling accurately and robust to the distur-
bances.
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Figure 3. Figure 3. Tracking by the proposed model
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Figure 4. RBF Network Identification 

In the simulation, identification and control mean square 
errors are 4.96e-4 and 17.9e-3 respectively. In Fig.5 the re-
sulting sliding function and controlling errors are shown and 
the resulted sliding function is always close to the zero. Be-
cause of sharp transitions in square wave and disturbances, 
there exist large errors and sliding function values. Howev-
er,  the system quickly adapts  itself  to track the reference 
signal closely.  In Fig.6 the resulting learning rates are rep-
resented. There is seen that the new strategy changes its val-

ue  when abrupt  changes  occur.  In  the  algorithm, there  is 
used a limit as one for the value of the learning rate. How-
ever, from the Fig.6, it is seen that the values never exceeds 
the one. 
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Figure 5. Figure 6. Learning Rate Change 

There is a drawback which is the initialization of network 
parameters in modeling. To avoid unstable values, weight 
parameters are selected as 0.5, centers are selected as 2, and 
standard values are selected as 1. 

VI. CONCLUSION 

A new RBF network model is introduced for online sys-
tem identification and control successively. By trial-and-er-
ror approach, to determine the constant learning rate for the 
networks is time consuming, difficult, and it does not guar-
antee stable on-line learning.  Because,  small  learning rate 
causes smooth but slow convergences and it results large er-
rors in the beginning. However, the large learning rate leads 
faster  convergence  and  but  large  oscillating  behavior,  as 
well instability,  so it  results large errors in adaptation. So 
the learning rate must be chosen by current system informa-
tion and satisfy the stability. In the study, a stable learning 
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Figure 1. Sliding Function and Control Errors 
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rate is utilized and it is convergence behave is also increased 
by Levenberg-Marquardth strategy. The parameter ε can be 
selected  constant,  but  it  is  not  well  suited  for  the  instant 
noises or continuous noises. As a result of this approach and 
the new RBF network the identification is performed well. It 
is first proved by Box-Jenkins gas furnace system and sec-
ond,  to  approximate  a  nonlinear  functioned  model.  Also 
sliding mode control is defined with its parameters  which 
are selected to satisfy the stability condition. Even the shot 
noise and continuous noises are disturbed the nonlinear sys-
tem, the proposed model forces to model to track reference 
signal correctly.
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