
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 771–777

ISBN 978-83-60810-22-4
ISSN 1896-7094

New Conception and Algorithm of Allocation
Mapping for Processor Arrays Implemented into

Multi–Context FPGA Devices
Piotr Ratuszniak, Oleg Maslennikow

Technical University of Koszalin
Department of Electronics and Informatics
ul.Śniadeckich 2, 75-543 Koszalin, Poland

Email: {ratusz, oleg}@ie.tu.koszalin.pl

Abstract—In the paper authors present new concept of re-
alization of algorithms with regular graphs of information
dependencies, in form of systolic arrays realized in multi-context
programmable devices. Processor matrix efficiency dependson
both allocation and schedule mapping. Authors use evolution
algorithms and constraint programming to determine allocation
mapping and optimize runtime of set algorithm. Authors com-
pared the runtime of Cholesky’s algorithm for banded matrices
in which the new concept has been used with ones obtained by
use of linear and non-linear allocation mapping for processor
matrix.

I. I NTRODUCTION

M ODERN VLSI technology allows placing a whole SoC
(System-on-Chip) in one programmable unit. Some of

the SoC system modules (especially modules containing spe-
cialized processing units) should be created as programmable
FPGA units, which the main advantage is the possibility of
fast and multiple changes in its internal structure in orderto
make the processing most efficient. Additionaly realization of
SoC systems (or its fragments) in form of FPGA units allows
to lower power drain, because highly efficient calculations
can be realized through parallel hardware processing, and
appropriate reconfiguration can be used dynamically in the
background during calculations [1]. One of the models of
parallel architectures created for linear algebra algorithms, is
a parallel architecture model with a virtual topology. FPGA
systems are effective hardware platforms for realization of
such architectures also under efficiency and price criteria.
However to achieve high efficiency, including high operating
frequency a rule of locality of connections must be fulfilled.
Examples of parallel architectures with regular network of
local connections are processor matrix architectures [2],in
which a calculations are realized in systolic path [3,4,5].

In this paper we propose a new concept of parallel processor
architecture, similar to the systolic processor array, in which
every processing element realizes the amount of operations
corresponding to only one vertex of algorithm dependence
graph realized by the unit. Realization of this concept allows
total elimination of the control unit in a parallel processor

This work was not supported by any organization

and limiting the runtime of the algorithm to the value com-
pared with the value computed through critical path of its
information dependency graph. In order to optimize runtime
and to automate the design process of new architectures a
constraint programming was used, and also an evolutionary
program was written in which designs appropriate allocation
mapping of input algorithm graph into parallel processor
architecture (through decomposition of the graph mentioned
above into subgraphs). Evolutionary algorithm operate based
on given volume of the target FPGA unit and hardware
complexity of each graphs vertex (expressed by amount of
CLB blocks of FPGA unit), the main criteria of optimization
is the minimal runtime of the given algorithm correspondingto
the shortest (critical) path in all graph. Designed architecture
is meant for realization in a multi-context programmable unit,
which concept was used by different research teams, including
polish ones [6-8]. Advantages of the designed concept and
the mapping algorithm are shown for the parallel processor
project which decomposes LLT symmetrical matrices based
on Cholesky’s algorithm.

An important issue in the process of designing SoC systems
is efficiency and quality of this process, because of this the
use of standard IP–Core [9] components is advised. Because
of that, during designing of the said algorithm we put special
attention to the possibility of full automation and assumed
strict boundaries for the runtime. We worked on our own
IP–Core generator (project JGEN[19]), which will be used
for both logical and structural level designing of specialized
parallel architectures, in which the described algorithm is used.

II. N EW CONCEPT OF ALLOCATION MAPPING OF REGULAR

ALGORITHMS IMPLEMENTED INTO MULTI-CONTEXT FPGA
DEVICES

Multi-context FPGA unit contains [6-8] a certain number
p of identical configuration memory CM blocks, in which
each p different configurations (contexts) could be stored.
However in every moment of time there can be only one
context active (one CM block). Such CM organization allows
for fast changes of the unit’s configuration (in ideal form
during one cycle of system clock), which in turn means

771



772 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

that the configuration could be changed while the system is
operational. The amount of cycles necessary for changes in
unit configuration is relatively small when compared to the
cycles required for realization of the said algorithm, that’s
because in the following part of the paper it was deliberately
overlooked. The mentioned possibilities allow for another,
more effective way of digital systems implementation in such
FPGA units. The structure of the whole complex system
can be divided for the p substructures of similar hardware
complexity in such a way, that the calculation results givenby
a substructure “i” would be used as input data in substructure
“i+1”. In such case the system can be designed in much
smaller (up to p times) p-context FPGA unit, where in the
single CM blocks configurations of every substructure of the
system are stored. During calculations, calling of an appro-
priate substructures is realized by activation of appropriate
CM blocks [10]. Realization efficiency of the whole system
in a multi-context unit depends on the way of partitioning the
structure of the whole system into certain number of substruc-
tures, and the way of designing of these substructures which
should ensure similarity of their hardware complexity while
maintaining assumed efficiency of the unit. Existing methods
of decomposition of the system’s structure into s substructures
[1, 6], work on the VHDL description level and aren’t designed
for dividing the architecture of parallel units. However inpaper
[1] it is proposed to design projects of s substructures based on
algorithm information dependence graph which the unit will
be realizing instead of trying to decompose the existing project
of the parallel unit. This idea was realized in [8] by forming
of 2-stage method of acquiring substructures of parallel unit
with processor matrix architecture. Sadly, a drawback of the
described method is that its first stage is realized heuristically,
which does not allow automation. Besides that, acquisition
of the processor matrix architectures is based on linear and
non-linear space-time mapping, which doesn’t guarantee the
required unit efficiency. Relating to this, we propose the new
concept of parallel unit architecture, in which every processing
unit (EP) realizes only one vertex of the algorithm’s graph.In
this case of use of multi-context FPGA units, it allows for
total elimination of the control unit and lines that pass control
signals in parallel unit. It also minimizes algorithm runtime to
that of the approaching minimal possible value (critical graph
path).

The information dependency graph’s decomposition for
multi-context programmable units (figure 1) has several limits
considering space mapping. First limits are conditions of
locality and causality, it means that every operation needed
to perform current operation must be executed directly in
the previous of current context of the programmable unit. In
practice it means acquiring arguments for current operation
in the same or previous context (causality) and the data
written in the memory for the time of changing of the unit’s
context must be remembered only for the next configuration
(locality). Another limit of space mapping is the maximal size
of single context (analogy to BPP — bin packing problem).
The parameters for the proposed method will be as follows:

maximal context size, estimated size of the structures which
realize all kinds of operations occurring in said algorithm
(measured in CLB) in the chosen arithmetic. In methods
used for acquiring parallel architectures described in papers
[5, 8] the designer defines allocation and schedule mapping
function in linear or non-linear form (usually in form of
vector) which does not allow for total automation of the
process. The proposed method generates allocation mapping
automatically, and also attributes the smallest possible number
of clock cycle for singular operations (of this mapping) in
which these operations will be executed. The main criteria of
optimization is the minimal number of clock cycles needed
for realization of set linear algebra algorithm in every context
of the programmable unit for the different space mapping,
assuming that all graph nodes are realized in single clock or
the virtual cycle.

III. G ENETIC ALGORITHM AND CONSTRAINT

PROGRAMMING FOR GRAPH PARTITIONING

There are many algorithms designed for partitioning and
vertex coloring [11], which also use genetic algorithms [12,
13]. It is difficult however to find a method for directed
graphs with weights for nodes which would be the merge
of the bin packing problem algorithm with the scheduling
algorithm, and that this would fulfill earlier assumptions of
volume, causality and locality. The method of information
dependency graph decomposition, described in paper [8] does
not allow for its automation, and additionally in the case of
the use of linear or non-linear functions of allocation mapping
it’s difficult to achieve a set structure or parallel architecture.
Some methods use graph transformations specific to the given
algorithm, which allow bigger influence on the shape of the
parallel structure and on the parameters of the processing
elements, but these transformations cannot be generalizedfor
different algorithms. For these reasons we decided to use the
genetic algorithm, which allows define the structure of the
designed parallel architectures and allows for full automation
of the design and the optimization process. In the case of
multi-context FPGA unit architectures a number of contexts,
or a maximum size of substructure depending on a set unit
model can be set. After the defining of the maximum size
of substructure and hardware complexity of each kind of
operations in the algorithm, the essential number of contexts
can be calculated automatically. In practice a minimal number
of contexts is calculated with an assumed margin, because
during the projects syntheses for given FPGA unit, it’s difficult
to use all available programming space.
First trials of the use of genetic algorithms for partitioning
information dependency graphs for linear algebra algorithms
we presented in paper [10], however after further investigations
a decomposition of information dependency graphs for bigger
matrices of chosen linear algebra algorithms (for graphs with
nodes number greater than 500) has proved to be problematic
while using standard recombination operators (mutation and
crossover). Some genetic algorithms used for the different
decomposition tasks and other operations on graphs (including



PIOTR RATUSZNIAK ET. AL: NEW CONCEPTION AND ALGORITHM OF ALLOCATION MAPPING 773

Fig. 1. Cholesky algorithm information dependency graph for band matrix (matrix size N=6, matrix band width L=4) and decomposition for 3 contexts
FPGA Devices

operations with constraints) with different modificationsof
genetics operators are shown in paper [14], however it is
stressed, that they were used for graphs of sizes limited to 100
or 900. In this paper we also propose certain modifications
of the genetic operators and use of constraint programming
for the generation of initial population, and present results of
graph division containing even up to 2500 nodes, acquired in
estimated time not exceeding 15min. To accelerate the runtime
of the genetic algorithm (to get more generations in a set
amount of time) we decided to make it parallel. Many methods
of parallelizing of the genetic calculations were considered, for
example supercomputers, GPU processors, GRID network, but
in the end we created their own dispersed application of one
client - multiple servers type designed for running on popular
PC class computers [15]. In this application a model of genetic
algorithm (similar to Island model) [16] has been used. A
similar rule of independent populations was used, but thereis a
slightly different way of exchanging the best solution between
clients and multiply servers. The copy of the best individual
replaces the worst individual in all island. This exchange is
realized in amount of time given by the user.

Parallel implementation increases the number of calculated
generations and also allows for use of different modifications
of the algorithm on different servers at the same time.

IV. PROPOSED GENETIC ALGORITHM

A. Data representation

In the proposed algorithm we decided for coding the divi-
sion groups with the use of numbers. Divisions are represented
as integer chains of n-dimension, where n corresponds to
the number of information dependency graphs nodes, and the
range of numbers is limited from 0 to m-1, where m is the

Fig. 3. Group coding with use of numbers for figure 1 graph

number of contexts of the programmable unit. Similar way
of division graph coding is presented in paper [17]. At the
figure 3 is an exemplary division and its representation for
graph and contexts from figure 1 is shown.

B. Generating of initial population

Two methods of generating the initial population were
implemented in the program. In the first method values were
generated in a random way (random assignment of graph
nodes to contexts), and in the second one the initial population
was generated by using constraint programming. The use of
constraint programming was meant to generate permissible
solutions in the shortest time frame, those solutions couldbe
later optimized with use of the genetic algorithm. It allowed for
shortening of the time in which the program was calculating
permissible solutions. Exact results comparing the use of both
methods are shown in the following part of the paper. The
whole program was created using .NET Remoting technology
on Microsoft .NET platform and that’s why in the constraint
programming module we decided to use a library designed
by prof. Andy Chun’s team named NSolver [18]. The module
which generates the initial population with use of constraint
programming finished its run after the experimentally chosen
duration of 2 min or after generating a whole initial population
of 100 individuals.

We investigated the use of two heuristics used for searching
of the solution space: “Random” and “MinSizeMinValue”



774 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Fig. 2. Parallel implementation of genetic algorithm

heuristics. The second one was based on searching through the
solution space from the smallest values for smallest indexes in
the chromosome. Through experiments it was concluded, that
a “Random” heuristic gives better results for smaller graphs
(with nodes number less than 200) and heuristic “MinSizeM-
inValue” allows for faster acquisition of solutions for larger
graphs. There was a problem for finding solutions for contexts
number greater than 5, which could result from the binary
representation of all graph nodes in all contexts, because of the
limited number of operations on array variables. We conduct
intensive research on the changes of representation of variables
in the constraint programming module, which probably would
allow in the near future for acquiring solutions for the number
of contexts greater than 5.

C. Recombination operators

In the presented genetic algorithm a standard one point
crossover operator with fixed probability was used, the value
of probability was experimentally chosen at 0.2 level. Bigger
influence on convergence had modifications introduced to
mutation operator. At first a mutation with a fixed probability
was used, which caused a different number of mutations for
different graph sizes. With the constraints described earlier
it caused a long time of coming to permissible solutions for
larger graphs (with node number greater than 500). The first
introduced standard modification was setting the probability of
the mutation of a single position in chromosome in accordance
to the size of the graph, so that the small number of genes
would mutate (the change of assignment of context to the
small number of nodes). Another change was the introduction
of variable probability of mutation in accordance with the
runtime of the algorithm [14]. The program started with such
a probability of mutation, so that there would be a change in
only one position per chromosome. Next, for following periods
of time, if there wasn’t an improvement of the best solution,
the probability of mutation was raised in such way, that one
more gene would change. The next modification included in
mutation operator was limitation of range of values that a gene
in chromosome could accept. The range of possible values for

a given gene in chromosome was calculated basing on linear
projection with a margin of (-1, +1), so called “window”. The
width of the “window” could rise with the runtime of the
algorithm if there wasn’t an improvement in the best solution.
Described modifications allowed for much faster acquisition of
permissible solutions (graph division that fulfilled constraints
described earlier).

D. Objective function

The evolutionary algorithm work consists of two stages: the
stage of finding the permissible solution and the latter stage
of optimization. At stage one, for all individuals a number
of unfulfilled rules of locality and causality is calculated, and
so the allocation mapping is determined. Objective function F
at this stage is dependant on locality, causality and overflow
errors and is calculated according by equation (1),

F1 = 1 + EN(3EN − SE) +

+EN
CN − OE

CN
+ EN

GS − CL

GS
(1)

where:
EN - edge number in all graph,
SE - space projection errors, locality an casuality errors,
CN - contexts number of the multi-context FPGA device,
OE - context overflow errors, number of overflow contexts,
GS - graph size (CLB), hardware size of maximum parallel
architecture assign for realization all operation in graph,
CL - context layout (CLB), maximum different between
contexts size.

Based on experiments we also made objective function at
this stage dependent on equal arrangement of processing ele-
ments in all contexts (in CLB), which caused faster minimizing
of overflow errors. During second stage of the algorithm, after
finding the permissible solution, the value of the objective
function is calculated according to one of two equations
depending on the permissibility of the individual. For the
individuals that do not fulfill constraints (non-permissible) a
function that gives much lower values was assigned (similarly
to the penalty function), and for the individuals that fulfill the



PIOTR RATUSZNIAK ET. AL: NEW CONCEPTION AND ALGORITHM OF ALLOCATION MAPPING 775

constraints objective function additionally is dependanton the
number of clock cycles needed to realize all contexts (whole
graph).

In the second stage of genetic algorithm run, the value of
objective function for individuals that fulfill the constraints
(allocation mapping without locality, direction errors and
contexts overflow) is calculated accordingly to equation (2),

F2 = 3EN
2 + CN ∗ EN + 2EN − T (2)

whereT—tacts number(schedule mapping).
For the individuals that don’t fulfill the constraints (non-

permissible solutions) the value of the objective functionis
calculated accordingly to equation (3).

F3 = 3 −

SE

3EN
−

OE

CN
(3)

Values of F3 function are always smaller than values of F2
function, which is an equivalent of the penalty function [17]
for the individuals that do not fulfill the constraints.

E. Selection operator

In the presented algorithm, an elitist selection model was
used in order to pass the best solution to the next population. In
the developed model of the parallel genetic algorithm the best
solutions are passed to all Island populations. Elite selection
model ensures “keeping”, of the best solution found, that
fulfills all constraints (causality, locality and context size),
which during the mutation process could be easily changed
into solutions that do not fulfill all the constraints (non-
permissible solutions). Elitist selection allows for keeping the
best solutions, which has a strong influence in case of strict
time boundaries for finding permissible solution.

F. Genetic algorithm termination criteria

Because of the targeted use of the presented method in the
IPCore generator, which will be used for designing the parallel
architectures for linear algebra algorithms (project JGEN[19]),
strict time limits for a runtime were set. The maximal runtime
of the algorithm was limited to 15min. The termination of
calculations also occurred if there wasn’t an improvement of
the best solution for a time period longer than 5 min.
All calculatons were performed on PC class computer—Dell
OptiPlex760 with Intel Core 2 Quad 2,2 GHz processor,4GB
RAM and Microsoft Windws Vista Enterprise operating sys-
tem.

V. EXAMPLE . CHOLESKY LLT DECOMPOSITION

ALGORITHM

This designed algorithm was used for the partition of
information dependency graph for Cholesky’s decomposition
algorithm of banded matrices with band width of 3, 5 and 7,
which are frequently occurring in practical numerical compu-
tations. The basic parameter of optimization was the numberof
clock cycles needed for realization of operations in all contexts
of FPGA unit. In tables 1, 2 and 3 indispensable numbers
of tacts acquired with linear (4) and non-linear (5) mapping

for banded matrices received according to the method [8] are
presented.

In this tables for comparison are presented results acquired
with use of the proposed algorithm using evolutionary calcu-
lations with random initial population and initial population
generated with use of constraint programming.

Based on results presented in table 1, one can conclude
that results acquired with the use of the proposed algorithm
are better than results acquired in paper [8]. It could also be
concluded, that these are optimal results, because they arethe
same as the results for the critical path of the graph (minimal
number of clock cycles with maximally parallel realization).
For this relatively small space of possible combinations (max.
NC, Nijnodes number=600, C-contexts number=7), algorithm
has always finished its run before the 15min limit, after not
being able to find a better solution in 5min. Results of graph
decomposition for a matrix with band width equal to 5 are
shown in table 2. Also in this case with the use of the
proposed algorithm acquired results were better than those
acquired with use of method [8] and close to the optimal values
(critical graph path). In some cases generation of the initial
population with the use of constraint programming caused
acquiring of better solutions (for example for matrix size 40,
50) in comparison with random initial population. There were
also cases of getting a worse solution (for example for matrix
size 30, 60), probably because the acquired initial solution
shifted search area to the local minimum, from which the
algorithm didn’t ¿get outř in a given time period. It should
be stressed however, that constraint programming allowed for
getting the permissible results in a shorter time, which was
described in detail in the following part of the paper.

The next research objects were graphs for Cholesky’s matrix
with band width = 7. Results for decomposition of those
graphs are shown in table 3.

Also in this case a significant advantage of the proposed al-
gorithm over the linear and nonlinear space mapping described
in [8] is clearly visible. It should be noticed, that the division
was executed even for graphs as large as approximately 2700
nodes, and still the runtime was less than 15min. Based on re-
sults shown in tables 1, 2, 3 one can see, that with the increase
of the matrix size and band width, and what corresponds ij
the number of nodes in the graph, resulting mapping required
more clock cycles to realize whole Choleksy’s algorithm. But
still the results were close to their optimal values (based on
critical path).
Another area of research was the influence of the initial
population generated with use of constraint programming
on the time in which a permissible solution was found by
genetic algorithm for a given problem. During research data
considering the best solutions were gathered after 1, 2 and
3min from the beginning of calculations. The results of the
comparison of the algorithm with random and generated with
use of constraint programming population are presented in
table 4. Based on the results show in table 4, one can conclude
that with the use of very strict time limits results acquiredwith
use of constraint programming for the generation of the initial



776 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

TABLE I
CHOLESKY ALGORITHM GRAPH PARTITIONING RESULTS FOR BANDED MATRIX (BAND WIDTH = 3)

Band width 3
Matrix size 30 40 50 60 70 80 90 100
Graph nodes number 172 232 292 352 412 472 532 592
Graph edges number 20885 27935 34985 42035 49085 56135 63185 70235
Max. Context size (CLB) XC4VLX100= 12288 CLB 12000
Contexts number 2 3 3 4 5 5 6 7
Min tacts (critical graph path) 88 118 148 178 208 238 268 298
Linear allocation mapping T1 (4) 117 157 197 237 277 317 357 397
Nonliner allocation mapping T2(5) 494 859 1324 1889 2554 3319 4184 5149

Realization time(tacts) (Gen.Alg.) avg 88 118 148 178 208 238 268 298

best 88 118 148 178 208 238 268 298

Realization time(tacts) (Gen.Alg.+Constr.Progr.) avg 88 118 148 178 208 238 268 298

best 88 118 148 178 208 238 268 298

TABLE II
CHOLESKY ALGORITHM GRAPH PARTITIONING RESULTS FOR BANDED MATRIX (BAND WIDTH = 5)

Band width 5
Matrix size 30 40 50 60 70 80 90 100
Graph nodes number 410 560 710 860 1010 1160 1310 1460
Graph edges number 28950 39050 49150 59250 69350 79450 89550 99650
Max. Context size (CLB) XC4VLX160= 16896 CLB 16000
Contexts number 2 3 4 4 5 6 6 7
Min tacts (critical graph path) 88 118 148 178 208 238 268 298
Linear allocation mapping T1 (4) 175 235 295 355 415 475 535 595
Nonliner allocation mapping T2(5) 494 859 1324 1889 2554 3319 4184 5149

Realization time(tacts) (Gen.Alg.) avg 88,5 122,5 153,3 183,3 214,8 246 285 317,8

best 88 120 152 182 214 245 285 316

Realization time(tacts) (Gen.Alg.+Constr.Progr.) avg 89,0 120,8 152,3 187 214,8 246 285 317,8

best 89 120 151 187 214 245 285 316

TABLE III
CHOLESKY ALGORITHM GRAPH PARTITIONING RESULTS FOR BANDED MATRIX (BAND WIDTH = 7)

Band width 7
Matrix size 30 40 50 60 70 80 90 100
Graph nodes number 728 1008 1288 1568 1848 2128 2408 2688
Graph edges number 39835 54385 68935 83485 98035 112585 127135 141685
Max. Context size (CLB) XC4VLX200= 22252 CLB 20000
Contexts number 3 3 4 5 6 7 7 8
Min tacts (critical graph path) 88 118 148 178 208 238 268 298
Linear allocation mapping T1 (4) 233 313 393 473 553 633 713 793
Nonliner allocation mapping T2(5) 494 859 1324 1889 2554 3319 4184 5149

Realization time(tacts) (Gen.Alg.) avg 95,8 131,5 171,5 206,0 258,0 280,8 310,5 367,8

best 95 130 171 205 258 280 309 367

Realization time(tacts) (Gen.Alg.+Constr.Progr.) avg 97,0 129,0 167,0 206,0 258,0 280,8 310,5 367,8

best 97 128 167 205 258 280 309 367

population are usually better, but this advantage lowers with
the prolongation of computation runtime.

VI. CONCLUSIONS AND FUTURE TASKS

Based on conducted research, one can conclude, that genetic
algorithms might be effectively used for the decompositionof
graphs of chosen algorithms meant for realization in a multi-
context programmable units. We managed to perform such
modifications of the algorithm, that with the tight time limits
(15min) it was possible to decompose graphs of even few
thousand nodes. Proposed method gives much better results,
in terms of shorter realization time of given algorithm, than

methods described in [8], and can be totally automated. During
future research we intend to modify the data representation
and constraints construction in the initial population generator
module, so that there would be more initially permissible
solutions for a larger number of contexts. We intend to
compare the our with the other hybrid genetic algorithms.

REFERENCES

[1] O. Maslennikow, “Podstawy teorii zautomatyzowanego projektowania
reprogramowalnych równoległych jednostek przetwarzających dla jed-
noukładowych systemów czasu rzeczywistego.” Wyd. Uczelniane Po-
litechniki Koszalínskiej, 2004, stron 273.



PIOTR RATUSZNIAK ET. AL: NEW CONCEPTION AND ALGORITHM OF ALLOCATION MAPPING 777

TABLE IV
BEST RESULTS OF PARTITIONING GRAPH AFTER1,2 AND 3 MIN COMPUTING TIME FOR GENERATED AND RANDOM POPULATION.

Band width 5 7 7 7 5 7 7 7 5 7 7 7
Matrix size 60 30 40 50 60 30 40 50 60 30 40 50
Graph nodes number 860 728 1008 1288 860 728 1008 1288 860 728 1008 1288
Graph edges number 59250 39835 54385 68935 59250 39835 54385 68935 59250 39835 54385 68935
Contexts number 4 3 3 4 4 3 3 4 4 3 3 4
Max. Context size (CLB) 16000 20000 20000 20000 16000 20000 20000 20000 16000 20000 20000 20000
Min tacts (critical graph path) 178 88 118 148 178 88 118 148 178 88 118 148
Computing time 1 min 2 min 3 min

Realization time (G.A.) best 189 99 - - 188 98 136 172 186 97 134 171

avg 190,4 100,4 - - 188,4 99,4 137,0 172,0 187,1 98,1 135,4 171,1

find(%) 90 70 0 0 90 70 80 40 90 80 50 80

Realization time (G.A.+C.P.) best 187 99 132 173 187 98 131 172 187 98 131 172

avg 187,2 100,4 132,4 173 187,2 99,2 132 172,8 187,2 98,6 131,6 172,4

find(%) 100 100 100 100 100 100 100 100 100 100 100 100

[2] Kung S. Y. “VLSI Array Processors”, Englewood Cliffs, N.J., Prentice
Hall, 1988

[3] Kung H. T.,Leiserson C. E. “Systolic Arrays for VLSI”, Technical
Report CMU-CS-79-103, Carnegie-Mellon University, Pitsburg, 1978

[4] Quinton P., Robert Y. “Systolic algorithms and architectures” Prentice
Hall, Englewood Cliffs, 1991

[5] E. Lipowska-Nadolska, M. Kwapisz,K.Lichy “Systoliczne przetwarzanie
sygnałów cyfrowych”. Akademicka Oficyna Wydawnicza EXIT,
Warszawa 2007r.

[6] Canto E., Moreno J. M., Cabestany J., Lacadena I., Inserser J.M. A
Method for Improving the Functional Density on DynamicallyRecon-
figurable Logic by Temporal Bipartitioning. Proc. 7-th Int.Conf. Mixed
design of integrated circuits systems, MIXDES’2000, Gdynia, Poland,
pp. 155–160.

[7] Kiełbik R., Moreno J. M., Napieralski A., Szymański T. “High-Level
Partitioning for Dynamically Reconfigurable Logic.” Proc.7-th Int.Conf.
Mixed design of integrated circuits systems, MIXDES’2000,Gdynia,
Poland, pp. 171–174.

[8] O. Maslennikow, “Realizacja architektur macierzy procesorowych w dy-
namicznie reprogramowalnych układach FPGA”, VII Krajowa Konfer-
encja “Reprogramowalne układy cyfrowe”, RUC’2004, Szczecin, 2004,
pp. 225–232.

[9] Fields C. “Design reuse strategy for FPGA’s”, Xcell Jurnal, Xilinx 2000
[10] Ratuszniak P., Maslennikow O., Sołtan p., Słowik A. “Zastosowanie

algorytmów ewolucyjnych w projektowaniu równoległych jednostek
przetwarzających do realizacji w wielokontekstowych układach FPGA”,
V Krajowa Konferencja Elektroniki, Darłówko Wschodnie, 2006

[11] “Optymalizacja dyskretna. Modele i metody kolorowania grafów” Pod
redakcją Marka Kubale, WNT, Warszawa, 2002

[12] Fleurent Ch., Ferland J. A. “Genetic and hybrid algorithms for graph
coloring” Annals of Operations Research 63, 1996,s.437-461

[13] Galinier P., Hao J. “Hybrid evolutionary algorithms for graph coloring”,
Jurnal of Combinatorial Optymization, 1999

[14] Michalewicz Z. “Genetic Algorithms + Data Structures =Evolutionary
programs”, Springer-Verlag Berlin Heidelber, 1996

[15] Ratuszniak P., Bernatowicz.D. “Równoległa programowa realizacja algo-
rytmów ewolucyjnych z wykorzystaniem technologii .NET Remoting”
Prace XIV Konferencji Krajowej KOWBAN 2007, Szklarska Por˛eba,
2007

[16] Gordon V. S., Whitley D. “Serial and parallel genetic algorithms as
function optimizers”, Proceedings of the fifth international Conference
on genetic Algorithms, Illinois, 1993

[17] von Laszewski G.“Intelligent Structural Operators for the K-Way Graph
partitioningProblem” Proceddings of the Fourth international Conference
on Genetic Algorithms., San Mateo, CA, 1991

[18] H. W. Chun, “NSolver”, .NET constraint-programming software
library,http://www.cs.cityu.edu.hk/~hwchun/ [AccesedApr. 1, 2009]

[19] http://kik.weii.tu.koszalin.pl/mvl/jgen/


