Proceedings of the International Multiconference odSBN 978-83-60810-22-4
Computer Science and Information Technology pp. 699-706 ISSN 1896-7094

Applying Program Comprehension
Techniques to Karel Robot Programs

Nuno Oliveira, Pedro Rangel HenriqugsDaniela da Cruz Maria Joao Varanda Pereira
Marjan Mernik, TomaZ Kosar and MatejCrepinsek

* University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal
Email: {nunooliveira, prh, danieladacrp@di.uminho.pt

t Polytechnic Institute of Braganca
Campus de Sta. Apolonia, Apartado 134 - 5301-857, Bragangrtugal
Email: mjoao@ipb.pt
¥ University of Maribor, Faculty of Electrical Engineeringéh Computer Science,
Smetanova 17, 2000 Maribor, Slovenia
Email: {marjan.mernik, tomaz.kosar, matej.creping@kuni-mb.si

Abstract—In the context of program understanding, The construction of program comprehension tools
a challenge research topit is to learn how techniques can be based on the formal definition of the language
and tools for the comprehension of General-Purpose and, in our case, their development relies completely

Languages (GPLs) can be used or adjusted to the un- traditi I iented techni Usi
derstanding of Domain-Specific Languages (DSLs). Being on tradiional grammar-oriented techniques. Using

DSLs tailored for the description of problems within a the grammar, we can generate automatically textual
specific domain, it becomes easier to improve these toolsor visual editors, to create and handle programs in
with specific visualizations (at a higher abstraction level that language. In a similar way, we can also generate
ggﬁr ;‘r)og:znﬁ’:’b'em level) in order to understand the 5 sers (generally speaking, language processors) to
In this paper" comprehension techniques will be ap- extract from the source che static and dynamic infqr-
plied to Karel language. This will allow us to explore Mation to create visualizations helpful to understand it.

the creation of problem domain visualizations for this In the context of General-Purpose Languages
language and to combine both problem and program

domains in order to reach a full understanding of Karel (GPLs) the information about th_e prpblem tc_) _be
programs. solved, collectable from the code, is neither sufficient
L to infer the object that is controlled, nor tipgoblem
- INTRODUCTION domain— perceiving what kind of control can be pro-
N THIS paper, we explore the use of prograngrammed. Under those circumstances, it is necessary
comprehension techniques to understand Domaig resort to other kind of resources like annotations,
Specific Programs (DSPs). By DSP [1], [2], [3] wecomments, user manuals, implementation reports, and
mean programs _/vr|tt.en. In a quam—Spemﬁc Lanso forth. However, from the definition of DSL comes
guage (DSL), which in its turn, is designed to proout that, when dealing with such languages, we know
gram specific tasks in a fixed problem domain. Tehe objects operated by the programs; thus it is possible
program in DSLS_ means to use a specific vocabulaty construct problem domain visualizations changing
structures, and higher level components. Moreover, {Re object states according to dynamic data extracted
implement this kind of languages, specific tools caffom the source code.
be constructed and they are customized for a problem
. . .In this case we have information about the object,
domain. These facts make the programming task easjel . . ;
. . i i the problem domain (the operations over the object),
in this specific context, but difficult to understand by . . . o
. and the program domain (the instructions that modifies
people that are out of the subject. : : . .
. . the object state). The mapping of these views improves
We are convinced that we can apply traditional Prclhe efficiency of brogram comorehension tools
gram Comprehension Techniques to DSLs [4], [5], and _ yorp _ 9 _ P _ N
we can go further constructing visualizations closer to The outline of this paper is as follows: in Section Il
the problem domain. This is possible because, fromt@e related work about PC techniques and tools are
DSL program, we can easily infer information aboupresented; the application of these techniques to DSLs
the problem to be solved. will be described in Section Ill; along Section IV we
present the processes of extracting, visualizing, and
“This work is part of a bilateral cooperation project (Portusynchronizing the information of different domains for
gal/Slovenia) supported by FCT, Departamento das Refadtu- g .
ropeias, Bilaterais e Multilaterais, and Slovenian Reged#xgency _Ka_rel Language [6]* fma”y the conclusion of the paper
(grant No. BI-PT/08-09-008). is in Section V.

699

700 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Il. PROGRAM COMPREHENSION TECHNIQUES cerns (such as assignment, algebraic operations, con-
AND TOOLS ditions for controlling the execution flow, input/output,

Program Comprehension (PC) [7], [8] is a hard cog"lnd so forth) and in_terpret them (no assembly code is
nitive task that involves constructing a mental modé*ecuted). Concerning the second approach, we have

of the program, trying to reconstruct the thoughtEXpertise in weaving inspectors_in the source program
of the original programmer. This process becomd@ catch and record the functions that are actually
easier when concrete representations are automatic&fj/€d during execution and their concrete parameters
produced, revealing different aspects of the prograffi! e context of web applications, the program units
structure and behavior. Hence, program visualizatidfat are interpreted by the server, or the links really

and program animations are important aids for a¥Sited)-

complishing this task. Even more important, is the 1"€ development of both approaches—abstract
ability to create visual representations that allow thi@t€rpretation and code instrumentation—rely com-
programmer to interconnect the execution of programetely on traditional grammar-oriented techniques for

statements with the effect produced by them; thdg)mpilerwriting and implementation. We use Translla-
allowing visualization of the relation between problen{on Grammars or Attribute Grammars [19] to specify
and program domains. the tools, and resort to Compiler Generators for auto-

Program Comprehension plays an important role jmatically produce the code of the target processors.

the area of software maintenance, as it is a compl?ﬁ OUR APPROACH TOAPPLY PC TECHNIOUES IN
and expensive task. Thus, the need for software en-’ DSLS °

gineering tools that facilitate the process of under-
standing computer programs is compelling. In this Although there are several approaches that we could
context, the main goal of a Program Comprehensidallow to implement our ideas, due to our acquain-
Tool (PCT) is to ease the process of understanding ttanceship with Aima, we have decided to adhere to its
structure and functionality of a program. In this fieldohilosophy. In this context we extended it to deal with
of PC, many tools were developed along the last 2be ideas expounded.
years. Imagix 4D [9], CodeSurfer [10], Shrimp [11], Alma [16] is a system for program visualization and
CANTO [12], CodeCrawler [13] and Bauhaus [14] ar@nimation that deals easily with different programming
only a few tools among many others. All the tooldanguages and allows the construction of more appro-
comply with the referred objective by: providing onepriate visualizations for each domain. The purpose of
or more known mental models for program comprehis tool is to help the programmer to inspect data
hension; maintaining a repository of structural and/and control flow for a given program (static view of
behavioral information about a program; providing #he algorithm realized by the program—uvisualization),
presentation model for visualizing information abouand to understand its behavior (dynamic view of the
programs in various ways; providing mechanisms falgorithm—animation). The core of such tool is lan-
navigating from one kind of representation to anotheguage independent; it is similar to a compiler’s Back-
and so forth. End (BE) that takes as input an abstract representation.
According to our background on program compreAs intermediate representation, between the Front-End
hension, we are convinced that existing PC techniquésE) and the BE, we use a Decorated Abstract Syntax
can be used for DSLs. We have some experience witliee (DAST) and implement the visualizer and the
two different approaches [15]: a non-invasive approaénimator components in a systematic way. This is
(the source code does not change) and an invasB@hieved by means of two rule bases, one for the
approach (it changes the source code). visualization of tree nodes, and another one for tree
Concerning the first one, we have developed aewriting. To process a concrete programming lan-
animator, Alma [16], that does not modify the sourcguage, Alma is customized by providing a dedicated
program and uses abstract interpretation techniqué&s; that converts the input programs into the internal
aimed at an easy and systematic adaptation to copestract representation.
with different programming languages. Concerning the Besides that reconfiguration of Alma, to cope with
second one, we have applied it in the developmedifferent input languages, at present we propose an-
of two other tools, CEAR [17] and WAV [18], a other evolution of Alma toAl na?, a PC tool tuned to
technique called program instrumentation that modifie®pe with a given DSL.
the source code (inserting inspector functions) in order That evolution relies on the use of a second base
to collect dynamic information at runtime. In Alma,of visualizing rules, synchronized with the first one
the source program is not compiled. Variables are nand with the tree rewriting system. This new set
converted into memory locations, algebraic operatiom$ visualizing rules is adapted to each DSL and is
are not transformed into register operations involvingesponsible for producing the problem domain view.
value transfers among memory addresses, and controConcerning the characteristics of each particular
flow is not implemented as jumps to code addressd3SL, a set of animation rules must be defined and
Instead, we work with abstractions of program corthe inclusion in our internal representation of new

=
PO ©®~NOOHsNR

NNN NN B B R R R R R
R ONPOO©O®NO®O NN

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHMQUES TO KAREL ROBOT PROGRAMS 701

abstractions or even adaptation of their operatianal
semantics must be done. This will prepare the fool
for the final user that just have to insert a sousce
program in order to get the visualizations. On the other N ey { wninswgeadl
hand, since each DSL has special characteristics; W ntifier — [a—z] ([a—z] | [0-9]*)*
need to perform a deeper study concerning the kirigl pfmber — [0-9
visualizations that are more appropriate for each case.

In our research project, several DSLs will be studied. Knowledge Analysis

but we have started the work with Karel Programming Regarding the language description and its formal

Language, ar;d th|s_pa(§)er is devoted to report heginiion we can infer some knowledge about the
outcomes so far attained. program and problem domains, and we also can create

IV. COMPREHENDINGKAREL PROGRAMS a set of connections between them, to ease the com-

In the previous section we gave an overview of thgrlehelgsmlnlof the targlet [l)(r_ogr?m_.t d intion it i
approach we conceive for the development of a pro- n rarel fanguage, looking 1o 1Is description 1t 1S

gram comprehension tool for DSLs. In this section, ngtddlf?cug 0 ('::onclu%e tpat It ||sdu?.e(.j_to control some
show how we us@l ma? to help on the comprehension Ind of robot. From the formal definition, we suspect

of programs written in Karel Language. how to control that robot. In other cases, some extra

Karel Language [6], is a DSL to control a robot,documentatlon should be .consu.lted. .
However, as long as thimachinehas no brain to

called Karel’. As the language also has the aca- . K " : infer that th .
demic purpose of teaching the bases of imperati\sl("al'n on Its movements, we can Infer that there Is

programming, the robot is neither a full-featured not" mte_rnal state that is changed .by the sequence of
ofpperations allowed by the controlling language. This

a sophisticated machine. Besides turning on or R hat the | d | th b
moving one step ahead, turning left, picking Obiecﬁeans etond It tomal state. This ia "

from the ground, keeping them in an object bag, a jrectly, instead it controls its internal state. This is
putting them back on the grounéarel, the robot, what really happens at the program level. But persons,

knows (¢) which direction it is facing to{i:) whether who try to understand the programs in this language,

it is blocked by walls or everfiii) whether it sees may be interested not only in what happens internally,
objects in the ground at the robot’s state, but also in what are the effects

To sum up, the robot only understands a few baSR{Oduced’ externally, in the robot.

5 : :) . .
instructions, hence, its controlling language is simple Al ma purpose 1s precisely that: to give a joint
: yjew of what is done at program level, and what are

the repercussions at problem (real-world) level. So,

language grammar is presentedlotice, though, that h define the visualizati f both d ;
the language only specifies the robot actions, and € N2v€ to define the visualization of both domains.
rogram level visualization requires the creation of

does not concern the modeling of the world where tH% , L
e program’s state (the robot's internal state) and the

: t
robotlives L : :
definition of the interpretation treé. Problem level

isting 1. _Formal Definition of Karel Language visualization requires the definition of images that
depict situation on that domain; it needs also the
start — BEGINNING-OFPROGRAM program
END_OF-PROGRAM creation of connections with language operations and
program — definition” BEGINNING-OF-EXECUTION constructions. These connections will make possible a

tat t END-OF-EXECUTION . RSO) X
definition — DEFINLABWANSTRUCTION identifier as Synchronized visualization of both domains, enabling

ANY—BEEPERS-IN-BEEPERBAG
NO-BEEPERS-IN-BEEPERBAG
FACING-NORTH | NOT-FACING-NORTH
FACING-SOUTH | NOT-FACING-SOUTH

Eltatiment . an inspection of what are the program actions that
Statement = e || oo produce the effect (movement) on the robot. Finally,
ok lBiErélsNtruction ¢ o it requires the construction of the animation, resorting
oc — statemen . .
iteration — ITERATE number TIMES statement to the _'mages and the mappings _cr(_aated.)
Ioopd‘ onal \ll\éHILE cdqn,ditioTrLERIO statement Again from the language description and its formal
t — t tat t e . . ,
conauional = ELSE statement)? o definition, we can infer concepts that define the robot's
instruction — TURNON | MOVE | TURNLEFT state. Table | shows these concepts, to which we call
| PICKBEEPER | PUTBEEPER iabl
| TURNOFF | identifier variables.
condition — FTSETT—Ilg—itEEQE [EE?T\ITTQE%%%ED Also from the grammar of Karel Language and
{ RIGHTI;IS%:LEAR'\ RIGHT- S_BLOCKED the (_j_escription of the domain, incremented yvith the
| Eé%—lT%;iLEéEPIEF?ACK—IS—BLOCKED empirical knowledge about the controlled object (the
I NOTNEXT_TO_A_BEEPER robot), we can infer the situations (poses of the robot)

illustrated in Figure 1. This figure is composed of five
2The robot inherited its name from the inventor of the word
and conceptobot Karel Capek, a well-known Czech writer and 4By interpretation tree we mean an attribute valued (deedjat
playwright. abstract syntax tree that is a static/dynamic semanti@septation
3The original grammar is available at http://mormegil.vezptog/ of the input program, either in a imperative or declaratiaeguage.
karel/prog doc.htm Usually in the literature it is nameexecution tree

702 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

TABLE |
KAREL'SINTERNAL STATE VARIABLES isting 2. Definition of the Robot's State (Fragment)
1
2 CToken tX =new CToken('posX', ...);
3 CToken tY =new CToken('posY"', ...);
|_VARIABLE DESCRIPTION l. CToken tA =new CToken(angle", ...):
posX Stores theX-axe value of the robot's position. CToken tB =new CToken('beepers", ...);
posY Stores th& -axe value of the robot’s position. ()

5

6
angle Stores the angle of the robot’s direction. !
beepers Stores the number of objects the robot has in its l§a8.

ublic Alma.CAlmaNode initState (§
CConstNode cO =new Alma.CConstNode (0);

10 CAlmaNode nX =new AssignNode (tX, c0);
11 CAlmaNode nY =new CAssignNode (tY, cO0);
12 CDeclINode x =
images. Each one represent an upper view of the rebot new CDeclINode(tX, "integer", null, nX)
in a different situation: 1) the robot is turned off (red ’
CDeclINode y =
light in its back); 2) the robot is turned on (gregn new CDecINode(tY, "i nteger” , null , nY)

light in its back); 3) the robot rotated left; 4) the robot ;

picked an object and 5) the robot dropped an object. CAlmaNode decllaew Alma.CStmtsNode (x, y)
These images would be combined with each other to

perform animations directed by the operations atithe (...)

program level. This is an issue that will be addressed
in Section IV-C.

program. This DAST, representing the internal and
@ abstract structure of a program, is built resorting to
the constructs defined il na. In some extent,
1 2 3

Al ma? can be seen as an domain-specific embedded

language [22]
qm (The code fragment in Listing 2 shows how we
!.(‘ L(declare the variables that determine the state of the

robot, and initialized the position. The idea is ip
define global tokens (line 2 to 5) that would be used in
Fig. 1. Problem Domain Situations: Karel Possible Poses Whole grammar to refer to the variablpss X, posY,
angl e andbeeper s, respectivelyji) then we create
an auxiliary function,i ni t St at e, that builds the
In the next Section IV-B, we will center attentionsyodes of a branch with the variable’s declaration and
in the definition of the program domain visualizationintialization (lines 8 to 19). The fragment, in Listing 2,
builds a tree equivalent to the tree that would represent

B. Visualizing the Program Domain
a piece of an imperative language program like:
When writing a program with Karel Language, the

user does not need to be worried about the definition of
a state for the robot, because such state should already

be defined by the compiler/processor. The delegationThe tree resultant from the auxiliary function pre-
of thesetasks(and other semantic definitions) to thesented in Listing 2 is prepended to the reminder
compiler, is a very common practice when dealing witgf the tree synthesized when processing a program
DSLs. As found in [20], the same does not happeR Karel Language. In Listing 3 we show another
with GPLs, where the state of the program is defmeﬁd‘agment of the Karel Language processor. This time,
in the program itself. This way, as the BEAfma” is e illustrate the construction of the tree representation
an interface for the processing of a language, we mugtd semantics behind the commaridKBEEPER
define the operatlonal semantics of Karel Language. The commandickBeePERhides, in its abstraction,
We create anAl ma* FE for Karel Language in a small operation that modifies the state of the robot,
order to convert Karel programs inf ma” tree-based namely, it increments the number of beepers. So, when
abstract representation. LISA system [21], based @fcluding this command in a program, at interpretation

attribute grammars, is used to construct the FE f%ase we must consider the program as having one
Karel. We start by implementing this FE by definingnore statement equivalent to:

the variables and nodes that will be able to describe the
robot’s internal state. Then, as a second step, for each
Karel instruction, we create DAST nodes, resorting to
Al ma? notation. The functions and objects Aff ma? As the other instructions in Karel Language have
are implemented in Java. LISA is used to synthesize similar abstraction level, the interpreter of each
an attribute that will store the complete DAST of ane requires a similar approach, adding statements to

integer posX =0, posY = 0;

beepers = beepers + 1;

© ® N 0 A W N e

T
w N P O

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHMQUES TO KAREL ROBOT PROGRAMS 703

an internal state. A language can have more than one

Listing 3. Definition of the Program Domain Visualizationrélg- >] '
ety Actor associated, in order to be more perceptible the
rule Instruction PickBeeper { visualization of the problem domain. Besides the Ac-

INSTRUCTION ::= #Pickbeeper computd
INSTRUCTION. tree =
new AssignNode (
tB,
new COperNode (

tor, to define the problem visualizatioAl ma? offers
a set ofAnimation Patternghat stimulate the internal
state of the Actors and provoke their animation. Using
the same approach of the last section, visualization
new CvarNode (tB), = rules will be applied to the DAST but, in this case,
new CConstNode (1) ,"+ , . .
) they are based on the animation patterns which are
)i associated to the nodes.
b In our case study, the Karel Language only needs
one actor: the robot. The images in Figure 1 illustrate
some of the possible poses of the robot. Figure 1 (3)
is equal to Figure 1 (2), it only was rotat@d® to the
left, the result of a possible animation.

Listing 4, line 2, shows how we created the Actor for
Karel Language. The first argument of the constructor
is the name of the images that would serve as poses
for the Actor. The second argument is the definition
) _ of the Actor’s state.

A concrete illustration of a sub-_tree _from the Pro- This Actor is combined with animation patterns
gram’s DAST, can be seen ahead in this document, i) qefine the animation of each instruction on the
Figure 3. language. We use the knowledge in Table Il to guide
the creation of the concrete mappings withma?. In

Listing 4 we present two fragments of code that define

As stated before, to build the visualization of the o animation for the commands)RNLEFT (lines 5
problem domain, the first step is to create connectiogs 17) andpickBEEPER lines 19 to 29).

between problem and program concepts — with them | poth cases we append animation patterns to the
we would be able to see which parts of the progra@ me kind of tree nodedni massi gnNode. These
affect the produced output (at prob.lem.domain.); andudes behave exactly the same asABsi gnNode
as a last step, to define the animation of imagegeq in Listing 3, but they have a new attribute that
(depicting situations of the problem) according to thefines the animation. In the first fragment of the code,
mappings created. _ _ in Listing 4, we associated the pattéRotate The code
Since the problem domain underlying the Kareheans that the Actor,obot , will perform a rotation
Language was known, we are able to infer the chigfer the value stored in variabkngl e of its state,
concepts characterizing the problem domain (_ssee T&4d will use the second pose in the set of paisEer
ble I, first column); from the program domain Weyne second fragment we used the pattelentity. The
identify the main operations (see Table Il, second,qe means that the animation of the Actoopbot ,

change the state. For instance, the instructiomrN-
LEFT, changes the value of the varialalagl e in the
following way:

angle = (angle 4+ 90)%360

C. Visualizing the Problem Domain

column).

TABLE Il

MAPPINGPROGRAM AND PROBLEM CONCEPTS

| PROBLEMDOMAIN — —

PROGRAM DOMAIN

With the contents of this table we are able to look
back to the processor we were creating withnma?,
and finish it by adding the visualization of the proble

is only to change its poses from the fourth pose to the
third, and from the latter to the second pose in its set
of poses.

With all of the animations defined and appended
to the tree nodes, thal ma? FE for Karel Language

Turn Off TURNOFF is complete. Figure 2 shows some of the results of
StTe“F:”Aﬁgad e animating the problem domain of a program, inside
Turn Left TURNLEFT the Al ma?’s environment.

Pick Object PICKBEEPER
Drop Object SUTBEEPER D. Visualizing the Interconnection Between Domains

Finally, with Figure 3, we show the complete syn-
chronization of all the visualization perpectives.
The working window ofAl ma? is divided into four

r@arts that show different perspectives of the program

eing interpreted. In the upper left corner, the Iden-

domz;l‘ln. 2 the visualization of h I _tifier Table (IT), representing the internal state of the
In Al ma”, the visualization of the problem domaingq .y olied object, is displayed. Also on the left but
has a central concept, which we clttor. An Actor below the IT, appears the source code (the line being

is an object either cgntrolled by the language or ju?ﬁterpreted is highlighted). In the upper right corner,
referenced by it. It is composed of a set phses

which it can stand through the animation process, antNotice that the indexes to access the poses are zero-based.

704

PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Listing 4. Definition of the Problem Domain Visualizationr@gment)

1

2 Actor robot =new Actor(new String[] {"Of", "On", "Pick", "Drop"}, setState());
3

4

s rule InstructionTurnLeft {

6 INSTRUCTION ::= #Turnleft compute{

7 INSTRUCTION. tree =

8 new CStmtsNode (

9 new AnimAssignNode (

10 (...)

1 new AnimationPattern[] {

12 new APRotate(robot ,new int[] {1}, "angle")
13 }

14)

15)

16 +;

17}

18

19 rule Instruction PickBeeper{

20 INSTRUCTION ::= #
21 INSTRUCTION. tree
22 new Anim

Pickbeeper computg

AssignNode (
(...)

24 new AnimationPattern[] {

26 _ }

new APldentity (robot, new int[] {3,2,1})

Identifiers

—{ Identifier | Type [Class | Value
"8 posX Integer variable 3
posY integer variable 1
angle integer variable 180

"I MOVE integer function
i turnright integer function
<l harvest integer function
is integer variable 0

R —
ITERATE 3 TIMES

1
2
3 DE PICKBEEPER.
4 if12 MOVE
5 13 END
L]
7 BEGINNING-OF- EXECUTION
8
9 17 trnright
10 18 MOVE
11 19 harvest
12 20 TURNLEFT
13 21 MOVE
14 ggf22 TURNLEFT
15 23 MOVE
16 24 harvest
17 25 turnright
18 26 MOVE
19 27 turnright
20 28 MOVE
21 29 harvest
o

31 TURNOFF
24 32 END-OF-EXECUTION
25 33
26 34 END-OF-PROGRAM
27 i5
28

=X J=m) 3

["Pas sing

i/

| Argume...

bespevs: 5

-

Fig. 3. Synchronization of all Visualization Perspectives

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHMQUES TO KAREL ROBOT PROGRAMS 705

| that third view, a deeper knowledge of the connections
‘l_ j between the language constructors and the concepts in
o } B |L__} the problem domain is required. When dealing with
= T_, GPLs this mapping is not evident due to the general
T] purpose character of those programming languages.
nT Therefore it is not common to find PC tools with that
(a) () capability. Working with DSLs, the closenc_ass between
i language purpose and a concrete domain, enables to
| — build and offer such a view.
|Il;\ i] ‘i-i, Besides introducing our proposal and displaying a
» ' | few screenshots fromAl ma? output, we also dis-
| = J cussed, from a technical point of view, how the system
boepers: 1 beepors; 5 was implemented.
The main achievements obtained when exercising
(c) (d) with Karel Languag® were:
Fig. 2. Problem Domain Visualizatioria) The robot is turned off, o the feasibility of re-using Alma, principles and
(b) The robot turned left for three timeé:) The robot gave a step environment.
ahead;(d) The robot is picking an object (we only show the first . . .
frame of the animation associated). « the easiness of additionally representing the prob-
lem domain and the synchronization of the three
views.

the worth of Al ma? tool for a faster program

the interpretation tree is shown, and below that, the comprehension.

effects of the program execution/interpretation on the _
objects of the problem domain are displayed. In the near future, we will apply the same approach

The views displayed in the four windows are Synt_o other case studies dealing with specification lan-
chronized byAl ma? engine while performing tree 9U29€s (that are, indeed, equ!valgnt to declarative pro-
traversals to interpret (and animate) the input prograf/@mming languages). The aim is to corroborate our

The synchronous step-by-step evolution of the ipvorking hypothesis, and to generalize the approach.

. 5 . T
formation displayed for each view makes visible the Conceming the upgrade @i ma” in the direction
cause-effect relation, and grants the envisaged relatigh@ customizable tool, we forecast that it would be
between problem and program domains, aiding tf€sirable to allow end-users, not language designer or
analyst to understand the program meaning. It fleveloper, to easily specify their own visualization.

worthwhile to notice that this feature comes for free The chief idea is to build a graphical editor. The

needed to develop a FE for the concrete DSL. each node of the DAST with a geometric figure (a
square, circle, etc), or an image and also, it will enable
V. CONCLUSION the end-user to associate each node with an exter-

Karel Programming Language is a Domain-Specif'frt]:aI (end-user defined) drawing function. The external

. .. function could be called using the attributes available
Language designed only to command a robot. Writin .
) . DAST nodes, to tune the picture to each concrete
a program in Karel Language is an easy task far.

Situation. We can include that functionality, keeping

someone who knows the problem domain owing t .)) .)
. e tree visualizer engine generic and unchanged; and
the high level of the language constructors and their . .
so the animator system, based on a tree rewriting

closeness of mapping to that domain. However thf%eI L

: i nepgine, is kept unchanged.
reverse is not true. To understand a program is no Thi hi o imol t and will tt
an easy task, specially if the person in-charge has t0 IS aplpror;lc S etasy o;mp eme? an \éwf grantto
knowledge of the problem domain. e visualizer/animator system, customized for a con-

In this paper we propose the use of a traditional nOI%_rete DSL, effective improvement and better quality as

invasive program comprehension approach to mafd aid tool for understanding specifications/programs

the understanding of domain-specific programs easit\gﬂ'tten in that specific language.

and more effective. Static information extracted from
the source program has been used to create three
synchronous views. The Identifier Table (displayingj;; 1 kosar, P. M. Lopez, P. A. Barrientos, and M. Mernik,
the system state), and Abstract Syntax Tree (decorated “A preliminary study on various implementation approaches
with attribute values) are traditional, and provided by ©of domain-specific language/nf. Softw. Technal.vol. 50,

Is: . . fth . : no. 5, pp. 390-405, April 2008. [Online]. Available:
many tools; an animation of the program execution IS . //dx doi.org/10.1016/).infsof. 2007.04.002
then produced by abstract interpretation over the tree.
The third one is novel: it reproduces the effects of 6rpe first case-study of our bilateral project, nam@agram

program execution on the problem domain. To buildomprehension for Domain-Specific Langua@@SLpc).

REFERENCES

706

(2]

(3]

(4]

(5]

(6]
(7]

(8]

El
[20]

(11]

[12]

PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

M. J. V. Pereira, M. Mernik, D. da Cruz, and P. R. Hen-[13] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger, “Codetzaw

riques, “Program comprehension for domain-specific lan-
guages,”ComSIS — Computer Science an Information Systems
Journal, Special Issue on Compilers, Related Technolaaies
Applications vol. 5, no. 2, pp. 1-17, December 2008.

M. Mernik, J. Heering, and T. Sloane, “When and how to[14]

develop domain-specific languageACM Computing Surveys
vol. 37, no. 4, pp. 316 — 344, 2005.

J. . Maletic and A. Marcus, “Supporting program compeeh
sion using semantic and structural information,"1iéth IEEE
International Conference on Automated Software Engimeeri
(ASE2001) San Diego - USA: IEEE, November 2001, pp.
107-114.

A. J. Ko and B. Uttl, “Individual differences in program
comprehension strategies in unfamiliar programming sysfe
in 11th IEEE International Workshop on Program Comprehen-
sion (IWPC'03), pages 175.18#ortland, Oregon,USA, May
2003.

R. Pattis,Karel, The Robot: A Gentle Introduction to the Art
of Programming 1st ed.
R. Brooks, “Using a behavioral theory of program compre-
hension in software engineering,” ICSE '78: Proceedings
of the 3rd international conference on Software enginegrin
Piscataway, NJ, USA: IEEE Press, 1978, pp. 196-201.
M.-A. Storey, “Theories, methods and tools in progranmeo
prehension: Past, present and future,” \WWPC '05: Pro-
ceedings of the 13th International Workshop on Program
Comprehension Washington, DC, USA: IEEE Computer
Society, 2005, pp. 181-191.

“Imagix 4d.” [Online]. Available: \url{http://www.imagix.
com/products/products.htgnl

P. Anderson and M. Zarins, “The codesurfer softwareennd
standing platform,” inIWPC '05: Proceedings of the 13th
International Workshop on Program ComprehensiofiWash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 147-148.
M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litpiu

and M. Musen, “Shrimp views: an interactive environment fof21]

information visualization and navigation,” @HI '02: CHI '02
extended abstracts on Human factors in computing systems
New York, NY, USA: ACM, 2002, pp. 520-521. [2
G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanhfand

E. Merlo, “Program understanding and maintenance with the
canto environment,” inCSM '97: Proceedings of the Inter-
national Conference on Software Maintenanc&Vashington,
DC, USA: IEEE Computer Society, 1997, p. 72.

[15]

[16]

John Wiley and Sons, Inc., 1981. [17]

(28]

[29]

[20]

an information visualization tool for program comprehensi

in ICSE '05: Proceedings of the 27th international conference
on Software engineering New York, NY, USA: ACM, 2005,
pp. 672—-673.

A. Raza, G. Vogel, and E. Plodereder, “Bauhaus—a taiies
for program analysis and reverse engineering,”Raliable
Software Technologies - Ada-Europe 20@606, pp. 71-82.
[Online]. Available: http://dx.doi.org/10.1007/1176/70Q 6

D. da Cruz, M. Béron, P. R. Henriques, and M. J. V. Peeir
“Strategies for program inspection and visualization,” in
CSE’08—International Scientific Conference on Computer Sc
ence and Engineering High Tatras, Slovakia, September
2008.

D. da Cruz, P. R. Henriques, and M. J. V. Pereira, “Con-
structing program animations using a pattern-based apipjoa
ComSIS—Computer Science an Information Systems Journal,
Special Issue on Advances in Programming Languagas4,

no. 2, pp. 97-114, December 2007, ISSN: 1820-0214.

M. Beron, P. R. Henriques, M. J. V. Pereira, and R. Uzal,
“Program inspection to interconnect behavioral and opmrat
view for program comprehension,” ifork Doctoral Sympo-
sium, 2007 University of York, UK, Oct 2007.

D. da Cruz, R. Fonseca, P. R. Henriques, and M. J. V. Rerei
“How to interconnect operational and behavioral views obwe
applications,” inICPC '08: Proceedings of the 2008 The 16th
IEEE International Conference on Program Comprehension
Washington, DC, USA: IEEE Computer Society, 2008, pp.
263-267.

D. E. Knuth, “The genesis of attribute grammars,"WAGA:

Proceedings of the international conference on Attributeng
mars and their applications New York, NY, USA: Springer-

Verlag New York, Inc., 1990, pp. 1-12.

A. Deursen and P. Klint, “Little languages: little mé&mance?”
University of Amsterdam, Amsterdam, The Netherlands, Tech
Rep., 1997. .

M. Mernik, M. Leni€, E. AvdicauSevi¢, and \Zumer, “LISA:

An interactive environment for programming language devel
opment,”Compiler Constructionpp. 1-4, 2002.

] P. Hudak, “Building domain-specific embedded langsgge

ACM Computing Surveysol. 28, no. 4, pp. 196-202, June
1996. [Online]. Available: http://citeseerx.ist.pswédewdoc/
summary?doi=10.1.1.49.6020

