
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 699–706

ISBN 978-83-60810-22-4
ISSN 1896-7094

Applying Program Comprehension
Techniques to Karel Robot Programs

Nuno Oliveira∗, Pedro Rangel Henriques∗, Daniela da Cruz∗, Maria João Varanda Pereira†,
Marjan Mernik‡, Tomaž Kosar‡ and MatejČrepinšek‡

∗ University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal

Email: {nunooliveira, prh, danieladacruz}@di.uminho.pt
† Polytechnic Institute of Bragança

Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal
Email: mjoao@ipb.pt

‡ University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova 17, 2000 Maribor, Slovenia

Email: {marjan.mernik, tomaz.kosar, matej.crepinsek}@uni-mb.si

Abstract—In the context of program understanding,
a challenge research topic1 is to learn how techniques
and tools for the comprehension of General-Purpose
Languages (GPLs) can be used or adjusted to the un-
derstanding of Domain-Specific Languages (DSLs). Being
DSLs tailored for the description of problems within a
specific domain, it becomes easier to improve these tools
with specific visualizations (at a higher abstraction level,
closer to the problem level) in order to understand the
DSLs programs.

In this paper, comprehension techniques will be ap-
plied to Karel language. This will allow us to explore
the creation of problem domain visualizations for this
language and to combine both problem and program
domains in order to reach a full understanding of Karel
programs.

I. I NTRODUCTION

I N THIS paper, we explore the use of program
comprehension techniques to understand Domain-

Specific Programs (DSPs). By DSP [1], [2], [3] we
mean programs written in a Domain-Specific Lan-
guage (DSL), which in its turn, is designed to pro-
gram specific tasks in a fixed problem domain. To
program in DSLs means to use a specific vocabulary,
structures, and higher level components. Moreover, to
implement this kind of languages, specific tools can
be constructed and they are customized for a problem
domain. These facts make the programming task easier
in this specific context, but difficult to understand by
people that are out of the subject.

We are convinced that we can apply traditional Pro-
gram Comprehension Techniques to DSLs [4], [5], and
we can go further constructing visualizations closer to
the problem domain. This is possible because, from a
DSL program, we can easily infer information about
the problem to be solved.

1This work is part of a bilateral cooperation project (Portu-
gal/Slovenia) supported by FCT, Departamento das Relaçőes Eu-
ropeias, Bilaterais e Multilaterais, and Slovenian Research Agency
(grant No. BI-PT/08-09-008).

The construction of program comprehension tools
can be based on the formal definition of the language
and, in our case, their development relies completely
on traditional grammar-oriented techniques. Using
the grammar, we can generate automatically textual
or visual editors, to create and handle programs in
that language. In a similar way, we can also generate
parsers (generally speaking, language processors) to
extract from the source code static and dynamic infor-
mation to create visualizations helpful to understand it.

In the context of General-Purpose Languages
(GPLs) the information about the problem to be
solved, collectable from the code, is neither sufficient
to infer the object that is controlled, nor theproblem
domain— perceiving what kind of control can be pro-
grammed. Under those circumstances, it is necessary
to resort to other kind of resources like annotations,
comments, user manuals, implementation reports, and
so forth. However, from the definition of DSL comes
out that, when dealing with such languages, we know
the objects operated by the programs; thus it is possible
to construct problem domain visualizations changing
the object states according to dynamic data extracted
from the source code.

In this case we have information about the object,
the problem domain (the operations over the object),
and the program domain (the instructions that modifies
the object state). The mapping of these views improves
the efficiency of program comprehension tools.

The outline of this paper is as follows: in Section II
the related work about PC techniques and tools are
presented; the application of these techniques to DSLs
will be described in Section III; along Section IV we
present the processes of extracting, visualizing, and
synchronizing the information of different domains for
Karel Language [6]; finally the conclusion of the paper
is in Section V.

699

700 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

II. PROGRAM COMPREHENSION, TECHNIQUES

AND TOOLS

Program Comprehension (PC) [7], [8] is a hard cog-
nitive task that involves constructing a mental model
of the program, trying to reconstruct the thoughts
of the original programmer. This process becomes
easier when concrete representations are automatically
produced, revealing different aspects of the program
structure and behavior. Hence, program visualization
and program animations are important aids for ac-
complishing this task. Even more important, is the
ability to create visual representations that allow the
programmer to interconnect the execution of program
statements with the effect produced by them; thus
allowing visualization of the relation between problem
and program domains.

Program Comprehension plays an important role in
the area of software maintenance, as it is a complex
and expensive task. Thus, the need for software en-
gineering tools that facilitate the process of under-
standing computer programs is compelling. In this
context, the main goal of a Program Comprehension
Tool (PCT) is to ease the process of understanding the
structure and functionality of a program. In this field
of PC, many tools were developed along the last 20
years. Imagix 4D [9], CodeSurfer [10], Shrimp [11],
CANTO [12], CodeCrawler [13] and Bauhaus [14] are
only a few tools among many others. All the tools
comply with the referred objective by: providing one
or more known mental models for program compre-
hension; maintaining a repository of structural and/or
behavioral information about a program; providing a
presentation model for visualizing information about
programs in various ways; providing mechanisms for
navigating from one kind of representation to another;
and so forth.

According to our background on program compre-
hension, we are convinced that existing PC techniques
can be used for DSLs. We have some experience with
two different approaches [15]: a non-invasive approach
(the source code does not change) and an invasive
approach (it changes the source code).

Concerning the first one, we have developed an
animator, Alma [16], that does not modify the source
program and uses abstract interpretation techniques,
aimed at an easy and systematic adaptation to cope
with different programming languages. Concerning the
second one, we have applied it in the development
of two other tools, CEAR [17] and WAV [18], a
technique called program instrumentation that modifies
the source code (inserting inspector functions) in order
to collect dynamic information at runtime. In Alma,
the source program is not compiled. Variables are not
converted into memory locations, algebraic operations
are not transformed into register operations involving
value transfers among memory addresses, and control
flow is not implemented as jumps to code addresses.
Instead, we work with abstractions of program con-

cerns (such as assignment, algebraic operations, con-
ditions for controlling the execution flow, input/output,
and so forth) and interpret them (no assembly code is
executed). Concerning the second approach, we have
expertise in weaving inspectors in the source program
to catch and record the functions that are actually
called during execution and their concrete parameters
(in the context of web applications, the program units
that are interpreted by the server, or the links really
visited).

The development of both approaches—abstract
interpretation and code instrumentation—rely com-
pletely on traditional grammar-oriented techniques for
compiler writing and implementation. We use Transla-
tion Grammars or Attribute Grammars [19] to specify
the tools, and resort to Compiler Generators for auto-
matically produce the code of the target processors.

III. O UR APPROACH TOAPPLY PC TECHNIQUES IN

DSLS

Although there are several approaches that we could
follow to implement our ideas, due to our acquain-
tanceship with Alma, we have decided to adhere to its
philosophy. In this context we extended it to deal with
the ideas expounded.

Alma [16] is a system for program visualization and
animation that deals easily with different programming
languages and allows the construction of more appro-
priate visualizations for each domain. The purpose of
this tool is to help the programmer to inspect data
and control flow for a given program (static view of
the algorithm realized by the program—visualization),
and to understand its behavior (dynamic view of the
algorithm—animation). The core of such tool is lan-
guage independent; it is similar to a compiler’s Back-
End (BE) that takes as input an abstract representation.
As intermediate representation, between the Front-End
(FE) and the BE, we use a Decorated Abstract Syntax
Tree (DAST) and implement the visualizer and the
animator components in a systematic way. This is
achieved by means of two rule bases, one for the
visualization of tree nodes, and another one for tree
rewriting. To process a concrete programming lan-
guage, Alma is customized by providing a dedicated
FE that converts the input programs into the internal
abstract representation.

Besides that reconfiguration of Alma, to cope with
different input languages, at present we propose an-
other evolution of Alma toAlma2, a PC tool tuned to
cope with a given DSL.

That evolution relies on the use of a second base
of visualizing rules, synchronized with the first one
and with the tree rewriting system. This new set
of visualizing rules is adapted to each DSL and is
responsible for producing the problem domain view.

Concerning the characteristics of each particular
DSL, a set of animation rules must be defined and
the inclusion in our internal representation of new

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHNIQUES TO KAREL ROBOT PROGRAMS 701

abstractions or even adaptation of their operational
semantics must be done. This will prepare the tool
for the final user that just have to insert a source
program in order to get the visualizations. On the other
hand, since each DSL has special characteristics, we
need to perform a deeper study concerning the kind of
visualizations that are more appropriate for each case.

In our research project, several DSLs will be studied
but we have started the work with Karel Programming
Language, and this paper is devoted to report the
outcomes so far attained.

IV. COMPREHENDINGKAREL PROGRAMS

In the previous section we gave an overview of the
approach we conceive for the development of a pro-
gram comprehension tool for DSLs. In this section, we
show how we useAlma2 to help on the comprehension
of programs written in Karel Language.

Karel Language [6], is a DSL to control a robot,
called Karel2. As the language also has the aca-
demic purpose of teaching the bases of imperative
programming, the robot is neither a full-featured nor
a sophisticated machine. Besides turning on or off,
moving one step ahead, turning left, picking objects
from the ground, keeping them in an object bag, and
putting them back on the ground,Karel, the robot,
knows(i) which direction it is facing to;(ii) whether
it is blocked by walls or even(iii) whether it sees
objects in the ground.

To sum up, the robot only understands a few basic
instructions, hence, its controlling language is simple
as can be noticed in Listing 1, where a version of Karel
language grammar is presented3. Notice, though, that
the language only specifies the robot actions, and it
does not concern the modeling of the world where the
robot lives.

Listing 1. Formal Definition of Karel Language
1

2 s t a r t → BEGINNING−OF−PROGRAM program
3 END−OF−PROGRAM
4 program → d e f i n i t i o n∗ BEGINNING−OF−EXECUTION
5 s t a t e m e n t∗ END−OF−EXECUTION
6 d e f i n i t i o n → DEFINE−NEW−INSTRUCTION i d e n t i f i e r AS
7 s t a t e m e n t
8 s t a t e m e n t → b loc k | i t e r a t i o n
9 | l oop | c o n d i t i o n a l

10 | i n s t r u c t i o n
11 b loc k → BEGIN s t a t e m e n t∗ END
12 i t e r a t i o n → ITERATE number TIMES s t a t e m e n t
13 l oop → WHILE c o n d i t i o n DO s t a t e m e n t
14 c o n d i t i o n a l → IF c o n d i t i o n THEN s t a t e m e n t
15 (ELSE s t a t e m e n t) ?
16 i n s t r u c t i o n → TURNON | MOVE | TURNLEFT
17 | PICKBEEPER | PUTBEEPER
18 | TURNOFF | i d e n t i f i e r
19 c o n d i t i o n → FRONT−IS−CLEAR | FRONT−IS−BLOCKED
20 | LEFT−IS−CLEAR | LEFT−IS−BLOCKED
21 | RIGHT−IS−CLEAR | RIGHT−IS−BLOCKED
22 | BACK−IS−CLEAR | BACK−IS−BLOCKED
23 | NEXT−TO−A−BEEPER
24 | NOT−NEXT−TO−A−BEEPER

2The robot inherited its name from the inventor of the word
and conceptrobot: Karel Čapek, a well-known Czech writer and
playwright.

3The original grammar is available at http://mormegil.wz.cz/prog/
karel/prog doc.htm

25 | ANY−BEEPERS−IN−BEEPER−BAG
26 | NO−BEEPERS−IN−BEEPER−BAG
27 | FACING−NORTH | NOT−FACING−NORTH
28 | FACING−SOUTH | NOT−FACING−SOUTH
29 | FACING−EAST | NOT−FACING−EAST
30 | FACING−WEST | NOT−FACING−WEST
31 i d e n t i f i e r → [a−z] ([a−z] | [0−9]+)∗

32 number → [0−9]+

A. Knowledge Analysis

Regarding the language description and its formal
definition, we can infer some knowledge about the
program and problem domains, and we also can create
a set of connections between them, to ease the com-
prehension of the target program.

In Karel language, looking to its description it is
not difficult to conclude that it is used to control some
kind of robot. From the formal definition, we suspect
how to control that robot. In other cases, some extra
documentation should be consulted.

However, as long as thismachinehas no brain to
think on its movements, we can infer that there is
an internal state that is changed by the sequence of
operations allowed by the controlling language. This
means that the language does not control the robot
directly, instead it controls its internal state. This is
what really happens at the program level. But persons,
who try to understand the programs in this language,
may be interested not only in what happens internally,
at the robot’s state, but also in what are the effects
produced, externally, in the robot.
Alma2 purpose is precisely that: to give a joint

view of what is done at program level, and what are
the repercussions at problem (real-world) level. So,
we have to define the visualization of both domains.
Program level visualization requires the creation of
the program’s state (the robot’s internal state) and the
definition of the interpretation tree4. Problem level
visualization requires the definition of images that
depict situation on that domain; it needs also the
creation of connections with language operations and
constructions. These connections will make possible a
synchronized visualization of both domains, enabling
an inspection of what are the program actions that
produce the effect (movement) on the robot. Finally,
it requires the construction of the animation, resorting
to the images and the mappings created.

Again from the language description and its formal
definition, we can infer concepts that define the robot’s
state. Table I shows these concepts, to which we call
variables.

Also from the grammar of Karel Language and
the description of the domain, incremented with the
empirical knowledge about the controlled object (the
robot), we can infer the situations (poses of the robot)
illustrated in Figure 1. This figure is composed of five

4By interpretation tree we mean an attribute valued (decorated)
abstract syntax tree that is a static/dynamic semantic representation
of the input program, either in a imperative or declarative language.
Usually in the literature it is namedexecution tree.

702 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

TABLE I
KAREL’ S INTERNAL STATE VARIABLES

VARIABLE DESCRIPTION

posX Stores theX-axe value of the robot’s position.
posY Stores theY -axe value of the robot’s position.
angle Stores the angle of the robot’s direction.
beepers Stores the number of objects the robot has in its bag.

images. Each one represent an upper view of the robot
in a different situation: 1) the robot is turned off (red
light in its back); 2) the robot is turned on (green
light in its back); 3) the robot rotated left; 4) the robot
picked an object and 5) the robot dropped an object.
These images would be combined with each other to
perform animations directed by the operations at the
program level. This is an issue that will be addressed
in Section IV-C.

1 2 3

4 5

Fig. 1. Problem Domain Situations: Karel Possible Poses

In the next Section IV-B, we will center attentions
in the definition of the program domain visualization.

B. Visualizing the Program Domain

When writing a program with Karel Language, the
user does not need to be worried about the definition of
a state for the robot, because such state should already
be defined by the compiler/processor. The delegation
of thesetasks(and other semantic definitions) to the
compiler, is a very common practice when dealing with
DSLs. As found in [20], the same does not happen
with GPLs, where the state of the program is defined
in the program itself. This way, as the BE ofAlma2 is
an interface for the processing of a language, we must
define the operational semantics of Karel Language.

We create anAlma2 FE for Karel Language, in
order to convert Karel programs intoAlma2 tree-based
abstract representation. LISA system [21], based on
attribute grammars, is used to construct the FE for
Karel. We start by implementing this FE by defining
the variables and nodes that will be able to describe the
robot’s internal state. Then, as a second step, for each
Karel instruction, we create DAST nodes, resorting to
Alma2 notation. The functions and objects ofAlma2

are implemented in Java. LISA is used to synthesize
an attribute that will store the complete DAST of a

Listing 2. Definition of the Robot’s State (Fragment)
1

2 CToken tX = new CToken ("posX" , . . .) ;
3 CToken tY = new CToken ("posY" , . . .) ;
4 CToken tA = new CToken ("angle" , . . .) ;
5 CToken tB = new CToken ("beepers" , . . .) ;
6 (. . .)
7

8 pub l i c Alma . CAlmaNode i n i t S t a t e (){
9 CConstNode c0 =new Alma . CConstNode (0) ;

10 CAlmaNode nX = new AssignNode (tX , c0) ;
11 CAlmaNode nY = new CAssignNode (tY , c0) ;
12 CDeclNode x =
13 new CDeclNode (tX , "integer" , nu l l , nX)

;
14 CDeclNode y =
15 new CDeclNode (tY , "integer" , nu l l , nY)

;
16 CAlmaNode dec l1 =new Alma . CStmtsNode (x , y)

;
17

18 (. . .)
19 }

program. This DAST, representing the internal and
abstract structure of a program, is built resorting to
the constructs defined inAlma2. In some extent,
Alma2 can be seen as an domain-specific embedded
language [22].

The code fragment in Listing 2 shows how we
declare the variables that determine the state of the
robot, and initialized the position. The idea is toi)
define global tokens (line 2 to 5) that would be used in
whole grammar to refer to the variablesposX, posY,
angle andbeepers, respectively;ii) then we create
an auxiliary function,initState, that builds the
nodes of a branch with the variable’s declaration and
initialization (lines 8 to 19). The fragment, in Listing 2,
builds a tree equivalent to the tree that would represent
a piece of an imperative language program like:

integer posX = 0, posY = 0;

The tree resultant from the auxiliary function pre-
sented in Listing 2 is prepended to the reminder
of the tree synthesized when processing a program
in Karel Language. In Listing 3 we show another
fragment of the Karel Language processor. This time,
we illustrate the construction of the tree representation
and semantics behind the commandPICKBEEPER.

The commandPICKBEEPERhides, in its abstraction,
a small operation that modifies the state of the robot,
namely, it increments the number of beepers. So, when
including this command in a program, at interpretation
phase we must consider the program as having one
more statement equivalent to:

beepers = beepers + 1;

As the other instructions in Karel Language have
a similar abstraction level, the interpreter of each
one requires a similar approach, adding statements to

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHNIQUES TO KAREL ROBOT PROGRAMS 703

Listing 3. Definition of the Program Domain Visualization (Frag-
ment)

1

2 r u l e I n s t r u c t i o n P i c k B e e p e r {
3 INSTRUCTION : : = # P ickbeeper compute{
4 INSTRUCTION. t r e e =
5 new AssignNode (
6 tB ,
7 new COperNode (
8 new CVarNode (tB) ,
9 new CConstNode (1) ,"+"

10)
11) ;
12 } ;
13 }

change the state. For instance, the instructionTURN-
LEFT, changes the value of the variableangle in the
following way:

angle = (angle + 90)%360

A concrete illustration of a sub-tree from the pro-
gram’s DAST, can be seen ahead in this document, in
Figure 3.

C. Visualizing the Problem Domain

As stated before, to build the visualization of the
problem domain, the first step is to create connections
between problem and program concepts — with them
we would be able to see which parts of the program
affect the produced output (at problem domain); and,
as a last step, to define the animation of images
(depicting situations of the problem) according to the
mappings created.

Since the problem domain underlying the Karel
Language was known, we are able to infer the chief
concepts characterizing the problem domain (see Ta-
ble II, first column); from the program domain we
identify the main operations (see Table II, second
column).

TABLE II
MAPPINGPROGRAM AND PROBLEM CONCEPTS

PROBLEM DOMAIN →֒ PROGRAM DOMAIN

Turn Off TURNOFF

Turn On TURNON

Step Ahead MOVE

Turn Left TURNLEFT

Pick Object PICKBEEPER

Drop Object PUTBEEPER

With the contents of this table we are able to look
back to the processor we were creating withAlma2,
and finish it by adding the visualization of the problem
domain.

In Alma2, the visualization of the problem domain
has a central concept, which we callActor. An Actor
is an object either controlled by the language or just
referenced by it. It is composed of a set ofposes,
which it can stand through the animation process, and

an internal state. A language can have more than one
Actor associated, in order to be more perceptible the
visualization of the problem domain. Besides the Ac-
tor, to define the problem visualization,Alma2 offers
a set ofAnimation Patternsthat stimulate the internal
state of the Actors and provoke their animation. Using
the same approach of the last section, visualization
rules will be applied to the DAST but, in this case,
they are based on the animation patterns which are
associated to the nodes.

In our case study, the Karel Language only needs
one actor: the robot. The images in Figure 1 illustrate
some of the possible poses of the robot. Figure 1 (3)
is equal to Figure 1 (2), it only was rotated90o to the
left, the result of a possible animation.

Listing 4, line 2, shows how we created the Actor for
Karel Language. The first argument of the constructor
is the name of the images that would serve as poses
for the Actor. The second argument is the definition
of the Actor’s state.

This Actor is combined with animation patterns
to define the animation of each instruction on the
language. We use the knowledge in Table II to guide
the creation of the concrete mappings withAlma2. In
Listing 4 we present two fragments of code that define
the animation for the commandsTURNLEFT (lines 5
to 17) andPICKBEEPER(lines 19 to 29).

In both cases we append animation patterns to the
same kind of tree node:AnimAssignNode. These
nodes behave exactly the same as theAssignNode
used in Listing 3, but they have a new attribute that
defines the animation. In the first fragment of the code,
in Listing 4, we associated the patternRotate. The code
means that the Actor,robot, will perform a rotation
over the value stored in variableangle of its state,
and will use the second pose in the set of poses5. For
the second fragment we used the patternIdentity. The
code means that the animation of the Actor,robot,
is only to change its poses from the fourth pose to the
third, and from the latter to the second pose in its set
of poses.

With all of the animations defined and appended
to the tree nodes, theAlma2 FE for Karel Language
is complete. Figure 2 shows some of the results of
animating the problem domain of a program, inside
the Alma2’s environment.

D. Visualizing the Interconnection Between Domains

Finally, with Figure 3, we show the complete syn-
chronization of all the visualization perpectives.

The working window ofAlma2 is divided into four
parts that show different perspectives of the program
being interpreted. In the upper left corner, the Iden-
tifier Table (IT), representing the internal state of the
controlled object, is displayed. Also on the left but
below the IT, appears the source code (the line being
interpreted is highlighted). In the upper right corner,

5Notice that the indexes to access the poses are zero-based.

704 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Listing 4. Definition of the Problem Domain Visualization (Fragment)
1

2 Actor r o b o t = new Actor (new S t r i n g [] {"Off" , "On" , "Pick" , "Drop"} , s e t S t a t e ()) ;
3

4

5 r u l e I n s t r u c t i o n T u r n L e f t {
6 INSTRUCTION : : = # T u r n l e f t compute{
7 INSTRUCTION. t r e e =
8 new CStmtsNode (
9 new AnimAssignNode (

10 (. . .)
11 new A n i m a t i o n P a t t e r n [] {
12 new APRotate (robot , new i n t [] {1} , "angle")
13 }
14)
15) ;
16 } ;
17 }
18

19 r u l e I n s t r u c t i o n P i c k B e e p e r {
20 INSTRUCTION : : = # P ickbeeper compute{
21 INSTRUCTION. t r e e =
22 new AnimAssignNode (
23 (. . .)
24 new A n i m a t i o n P a t t e r n [] {
25 new A P I d e n t i t y (robot , new i n t [] {3 ,2 ,1})
26 }
27) ;
28 } ;
29 }

Fig. 3. Synchronization of all Visualization Perspectives

NUNO OLIVEIRA ET. AL: APPLYING PROGRAM COMPREHENSION TECHNIQUES TO KAREL ROBOT PROGRAMS 705

(a) (b)

(c) (d)

Fig. 2. Problem Domain Visualization.(a) The robot is turned off;
(b) The robot turned left for three times;(c) The robot gave a step
ahead;(d) The robot is picking an object (we only show the first
frame of the animation associated).

the interpretation tree is shown, and below that, the
effects of the program execution/interpretation on the
objects of the problem domain are displayed.

The views displayed in the four windows are syn-
chronized byAlma2 engine while performing tree
traversals to interpret (and animate) the input program.

The synchronous step-by-step evolution of the in-
formation displayed for each view makes visible the
cause-effect relation, and grants the envisaged relation
between problem and program domains, aiding the
analyst to understand the program meaning. It is
worthwhile to notice that this feature comes for free
due toAlma2’s principle and architecture; it is just
needed to develop a FE for the concrete DSL.

V. CONCLUSION

Karel Programming Language is a Domain-Specific
Language designed only to command a robot. Writing
a program in Karel Language is an easy task for
someone who knows the problem domain owing to
the high level of the language constructors and their
closeness of mapping to that domain. However the
reverse is not true. To understand a program is not
an easy task, specially if the person in-charge has no
knowledge of the problem domain.

In this paper we propose the use of a traditional non-
invasive program comprehension approach to make
the understanding of domain-specific programs easier,
and more effective. Static information extracted from
the source program has been used to create three
synchronous views. The Identifier Table (displaying
the system state), and Abstract Syntax Tree (decorated
with attribute values) are traditional, and provided by
many tools; an animation of the program execution is
then produced by abstract interpretation over the tree.
The third one is novel: it reproduces the effects of
program execution on the problem domain. To build

that third view, a deeper knowledge of the connections
between the language constructors and the concepts in
the problem domain is required. When dealing with
GPLs this mapping is not evident due to the general
purpose character of those programming languages.
Therefore it is not common to find PC tools with that
capability. Working with DSLs, the closeness between
language purpose and a concrete domain, enables to
build and offer such a view.

Besides introducing our proposal and displaying a
few screenshots fromAlma2 output, we also dis-
cussed, from a technical point of view, how the system
was implemented.

The main achievements obtained when exercising
with Karel Language6, were:

• the feasibility of re-using Alma, principles and
environment.

• the easiness of additionally representing the prob-
lem domain and the synchronization of the three
views.

• the worth of Alma2 tool for a faster program
comprehension.

In the near future, we will apply the same approach
to other case studies dealing with specification lan-
guages (that are, indeed, equivalent to declarative pro-
gramming languages). The aim is to corroborate our
working hypothesis, and to generalize the approach.

Concerning the upgrade ofAlma2 in the direction
of a customizable tool, we forecast that it would be
desirable to allow end-users, not language designer or
developer, to easily specify their own visualization.

The chief idea is to build a graphical editor. The
graphical editor will enable the end-user to associate
each node of the DAST with a geometric figure (a
square, circle, etc), or an image and also, it will enable
the end-user to associate each node with an exter-
nal (end-user defined) drawing function. The external
function could be called using the attributes available
at DAST nodes, to tune the picture to each concrete
situation. We can include that functionality, keeping
the tree visualizer engine generic and unchanged; and
also the animator system, based on a tree rewriting
engine, is kept unchanged.

This approach is easy to implement and will grant to
the visualizer/animator system, customized for a con-
crete DSL, effective improvement and better quality as
an aid tool for understanding specifications/programs
written in that specific language.

REFERENCES

[1] T. Kosar, P. M. Lopez, P. A. Barrientos, and M. Mernik,
“A preliminary study on various implementation approaches
of domain-specific language,”Inf. Softw. Technol., vol. 50,
no. 5, pp. 390–405, April 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2007.04.002

6The first case-study of our bilateral project, namedProgram
Comprehension for Domain-Specific Languages(DSLpc).

706 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

[2] M. J. V. Pereira, M. Mernik, D. da Cruz, and P. R. Hen-
riques, “Program comprehension for domain-specific lan-
guages,”ComSIS – Computer Science an Information Systems
Journal, Special Issue on Compilers, Related Technologiesand
Applications, vol. 5, no. 2, pp. 1–17, December 2008.

[3] M. Mernik, J. Heering, and T. Sloane, “When and how to
develop domain-specific languages,”ACM Computing Surveys,
vol. 37, no. 4, pp. 316 – 344, 2005.

[4] J. I. Maletic and A. Marcus, “Supporting program comprehen-
sion using semantic and structural information,” in16th IEEE
International Conference on Automated Software Engineering
(ASE2001). San Diego - USA: IEEE, November 2001, pp.
107–114.

[5] A. J. Ko and B. Uttl, “Individual differences in program
comprehension strategies in unfamiliar programming systems,”
in 11th IEEE International Workshop on Program Comprehen-
sion (IWPC’03), pages 175.184, Portland, Oregon,USA, May
2003.

[6] R. Pattis,Karel, The Robot: A Gentle Introduction to the Art
of Programming, 1st ed. John Wiley and Sons, Inc., 1981.

[7] R. Brooks, “Using a behavioral theory of program compre-
hension in software engineering,” inICSE ’78: Proceedings
of the 3rd international conference on Software engineering.
Piscataway, NJ, USA: IEEE Press, 1978, pp. 196–201.

[8] M.-A. Storey, “Theories, methods and tools in program com-
prehension: Past, present and future,” inIWPC ’05: Pro-
ceedings of the 13th International Workshop on Program
Comprehension. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 181–191.

[9] “Imagix 4d.” [Online]. Available: \url{http://www.imagix.
com/products/products.html}

[10] P. Anderson and M. Zarins, “The codesurfer software under-
standing platform,” inIWPC ’05: Proceedings of the 13th
International Workshop on Program Comprehension. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 147–148.

[11] M.-A. Storey, C. Best, J. Michaud, D. Rayside, M. Litoiu,
and M. Musen, “Shrimp views: an interactive environment for
information visualization and navigation,” inCHI ’02: CHI ’02
extended abstracts on Human factors in computing systems.
New York, NY, USA: ACM, 2002, pp. 520–521.

[12] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zanfei, and
E. Merlo, “Program understanding and maintenance with the
canto environment,” inICSM ’97: Proceedings of the Inter-
national Conference on Software Maintenance. Washington,
DC, USA: IEEE Computer Society, 1997, p. 72.

[13] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger, “Codecrawler:
an information visualization tool for program comprehension,”
in ICSE ’05: Proceedings of the 27th international conference
on Software engineering. New York, NY, USA: ACM, 2005,
pp. 672–673.

[14] A. Raza, G. Vogel, and E. Plödereder, “Bauhaus—a tool suite
for program analysis and reverse engineering,” inReliable
Software Technologies - Ada-Europe 2006, 2006, pp. 71–82.
[Online]. Available: http://dx.doi.org/10.1007/11767077 6

[15] D. da Cruz, M. Béron, P. R. Henriques, and M. J. V. Pereira,
“Strategies for program inspection and visualization,” in
CSE’08—International Scientific Conference on Computer Sci-
ence and Engineering. High Tatras, Slovakia, September
2008.

[16] D. da Cruz, P. R. Henriques, and M. J. V. Pereira, “Con-
structing program animations using a pattern-based approach,”
ComSIS—Computer Science an Information Systems Journal,
Special Issue on Advances in Programming Languages, vol. 4,
no. 2, pp. 97–114, December 2007, ISSN: 1820-0214.

[17] M. Berón, P. R. Henriques, M. J. V. Pereira, and R. Uzal,
“Program inspection to interconnect behavioral and operational
view for program comprehension,” inYork Doctoral Sympo-
sium, 2007. University of York, UK, Oct 2007.

[18] D. da Cruz, R. Fonseca, P. R. Henriques, and M. J. V. Pereira,
“How to interconnect operational and behavioral views of web
applications,” inICPC ’08: Proceedings of the 2008 The 16th
IEEE International Conference on Program Comprehension.
Washington, DC, USA: IEEE Computer Society, 2008, pp.
263–267.

[19] D. E. Knuth, “The genesis of attribute grammars,” inWAGA:
Proceedings of the international conference on Attribute gram-
mars and their applications. New York, NY, USA: Springer-
Verlag New York, Inc., 1990, pp. 1–12.

[20] A. Deursen and P. Klint, “Little languages: little maintenance?”
University of Amsterdam, Amsterdam, The Netherlands, Tech.
Rep., 1997.

[21] M. Mernik, M. Lenič, E. Avdičaušević, and V.̌Zumer, “LISA:
An interactive environment for programming language devel-
opment,”Compiler Construction, pp. 1–4, 2002.

[22] P. Hudak, “Building domain-specific embedded languages,”
ACM Computing Surveys, vol. 28, no. 4, pp. 196–202, June
1996. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.49.6020

