IM) Proceedings of the International Multiconference on ISBN 978-83-60810-22-4
Computer Science and Information Technology pp. 635-642 ISSN 1896-7094

Developing DSLs using combinators.
A design pattern

Pablo Andrés Barrientos Pablo E. Martinez Lopez
Universidad Nacional de La Plata, Universidad Nacional de Quilmes.
Facultad de informéatica fidel@ung.edu.ar

pablo.barrientos@sol.info.unlp.edu.ar

Universidad Nacional de Quilmes
pbarrientos@ung.edu.ar

Abstract—The development of domain-specific languages implementation, and deployment. They identified some com-

(DSLs) is considered by many authors as a hard task. To simgli monalties or patterns in each of these phases that can be
the design of DSLs we describe a design pattern based on theapplied when someone develops a DSL.

combinators technique, which can also provide guidelinesof .
previous domain analysis phase because it is based on equaial Language design is about how to model, relate, and structure

reasoning over the domain knowledge. the parts of a language. In the classification by Mernik
Combinators is a common technique from functional pro- et al. [13], the design patterns are characterized along two
gramming to write programs. It was used many times to dimensions: the relationship between the DSL and existing

implement domain-specific embedded languages (DSELS) but|54,ages, and the formal nature of the design description.
that implementation approach is not the only one. In this par ’

we present the pattern together with the underlying and basi A way to design a DSL is to base it on an existing language.
ideas behind it. We also show benefits of using it and illustie Mernik et al. identified three kinds of design patterns based
the use of this pattern with some examples. on this idea:

Index Terms—DSLs, combinators, design patterns. « Piggyback: an existing language is partially used

« Specialization: an existing language is restricted to pro-
. INTRODUCTION vide features from a problem domain
« Extension: an existing language is extended with new

HEN a programmer writes a program, he expresses .
features that address domain concepts

a solution for a particular problem. Although that
problem’s domain can be limited, usually the language us€h the other hand, the developer could create a DSL from
to write the solution is a general-purpose language (GPIscratch, with no relationship to any existing language.
Domain-specific languages (DSLs) are particular languagesThe other dimension for classifying DSL design patterns is
tailored to a particular problem domain. DSLs give the prdermality: they can be either informal or formal. In an infoal
grammer, and mainly the end-user with no previous knowleddesign the specification is made in some form of natural lan-
about programming, the possibility to express solutions: toguage. A formal design would consist of a specification wmitt
problem by using domain-specific notations and constrostio using one of the available semantic definition methods [13].
These constructions and notations capture the semardiosdfr The pattern we are presenting is a formal design pattern
particular bounded domain in such a way that it becomes eagyit is also related with a formal domain analysis, because i
to understand, write and think by expert people of that sjgeciis based on equational reasoning over the domain knowledge
domain. DSLs are concise languages and mainly declaratjg@]. But it is really hard to classify the pattern in the
but they can also be imperative, depending on the applitatigther dimension. This pattern is related to language ifwent
domain. because we use the elements and concepts defined inside

In order to define a DSL, all the concepts from the dahe pattern to design a language from scratch. On the other
main are defined minimizing the semantic gap that exidt&nd, an existing language designed using this pattern can
between the problem’s domain and the program, hiding the extended to produce a new language. Inside the language
implementation details and making the self documentation exploitation pattern, it is really hard to establish prdpéhe
programs easy. Additionally, the amount of code which muskact nature of the pattern (that is, its subpattern). Wel a@e
be written is reduced, increasing productivity and dedngns existing language designed using the combinators pattern i
maintenance costs. order to exploit it. DSLs designed using other patterns aoul

Mernik et al. [13] detailed different DSL developmenbe hard to exploit using combinators and this could be a gtron
phases which interact with each other in the developmerecondition. More details about extensibility will be dissed
process itself. These phases are decision, analysis, ndesigter, when we fully describe the pattern.

635

636 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

The pattern we are presenting is based on a very intuitiixSL to distinguish them. Finally, the user defines all difetr
idea for programmers: a domain should be representedsasvices that use the rail network, and the system is later
combinations of subdomains, i.e., denotational semargicssimulated by some program.
compositional (e.g., the denotation 6P1 + P2 is given We start defining a function to construct simple rails with
by combining somehow the denotations of P1 and P2). The connections asil : Id — Length — Rail. So,rail 1 30.7,
pattern is based on combinators. Combinators are elemestan example of a rail with identifier 1 and length 30.7.
that take solutions of subproblems and combine them intorathe same way, stations can be described by the function
solution for a given problem, thus capturing very well thead station : Name — Station. These functions are combinators
of modular programming. They can be represented as (highefvery simple elements of the domain (features of the elémen

order) functions that do not refer to global variables. that the function returns) that construct basic elemenisuof
The combinators technique provides solutions by providingterest. These kinds of functions are calleshstructors
three things: The connections between rails and stations are defined by
« a basic type to represent solutions to the problem, the functions:
« a number of basic elements (called atomic solutions) <> : Rall * Rail — Rail
representing solutions to basic instances, describes a link between two rails.
« a number of ways to combine solutions to subproblems —| : Rail — Station — Rail
to get solutions to more complex problems. describes the link between a rail and a station.
All non-trivial solutions must be represented as combina- | : Station — Rail — Rail
tions of smaller solutions — this is not a limitation for the describes a connection similar to the previous one,
application of combinators, because most sensible prablem but with the station as the first argument.

can be analyzed by separating and dividing them. . , . -
This technique has been widely used in functional program The functions we defined above, are called simpbynbi

ming for developing solutions for specific domains. The sal piators and they are characterized by the kind of arguments

e . A
. ; L ey take, which are elements of the domain.

underlying ideas can be applied for DSL design, mdepemydentt A)\/s the reader can observe, a station can appear many
of the way the language is implemented. '

I . . . T times in different rail routes. The rails also can appear
The contribution of this paper is the identification anclfn different routes. To differentiate the routes with each

description of a design pattern for DSLs which can be use?her the user can transform them by giving a coloring
as part of development process. This paper presents fne ’

Combinators pattern following the precise descriptiormfat 0 the routes. With this purpose, we define the function

. : : loring : Color — Rail — Rail. This kind of combinator
proposed by Gamma for object-oriented design patterns | tﬁuat takes elements of the domain and returns a differgmat ty
Our intention here is two-fold: to describe the pattern in a

clear and widely accepted format, and to suggest the adoptéje element) is calledransformer When transformations are

of this format for DSL design patterns description in futur?h sgr|bed in the .form of equations, they can be used to guide
literature. e implementation of the static semantics of the language

(with static semantics we refer to those actions perfornyea b
II. DESIGN PATTERN DESCRIPTION compiler that depend on the program being compiled; dynamic
semantics represents the computations which depends on inp
)) ~ data of the program and they must be postponed until runtime)
_ Cqmblne}tors —formal design pattern— language exploita- gge the sample code section to get an example.
tion/inventiort. The user can define routes by using equations. The name
of the route is the right-hand side and the description is the

) . left-hand side of the equation.
To allow the design of a DSL in such a way that the end- . \ve change the definition oRail from a simple

gser e_:prresdsefg Fhe underlyfmg c%mpo_smonil structu:cre ﬁollelement to a synonym of functiofsain — Time — Service
omain by denining a set of combination schemes ot smaler i.e., rail combinators defined before are indeed higher-

solutions. order functions. Services are still defined using equatidos
Motivation construct Time elements, we use standard notation (e. 3014
st to give simplicity and expressiveness. We finally defiree

Consider we want to simulate a rail network and its conne(#réﬂ] constructotrain :1d — Capacity — Length — Train.

ing services. The end-user specifies the components of a ral}, _. . . .
.) . . simple example of Buenos Aires’ metro rail system is
network by declaring stations, rails, and connections betw . Cor _)
given in Figure 1 — the length of rails is not precise and

them. As the structure is given by composing different rail X . , L .
L .) . '~ Several stations were omitted. Infix notation is used foahin
and attaching intermediate and final stations, the comtigat . o . . :
combinators. Additionally, curried versions of functioase

are a good choice. Colors for different routes are definedan tused. The curried version of functions is obtained by réptac

1we follow the classification proposed by Mernik et al. [13kdebed in a structured argument by a Squence of ;lmpler Qnes- For
section | example:smaller : Int — Int — Int is the curried version of

Name and classification

Intent

PABLO ANDRES BARRIENTOS ET. AL: DEVELOPING DSLS USING COMBINATORS

station 'Constitucion’
station 'Independencia’
station 'Diagonal Norte’

Constitucion =
Independencia
DiagonalNorte =

637

Retiro = station 'Retiro’
Catedral = station 'Catedral’
Callao = station 'Callao’
CongresoDeTucuman = station 'Congreso de Tucuman’
lineC = coloring Blue (Constitucion |— (rail 1 0.5) <> (rail 2 0.4) —| Independencia |—
(rail 3 1.0) <> (rail 4 0.5) —| DiagonalNorte |— (rail 5 1) |— Retiro)
lineD = coloring Yellow (Catedral |— (rail 11 0.5) —| DiagonalNorte |— (rail 12 0.2)
—| Callao |— (rail 13 0.4)<> (rail 14 0.9) <> (rail 15 1))
|— CongresoDeTucuman)
serviceCl = lineC (train 1100 50) (9:00)
serviceC2 = lineC (train 1 10050) (11:00)
serviceD = lineD (train 2 43 25) (9:15)
Fig. 1. Short Buenos Aires’ metro system modeled using tlzengke DSL
smaller : Int x Int — Int. So, the function is writtesmaller .

1 2, instead ofsmaller (1,2).
Applicability
Use the Combinators pattern, if
« The meaning of elements from the domain can be ex-
pressed in a compositional way
Structure
The curried version of functions is usually used. In Figure
2 we show the structure of the pattern.
Participants

« Constructordqrail, station, train)
To implement combinators over a particular domain some

basic elements must be chosen and defined. Each element

of the domain is extrapolated to what constitutesodu-
tion. Each solution expresses the denotational semantics
of the basic elements of the domain. These elements are
defined using functions called constructors.
« Combinatory|—, —|, <>)
Combinators are defined to combine two or more el-
ements (solutions) of the domain to construct bigger
elements and get the desired solution.
« Transformerdcoloring) .
In some cases, the elements of the domain must be
modified somehow. Thdransformersof solutions are e
defined to this end.

Consequences .

The Combinators pattern has the following advantages and

consequences:

« The code is easy to understand and reason abichg no-
tation is not only easy to design, but also easy to use and
reason about (equational reasoning is used when defining
the meaning). It is possible even for non-programmers
to understand the code of the DSL because the domain
semantics is captured concisely.

Language extensioitf we want to enrich a DSL with new
features, we can define combinators that take elements
from the DSL and new elements that extend the domain.
The result of each combinator is a new element belonging
to a new domain (the union of the previous DSL domain
and the new elements for the extension). The resulting
DSL has the combinators from the former DSL, new
combinators and maybe transformers for its elements.
Additionally, some combinators could be joined to get
a new one, to obtain a clear syntax which reflects the
domain. In modular design, this idea could be used
making a DSL a module and adding new features from
other modules by using combinators.

Language extension seems to be simple but the new
domain must be analyzed since some inherited proper-
ties from the original domain can be invalid, and new
properties could emerge.

At the end of sectiorBample codehere is an example

of language extension.

Implementation

There are some issues to consider when implementing this
pattern.

Infix notation The binary combinators are usually more
readable when using infix.

Curried functions Functions are better written using
curried versions, to get a nice and more convenient
notation and to reduce the use of parenthesis.
Language derivation from formal specificatiorhe com-
binators approach is highly amenable to formal methods,
for many of the reasons already mentioned. The key point
is that one can reason directly within the domain seman-
tics, rather than within the semantics of the programming
language.

Implementation of atomic solutions as well as combina-
tors and transformers, could be derived from their speci-
fications following the method proposed by Hughes [9].

638 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

/I use of constructors - basic solutions
([definition, =]constructor_of_sinple_el ement,)*

/I use of constructors with parameters
([definition. =] constructor_of_el enent . parameter, ...parametes,)*

/I use of combinators - complex solutions
(definition, =] conbinator, elenment; ... elenent,)*

/I use of transformers
(definition, = Jtransformer, element,, ...elenment,,)*

Fig. 2. Structure of the DSL code when applying the pattern

Hughes made a formal specification of pretty printetgechnique used in Feature Oriented Domain Analysis (FODA)
for structured data, studied the algebraic properties [f0]. It describes the composition of application domaind a
such combinators, and then used the results to guide tteptures their variable parts. For more information abdit F
language design and implementation, based on the idélas reader can see the original paper [16]. FDL* restates the
behind combinators. semantics of FDL by using an algebraic model. We describe
« Implementation approacheBSL design patterns are in-FDL* constructions from a combinators point of view. The
dependent of the implementation pattern, but in this casesult is almost the same as the one obtained with algebraic
the resulting code looks very functional, and this could bmodels [11] because it follows the same domain analysis.
a problem for coding it. However, it must be observed that In FDL*, the main idea is to represent features of a given
it is just a matter of notation. The only implementatiorsystem, so the most important and basic element of the
approach that seems to be problematic is the embeddahgmain is the feature, which has its name as a property. It
of the language in a non-functional base/host language.a basic solution and we define it by using the constructor
However, we can express the semantics of the languagatdémic : String — Feature. There is also a special element in
we can define somehow the semantics of combinators the domain that represents a null feature, representeuilas
for instance, by using th€ompositeattern [6] in object- : Feature.
oriented programming languages. C++ is an example ofThe ways to combine the features and generate new ones
a non-functional language that can express higher-ordage given below as function signatures.

and polymorphic functions, including lazy evaluation opt : Feature — Feature

[12]. For the rest of the implementation approaches, this an optional feature

notation should not represent a problem. all : Feature * Feature — Feature
« Functional embedded approacifo embed the DSL using two mandatory features

functional languages is the easiest and suitable approach
for this pattern, because semantics is written with no
additional costs. Functional languages provide all the
(meta) constructions used in this pattern and, in many
cases, they provide syntactic facilities (like data types
definitions in Haskell [19]). Existing mechanisms such as .
function definitions or operators with user-defined syntax the name O,f a composite .featur.e .t.hat appears else-
are used to build objects, combinators and transformers Whe_re and '_S replaced t?y its def|n|t|or_1.

for the resulting DSL. The syntactic mechanisms of the W& describe an implementation of FDL* into the pure
base language are used to express the idiom of {plyect-oriented programmlng_language Smalltalk. We d=tid
domain. The objects defined in the DSL represent boffi US€ thecompiler generatoimplementation approach [13]

one-of : Feature x Feature — Feature
two alternative features

more-of ; Feature * Feature — Feature
a non-exclusive selection

feature_name : Feature

abstract ideas and their concrete implementation. by using a tool called SmaCC, which is a Yacc-based compiler
generator. The semantics of FDL was easy to define follow-
Sample code ing the design results. Figure 3 shows the representation of

We present a concrete example where the pattern is appligtures in terms of a class hierarchy. A system description
We give sample codes for some of the structures and elemeaatsomposed by several composite feature definitions (at lea
defined. Additionally, the language is extended to see haw tlone). We describe the different definitions by simple equneti
is achieved. where the left-hand side of each one is the name of the

The Feature Description Language* (FDL*)[11] is the resuttomposite feature and the right-hand side is the composite
of a new domain analysis from FDL [16]. FDL is a tex{feature itself. The definition name could appear inside rothe
tual language derived from feature diagrams [3], which is faature definitions, or it is the main feature definition that

PABLO ANDRES BARRIENTOS ET. AL: DEVELOPING DSLS USING COMBINATORS 639

-feature2
Feature

-featurel

-feature

i ‘

Optional Atomic Null BinaryFeature

AN

OneOf MoreOf All

Fig. 3. Representation of features using a class hierarchy

does not appear anywhere. By convention, the main feattoedifferentdnf method definition in the features hierarchy of
description (the one describing the whole system) is placEdjure 3. As a short example, tlf method definition for
first in the specification. An example of a system configuratiomne-of features is:
for ical rock band is given in Figure 4.
oatypca_qc bac_i_s_ge gure 4. neO >>dnf
In the original definition of FDL there is an implicit .
o : self featurel: self featurel dnf.
transformer that joins all feature definitions into one, :
. N ' self feature2: self feature2 dnf.
returning a regular form of a program. We define it as:
regularForm: list of Feature — Feature. This transformer Expressions in DNF may have repeated features. For that
replaces occurrences of named features by their definitioseason, we define a normalized version of every feature in dis
and gives evidence of the compositional semantics of featurjunctive normal form, that allows to remove those unneagssa
This transformer and the ones defined later serve as a guillglications. A feature expressidiis normalized if it has the
in the language implementation — they do not form part déllowing form:
the object language.

This transformer is implemented as a method over the class all(Ary.- A,
hierarchy of Figure 3 following th&Compositepattern. The one-of :
FDL* parser creates an instance of the cl&mecConstructor all(An,, - Am,)

with all the definitions and passes the rest of the definition
to the first one. The main feature receives the rest of t
definitions and makeregularForm work. -
The parser definition is given in Figure 7. The class fdr/ ef{l,..
representing named features is not necessary becauser¢heyrathis case, the equations that definermalize, the trans-
automatically replaced by the corresponding definition. former of features in disjunctive normal form, are shown in
Once the regular form is obtained, it can be obtained tifgure 6.
disjunctive normal form(DNF) which, when different from In the Smalltalk implementation, this transformer is dedine
null or atomic features, has a structure described by: in the classesAll, Atomic, Null and OneOf Bellow is an
example of code for the case afl features:

ered;, # Ay, forj ke {l,...,i,} andi # j
andall(4;, ,...,4;,) # all(4;,,...,4;,) for
.,m} andi # j

a”(Al1 oo ,Aln)
. Al'l >>normal i ze
one-of : | tenp res vy |
all(4,.,,,...,Am,) tenp: = self featurel allsTolList.
y := self feature2 allsTolList.

res := self renDupsinList: tenp and:y.

The DNF gives the user all possible configurations for sel f become: (self createAllTreeFrom res).

the system. To get the DNF, it is necessary to definé:
Feature — Feature. In Figure 5 it can be seen the definitional | >>al | sToLi st
for dnf transformer, giving equations for the different cases | res |

of features. As a consequence of the recursive structure of F€s = OrderedCol | egte: ?”f‘é“ai E':"e|l3 Al SToLi st
features, the transformer is also defined recursively. res addAl |- self feature2 allsTolList.

The equations given in Figure 5 guide the implementation of -~ | gg
static semantics of the language. These equations ardstieths

640

PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

rockband = all vocals (all strings (all percussion opt(atomic keyboard)))
vocals = all (atomic singer) (opt (atomic chorus))

strings = more-of (atomic guitar) (atomic bass)

percussion = all (atomic drums) (opt (atomic tambourine))

Fig. 4. Specification of a basic rock band configuration

dnf null = null
dnf (atomic f) = atomic f
dnf (opt f) = one-of null f

dnf (one-of f1 f2)
dnf (more-of f1 f2) =
dnf (all f1 f2) =
distribute (all (one-of f11 f12) f2)
distribute (all f1 (one-of 21 22))

distribute f
Fig. 5.
normalize Null = Null
normalize (Atomic f) = Atomic f

normalize (All f1 f2)

normalize (OneOf f1 f2)

allsToList Null = {}
allsToList (Atomic f) = {Atomic f}
allsToList (All f1 2)

oneOfsToList Null {Null}
oneOfsToList (Atomic f) = {Atomic f}
oneOfsToList (All f1 f2) {All f1 f2}

oneOfsToList (OneOf f1 f2)

allsFromList xs
oneOfsFromList xs

Null
f

treeFromList n {}
treeFromListn {f}
treeFromList n (f1:fs)

remDupsinList {} = {}
remDupsInList (x:xs) =

one-of (dnf f1) (dnf f2)
one-of (dnf f1) (one-of (dnf (all (dnf f1) (dnf f2))) (dnf f2))
distribute (all (dnf f1) (dnf f2))

one-of (distribute (all f11 f2)) (distribute (all f12 f2))
one-of (distribute (all f1 f21)) (distribute (all f1 f22))
f -- f being different from an all feature

Transformer definition for obtaining the disjunetimormal form

allsFromList (remDupslinList

(allsToList f1 ++ allsToList f2))

oneOfsFromList (remDupsinList

(oneOfsToList normalize f1 ++
oneOfsToList normalize f2))

(allsToList f1) ++ (allsToList 2)

(oneOfsToList f1) ++ (oneOfsToList f2)
treeFromList All xs
treeFromList OneOf xs

n f1 (treeFromList n fs)

if X ‘elem’ xs then remDupsInList xs

else x: remDupsInList xs

Fig. 6. Transformer equations for obtaining the normalifemin

aFeat ur eLi st
ot her f eat ureLi st

Al'l >>renDupsl nLi st :
and:
| res |
res :=OrderedCol | ection new.
aFeaturelList do:[:f

ot herfeatureList do:[:f

res

At omi c>>al | sToLi st

“OrderedCol | ection with: self.

| (res includes: f)
ifFalse:[res addLast:f]].
| (res includes: f)
ifFalse:[res addLast:f]].

Nul | >>al | sToLi st
" OrderedCol | ection new.

Finally, we can restrict all possible configuration by using
constraints. We do not give sample codes from this feature,
but we define it just to define completely the language.

A constraint could be one of the following, defined by
combinators:

requires : AtomicFeature « AtomicFeature
— Constraint

a diagram constraint establishing that if the first

PABLO ANDRES BARRIENTOS ET. AL: DEVELOPING DSLS USING COMBINATORS 641

feature is present, then the second one should aknown uses
be present.

excludes : AtomicFeature x AtomicFeature
— Constraint

Combinators pattern were widely used in functional pro-
gramming. Here we present briefly some examples:

.] o) ~ Hallgren and Carlsson described a toolkit for the construc-
a diagram constraint establishing that if the firsfon of GUIs based on fudgets (functional widgets) and a Bet o
feature is present, then the second one should nmpinators (serial and parallel combinations and 100pE) [

be present. John Hughes described the design of a pretty-printing
include : AtomicFeature — Constraint library using combinators. The author concentrates on two
a user constraint establishing that the feature shoulfhys of transforming a formal algebraic specification into a
be present. implementation, starting with simple examples and working
exclude : AtomicFeature — Constraint up to the library [9].

a user constraint establishing that the feature shouldHaskore is a collection of Haskell modules designed for
not be present. expressing musical structures. In Haskore, musical abject
Note thatAtomicFeatures can be represented as simpléonsist of primitive notions such as notes, operations to
strings. transform musical objects such as transpose and tempo-
The following constraint definitions can be added to th&caling, and operations to combine musical objects, such as
feature specification of Figure 4bass requires drums, concurrent and sequential composition. [8]
include guitar, include drums. Observe that infix notation Lava is a tool to assist circuit designers in specifying,
is used, for clarity. designing, verifying and implementing hardware. The discu
Part of the final SmaCC specification (which includes comnd the way they are built are described using combinatrs [1
straints) can be seen in Figure 7. The designer could make ailaXML is a collection of utilities for parsing, filtering,

adjustment of language constructs, to adapt them to a ma@nsforming, and generating XML documents using Haskell
convenient and familiar writing style for end-users or jist based on combinators [18].

make implementation less costly. WASH is a family of EDSLs for server-side web scripting
To give an example of language extension by using coWyith sessions, compositional forms, and graphics that it is

binators, we extend the FDL* language, as suggested in {i§plemented as a combinators library [15].

original FDL paper [16], by adding boolean expressions asMany authors have written about parsing combinators

constraints, associating numeric values with atomic festuin functional programming. The work of Fokker defining a

(e.g., HorsePower = 75), and adding relational operatorscombinators library is such an example, written in Haskgll [

(e.g.,HorsePower > 100). But functional languages are not the only ones that were

A used for writing parser combinators. A good example is
We define the constructanumberedFeature : Feature g soyrceforgeproject called Spirit [4]. Spirit is an object-
* Number — Feature. Note that this constructor givesoriented recursive descent parser framework implemented
a feature as the result. It implies that these new kinds v$ing template meta-programming techniques [3][17]. It
features are added in FDL* basic semantics and they c%?gf)'lsetss gf g feétOfrg?nS:gfga{geéz ?/Cr?tt%%rseirccl:gir\]/tglna;[r?h(\:lv+hic
be used_ in the same way as Old. featurg_forms. of Cour%%rser objectéJ aregcomposed through operator overI}:)adthg a
the designer must analyze if this modification alters thge result is a backtracking, top down parser that is capable
original semantics. In the Smalltalk implementation thisck of parsing rather ambiguous grammars. As an example, a
of feature is simply a new class in the hierarchy of Figure 8hort part of a Pascal language parser definition is:

For the new forms of constraints, we define the followin

constructors (that are actually combinators): rogram = programteading >> block >> DOT;

progranHeadi ng = PROGRAM >> identifier >>

. ; ; ; LPAREN >> fileldentifier >>
&& Constra!nt * Constra!nt — Constra!nt +(COWA >> fileldentifier) >>
I Constraint « Constraint — Constraint RPAREN >> SEM -
- : Constraint — Constraint fileldentifier = identifier;
—> : Constraint « Constraint — Constraint bl ock= *(| abel Decl ar ati onPart
— : AtomicFeature * Number — Constraint I f;’gzgpf EIGI: glntpl;PPart
> : AtomicFeature «+ Number — Constraint | vari abl eDecl ar at i onPart
< : AtomicFeature * Number — Constraint

| procedureAndFunctionDecl arationPart)

. . . statenent Part;
The meaning of the new elements is self evident. As new ==

features are evaluated into booleans, they can be assthilat

by the original semantics of features. As new features areLuca Cardelli and Rowan Davies developed a system for
evaluated into booleans, they can be assimilated by thaatig web computing in Java using combinators [2]. They defined
semantics of features. In addition, infix notation can beduseeveral combinators and the language was implemented using
for clarity in some of the new combinators. the object-oriented language Java.

642
%ight "all";
% i ght "one of" "nore_ of";

Di agram Feature Definitions 'dl’
Constrai ntsDefinitions:
Feat ure_Defi nitions:
Feature_Definitions Feature_definition {"1

Feature_definition:

Feat ur e_expr essi on:

{SpecConstructor new dI

| "Constraints:'
{OrderedCol | ecti on new}

<identifier> 'nane’

{Definition new. nane value feature:
"atomic" <identifier> 'name’ {Atom c new name val ue}

<identifier> 'nane’ {nane val ue}
"opt" "(" Feature_expression 'f’
"one-of" Feature_expression 'f1l’

{Onef new. f1l and:f2}

Constrai ntsDefinitions

constraints:
{OrderedCol | ecti on new}
Feature constraints ’cs’

Feat ur e_expr essi on

")" {Optional

Feat ure_expression 'f2’

Feature_constraints: {O deredCollection new}

| Feature_constraints Feature_constraint {1’
| Feature_constraints Feature_constraint "," {1
Feature_constraint:

<identifier> 'sl’

| "include" <identifier> 'sl’

Fig. 7.

Related patterns

This pattern is related with the pattern for functional
programming implementation [14] and with tH@omposite
pattern [6] from object-oriented programming in the wayythe
describe elements from the domain that have compositional
semantics.

ACKNOWLEDGMENTS

" requires”
{Requires new. sl value wth:
{I ncl ude new. sl val ue}

(8]

Bl

[10]

We thank Marjan Mernik for his careful reading and corn[-ll]
ments in an advanced version of the paper.

(1]

(2]
(31
(4
(5]

(6]

(7]

REFERENCES

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnanh.Slaya:
hardware design in Haskell. roceedings of the third ACM SIGPLAN
international conference on Functional programmingpges 174-184.
ACM Press, 1998.

Luca Cardelli and Rowan Davies. Service combinatorsweb com-
puting. Software Engineering25(3):309-316, 1999.

K. Czarnecki and U. EiseneckeiGenerative Programming: Methods,
Tools and ApplicationsAddison-Wesley, 2000.

Joel de Guzman. Spirit — parser combinators for C++. :H#ipirit.
sourceforge.net/.

J. Fokker. Functional parsers. In J. Jeuring and E. Megelitors,
Advanced Functional Programming: 1st International SgriBchool on
Advanced Functional Programming Techniqueages 1-23. Springer,
Berlin, 1995.

E. Gamma, R. Helm, and R. Johnsomesign Patterns. Elements of
Reusable Object-Oriented SoftwareProfessional Computing Series.
Addison-Wesley, 1995.

T. Hallgren and M. Carlsson. Programming with Fudgets.Jl Jeuring
and E. Meijer, editors, Advanced Functional
International Spring School on Advanced Functional Pragraing
Techniquespages 137-182. Springer, Berlin, 1995.

Programming: 1st [

[12]

(23]

[14]

PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

cSs
cs}
{cs};

add: ' 2'; yourself};
lfl

fh

new. f}

add: ' 2" ;yourself}

add: '3’ ;yourself};
<identifier> 's2
s2 val ue}

Final SmaCC specification for FDL language parser

Paul Hudak. Haskore music tutorial. IAdvanced Functional
Programming, Second International School-Tutorial Tedges 38—67.
Springer-Verlag, 1996.

John Hughes. The design of a pretty-printing library. Advanced
Functional Programming, First International Spring Schomn
Advanced Functional Programming Techniques-Tutorial t,Tepages
53-96. Springer-Verlag, 1995.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.tufeea
Oriented Domain Analysis (FODA) Feasibility Study. Tedtali
Report CMU/SEI-90-TR-21, Software Eng. Institute, Caraelflellon
University, November 1990.

Pablo E. Martinez Lopez and Jeronimo Irazabal. Algebra
for describing features. IrProceedings of the XXXI Conferencia
Latinamericana de Informtica (CLEI'05)YOctober 2005.

Brian McNamara and Yannis Smaragdakis. FunctionalgfRmming
in C++ using the FC++ librarySIGPLAN Notices36(4):25-30, 2001.
M. Mernik, J. Heering, and A. Sloane. When and how to tgve
domain-specific languages. Technical report, UniversityMaribor,
CWI Amsterdam, and Macquarie University, 2003.

P. Mocciola and Pablo E. Martinez Lopez. Design pagefor
functional programming. I8rd Latin-American Conf. on Functional
Programming 1999.

15] Peter Thiemann. WASH/CGI: Server-Side Web Scriptirithvéessions

] Arie van Deursen and Paul Kilint.

[17]

(18]

and Typed, compositional forms. PADL, pages 192—-208, 2002.
Domain-specific langriadesign
requires feature descriptionsJournal of Computing and Information
Technology 10(1):1-17, 2002.

T. Veldhuizen. Using C++ template metaprogram&++ Report
7(4):36—43, May 1995.

Wallace, M., Runciman, C.: Haskell and XML: Generic dumators or
type-based translation? In: Proceedings of the Fourth ACGPEAN
International Conference on Functional Programming (IGBPR
Volume 34-9., N.Y., ACM Press (1999) 148-159

19] Jones, S. P., (editors), J. H.: Haskell 98: A non-stiietrely functional

language. http://www.haskell.org/onlinereport/ (Fetryu1999)

