
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 89–98

ISBN 978-83-60810-22-4
ISSN 1896-7094

EVM: Lifelong reinforcement and self-learning
Mariusz Nowostawski

Information Science Department
Otago University

PO Box 56
Dunedin, New Zealand

Email: mariusz@nowostawski.org

Abstract—Open-ended systems and unknown dynamical envi-
ronments present challenges to the traditional machine learning
systems, and in many cases traditional methods are not applica-
ble. Lifelong reinforcement learning is a special case of dynamic
(process-oriented) reinforcement learning. Multi-task learning
is a methodology that exploits similarities and patterns across
multiple tasks. Both can be successfully used for open-ended
systems and automated learning in unknown environments. Due
to its unique characteristics, lifelong reinforcement presents both
challenges and potential capabilities that go beyond traditional
reinforcement learning methods. In this article, we present
the basic notions of lifelong reinforcement learning, introduce
the main methodologies, applications and challenges. We also
introduce a new model of lifelong reinforcement based on the
Evolvable Virtual Machine architecture (EVM).

I. I NTRODUCTION

I N THIS article we re-asses the state of reinforcement learn-
ing methodologies in modern AI in the context of learning

in open-ended and unknown environments. We first analyse
the biological aspects of reinforcement learning, discussthe
basic concepts of conditioning and so called Law of Effect.
Then we focus on the mechanisms of reinforcement itself –
how it operates in biological systems. We approach the state
of the reinforcement learning in the computational domains
from the previously developed biological perspective. Later,
we introduce the EVM architecture. Then we define a machine
learning formalism, and based on it we define a truly self-
learning system class. We discuss what properties truly self-
learning systems exhibits, and how appropriate search bias
can be obtained through the learning process itself. First we
introduce and then discuss the relationship between two self-
learning systems: EIRA and the EVM. We conclude the article
with short summary and plans for future work.

II. B IOLOGICAL LEARNING

Most of the modern theory of learning originated in the
work of Watson [28] and then Pavlov [16]. The main ideas
are the notion ofconditioning, andconditioned stimuluswith
a conditioned response. In those models, a reward system is a
fundamental element. The basic idea is that positive feedback
is an essential part of conditioning, i.e. given a conditioned
stimulus positive feedback is employed to achieve the con-
ditioned response. In other words, when a positive reward
accompanies a particular response to a stimulus over many

repetitions, then that particular response will become condi-
tional to the stimulus. In experimental studies, where condi-
noning trials were not accompanied with positive feedback
(rewards), the expected conditioning was not achieved. The
early work on biological learning and conditioning perceived
(or projected) the living organisms as structured mechanistic
systems. Contemporary biology and psychology departs from
this simplistic model and instead, treats associative processes
as being fundamental to all learning. In contemporary studies
on conditioning, the exclusively mechanistic view is beingre-
defined to account for richer and more complex dependencies.
These dependencies between the stimulus, conditioning and
positive and negative feedback loops can form a highly com-
plex, interlinked, and hierarchical network of dependencies. It
is important to note, that the role of a (positive and negative)
feedback continues to play the central role in contemporary
theories of learning as it did at the beginning of20th century.

The reward system in many biological systems is based on
binary (all or nothing) signalling. A subject receives the full
reward if the expected conditioned response is achieved, or
otherwise, there is no reward at all. There is no concept of
partial reward for partial conditioned responses. For example,
an animal reaches for food/ catches a prey or it does not.
WIthout food, there is no positive feedback. It is importantto
distinguish this type of learning, from other machine learning
techniques where the feedback mechanism is provided in a
form of a gradient, i.e. there are partial rewards for partial
responses (partial solutions).

Law of Effect. The Law of Effect [23] tries to capture
the idea that those aspects of behaviour which satisfy certain
needs of an organism will tend to be repeated, whereas those
which do not satisfy any needs will tend to be omitted from
future behaviour. Intuitively, it is clear that something like the
Law of Effectmust operate on different levels of biological
organisation to facilitate the process of learning and adapta-
tion. The reinforcement, both, positive through rewards and
negatively through punishments is necessary for the process
of learning to occur. In the context of biological systems,
the question is which features of the environment function
as positive and which as negative reinforcers. The difficulty
of setting up classes of reinforcers is mainly that a reinforce-
ment is dependent on the context in which it operates. The
reinforcement in one context will not be the same in another.
In fact, positive reinforcement in one context may have exactly

89



90 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

opposite effect in another context. For example, when hungry,
the smell of food provides positive reinforcement and increases
subject’s desire to eat. However, when a subject is full and
satisfied, the smell of food may have quite the opposite effect.
Detailed discussion on biological aspects of reinforcement in
the context of cybernetics is provided by George [4].

Natural reinforcers work subject to their physical context.
They also operate over time delays. Often, a reinforcement
(in the form of a reward or punishment) does not occur im-
mediately after a cause. Both, negative feedback and positive
reinforcement can take substantial amounts of time to occur.
The positive (or negative) feedback, may be immediately
proceeded by events that have no causal relationship to the
reinforcement. For example, a dog might have chewed the
owner’s shoes after which he went in front of the house and
lay down for some time. Once the owner notices the damage
the dog makes, and punishes the dog, it may not be apparent
for the dog (properly associated) what the reinforcement is
actually for (chewing on the shoes or lying in front of the
house). Biological organisms are surprisingly well-attuned in
selecting the appropriate causal relationships and filtering out
the events that do not have causal relationship to the rewards
(or punishments). Animals and humans usually infer (most of
the time without any cognitive or conscious reasoning) the
correct context from cues and regularities of the environment
and the reinforcement itself.

Short term vs. long term reinforcers. Sometimes, short-
term positive (or negative) reinforcement is cancelled outby
a long term negative (or positive) reinforcement. Biological
organisms seem to have little trouble learning the best long-
term strategy that maximises the overall positive feedback.
Howeer, there are certain exceptions. Sometimes, organisms
seem to be wired in such a way that short-term positive rein-
forcement is so strong that it overrides any long-term negative
reinforcement that the organism may experience. In extreme
cases, such a short-term override may eventually lead to the
death of a biological organism. An example of such situation
is studied for example through the intracranial self-stimulation
(ICS) experiments [2]. In a typical ICS experiment subjects
(e.g. rats or monkeys) are taught to activate self-stimulation
(for example dopamine or cocaine stimulation) directly to their
brains through manipulation of certain physical objects (such
as a switch or a button). After initial training, subjects are
incapable of breaking the cycle and continue to perpetually
activate the self-pleasuring stimuli, paying no attentionto food
or any other survival activities. The short-term reinforcement is
so strong, that the subjects can ultimately pleasure themselves
to death [2].

In a majority of circumstances, however, the short and
long term reinforcers work together and complement each
other. Organisms’ adaptation can be viewed as a balancing
act between different, sometimes conflicting, reinforcers.

Based on the above discussion, a complex picture of biolog-
ical learning systems emerges. We will highlight below some
of the main points.

• Reinforcement is a key element to biological learning.

• Reinforcement works often as a binary system; a given
reinforcement is present, or not. In biological systems
there is often no gradual or partial negative or positive
reinforcement.

• Reinforcement is often not immediate; it frequently fol-
lows the triggering organism actions with a delay.

• Reinforcement is context-dependant; the same stimuli can
provide opposite or contrasting reinforcement in different
contexts.

• The same stimuli can have opposite short-term and long-
term effects, hence short-term negative reinforcement can
lead to a long-term positive feedback, and vice verse.

• Generalisation skills and lifelong learning appears to be
essential in coping with the complexities of the dynamical
environments and to facilitate the process of biological
learning.

Learning how to learn. There are many open questions
in the area of biological learning. The emerging theories
and overall picture of biological learning appears as a com-
plex, highly dynamic network of interlinked dependencies.
We perceive the learning process occurring simultaneouslyat
different levels of biological organisation, e.g. both on the base
level (to learn the immediate tasks at hand) and at the meta-
level – to learn the abstractions, generalisations and biases
that can be transferred, directly or indirectly, to enhanceone’s
abilities to learn new tasks. In general, learning how to learn
in biological systems appears to be important yet quite an
unknown phenomenon.

Binary reinforcement, lifelong learning, and meta-learning
– these are the three fundamental properties that our EVM
model tries to investigate and exploit through:

• a hierarchically organised computing architecture;
• reflection and reification mechanisms allowing the mod-

ification of one’s own internal processing (learning);
• keeping the history of earlierdiscoveries(memory);
• reusing learned skills in different contexts (exaptation);
• the ability to deal with delayed rewards/punishments;
• the ability to generalise previous experiences;
• meta-learning constructs built-in into the architecture.

III. C OMPUTATIONAL LEARNING

A large part of computer science in the context of AI
is concerned with the optimisation, prediction and the use
of heuristics to solve problems by means of computational
learning systems. In this work, we are concerned exclusively
with a small subset of machine learning inspired by highly
dynamic biological learning systems that exhibit lifelong
learning process. These reinforcement learning systems form a
hierarchical short and long-term reward/punishment structures.
We will briefly review the state of the art through discussion
and analysis of various existing techniques.

Early reinforcement learning. Reinforcement learning
concerns agents that sense and act in their environments, trying
to learn to choose optimal actions to achieve a maximisation
of the reward intake. Each time an agent performs an action,
a trainer may provide a reward or penalty to indicate the



MARIUSZ NOWOSTAWSKI ET. AL: EVM: LIFELONG REINFORCEMENT AND SELF-LEARNING 91

desirability of the resulting state. The task of the agent is
to learn from the, possibly delayed, rewards a sequences of
actions that produces the greatest cumulative reward intake
rate.

The study of reinforcement machine learning is as old as the
theory of algorithmic computation itself. In his seminal article,
Turing [26] studied a special type of unorganised machines
(u-machines) that to a certain extent can be seen as precur-
sors of contemporary evolutionary and computational learning
systems. He advised three types of unorganised machines: A-
type, B-type and P-type. These machines consist of randomly
connected two-state machines whose operation is synchronised
by means of a central digital clock. By the application of
“appropriate interference, mimicking education”a B-type ma-
chine can be trained to“do any required job, given sufficient
time and provided the number of units is sufficient”[26].
His P-type unorganised machines, have“only two interfering
inputs, one for ‘pleasure’ or ‘reward’ [. . . ] and the other for
‘pain’ or ‘punishment’ ”. Turing studied P-types in the hope
of discovering training proceduresanalogous to the kind of
process by which a child would really be taught. Later, Turing
said: I have done some [...] experiments with one such child-
machine, and succeeded in teaching it a few things.

The foundations for many machine learning techniques have
been then laid by John Holland, [7], [8], who provided initial
mechanisms for many machine learning techniques including
early reinforcement learning algorithms and evolutionarycom-
putation.

Formally, we model the state of the environment (and the
agent) in timet asst ∈ S, whereS is the entire possible state
space. An agent performs actionsat ∈ A that generate the next
statest+1 through the state transition functionδ(st, at). All the
future statesst+2, st+3, . . . can be influenced by a given action
at. The reward function of the state of the environment, in the
general case,r(st, at) ∈ R can vary in time, too. The task of
the agent is to choose such a sequence of actionsat that will
maximise its reward intake over time. This can be expressed
by different objective functions. The two most common are:

1) maximisation of discounted cumulative reward,

max
∞

Σ
i=0

γirt+i, where γ is a parameter from the

range[0, 1] representing the memory of the previously
collected rewards – the larger theγ, the longer the
system rememberspreviously achieved rewards. For
small γ the older rewards influence the cumulative
score less and less.

2) maximisation of average reward,max lim
h→∞

1

h

h

Σ
i=0

rt+1.

More details related to reinforcement learning can be found
in the literature, for example [12], pages 367–387.

IV. L IFELONG REINFORCEMENT LEARNING

The reinforcement learning methodology is applied within
a context of autonomous intelligent agents and multi-agent
systems. Agents, (e.g. robots), try to operate in complex,
unknown dynamical environments. Such environments require
that an agent learns several related tasks within the same

environment, using the same sensors and actuators. There isno
possibility of re-settingthe agent state to the “starting point” –
the agent must continuously sense, learn and act. The agent
may in fact never revisit any of its previous states in its entire
lifetime. This is different from some learning methods, such as,
for example, genetic algorithms, which generate a hypothesis
to be tested on a single isolated and idealised testcase. After
that, a new hypothesis is tested on exactly the same isolated
test case, again, and again. In lifelong learning this is not
possible – any given (new) hypothesis cannot be tested on any
of the old isolated and idealised test cases, because there is
no possibility of reverting the environment precisely to any of
its previous states. One may say that in lifelong reinforcement
learning, the time flows in one direction. There is no possibility
of resettingthe clock. Mobile robots cannot test a hypothesis
and move from a given location only to restart again with
a different hypothesis from the same location again. Once a
decision has been taken, the situation has changed, and new
conditions need to be taken into account, a new environment
state must be sensed, and new decision needs to be taken again.

Multi-task systems.We will use the termslearning tasksor
solving tasks/problemsinterchangeably. Tasks that need to be
solved can be provided to the system sequentially [20], [22],
or the tasks can be provided all at once, in a group. When tasks
are provided in sequence, it is referred asincremental learning.
Incremental learning takes advantage of the fact that earlier
tasks (typically easier) can provide beneficial biases towards
solving/learning later, usually harder, tasks. It is possible for
incremental learning to use binary reinforcement mechanisms.

Multi-task learning is an area of machine learning which
studies methods that can take advantage of previously learned
knowledge by generalising and reusing it in the course of
solving a set of possibly related tasks. This is closely related
to the notion of incremental learning. Incremental learning
is a special case of multi-task learning, where incrementally
more difficult tasks are provided to the system sequentially,
in such a way that the system can tackle easier tasks first and
gradually solve more and more difficult tasks as time goes on.
Multi-task learning is a more general term, where the difficulty
of individual tasks may or may not be of concern. There is
research work conducted within the area of multi-task learning
applied to various domains and experimental settings and
employing different learning mechanisms, eg. [29]. If the tasks
share some similar internal structure, the learner may exploit
these regularities and find it easier to learn them together rather
than in isolation [24], [25]. Caruana and Baxter demonstrated
that learning multiple tasks within an environment of related
tasks can potentially give much better generalisation than
learning a single task alone [3], [1].

Meta-learning [5] is a relatively new area of research
within the machine learning and data mining fields. Re-
searchers within the field try to understand the process of
exploiting knowledge about learning how to learn. The goal
is to build algorithms that can improve the performance
of the learning process itself. Recent advances provide the
foundations for constructing meta-learning assistants and task-



92 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

adaptive learners. One of the main motivations is the fact
that successful applications of complex software systems in
the real-world require a continuous adaptation to new needs,
changing requirements and changing contexts. When a given
model fails to perform efficiently at a given time, one would
expect the learning mechanism itself to re-learn, taking into
account previously learned experiences [5]. Meta-learning
capabilities are necessary in exploiting cumulative expertise
gained from previous experiences. This is particularly evident
in biological learning and in artificial multi-task learning
systems.

One of the contributions that inspired the EVM architecture
is the work related to the Optimal Ordered Problem Solver,
OOPS [22]. OOPS is based on the sequential exploration
of program search spaces associated with Levin’s universal
search algorithm [11]. OOPS uses self-delimiting binary pro-
grams1 and explores the space of programs by trying to find
one that provides a solution to a given target set of problems.
Each new problem is provided to the system only after the
previously provided problem has been successfully solved.
Each solution found (to any of the previously solved tasks)
is stored in the system’s storage. Schmidhuber work extends
earlier work on bias-optimal search algorithms done by Hutter
[9] (for bias-learning see also [12]). Inherently, such search
must deal with the trade-off between:

• exploration, that is the search for completely new pro-
grams; the search starts from an empty program, and
explores all the possible programs from scratch;

• exploitation, search for variant solutions; the search tries
to reuse already explored subspaces of programs, and use
some (or all) of the already gained experiences.

The assumption here is that exploiting experiences collected
in previous searches can solve the target problem faster. This
is because the learning process can exploit any regularities that
have been discovered earlier. In the context of OOPS, earlier
discovered programs are stored and they provide (partial)
solutions to other problems. In OOPS, meta-knowledge is
stored in the form of candidate program solutions. The system
uses this information and tries to exploit it for incremental
self-improvement. For example, the task of performing long
addition and multiplication2 can be split into individual tasks

1Such programs are binary strings with a specific length encoded into the
program itself, or with special end-of-program markers, that identify uniquely
an end of a given program in a binary sequence. Note that a given program
may end anywhere in, potentially, an infinite string of bits.This is in contrast
with ordinary binary programs, which start at the beginningof a bit string and
end at the end of the bit string. The advantage of self-delimiting programs
is that they can be spliced together and such splicing will not change their
semantics.

2Long arithmetic operation means an operation that spans numbers longer
than what the single arithmetic unit can handle in a single operation. Consider
an arithmetic unit that can handle a1-digit binary operation of subtraction and
addition with a single extra carry bit. If one now tries to add8-bit long words,
the operation would be considered long addition, and the arithmetic operation
would need to be chained and performed multiple times on the simple 1-digit
arithmetic unit. It is similar to adding for example two25-digit long decimal
numbers with a piece of paper. One needs to understand the addition up to
number 19 (adding two arbitrary decimal digits) to be able toperform long
addition on arbitrary long decimal numbers, with a pencil and piece of paper.

concerned with additions, and tasks concerned with multipli-
cations. Programs capable of addition and programs capable
of multiplications are then stored in the OOPS framework and
are used as first-order primitives when searching for solutions
to consecutive problems. An important difference between
EVM and OOPS is the fact that newly discovered programs
in OOPS are simply added into the primitive instruction set.
This, for a large number of sub-tasks typical in long lifelong
reinforcement learning will lead to an exponential growth of
the program search space, due to the increase in the instruction
set. In the EVM this has been addressed through the notion
of computational levels. Newly discovered instructions can be
added to the primitive level, just as in OOPS. But, they can
also be added to new levels created and managed by the EVM
itself. Unlike OOPS, the meta-management of instructions
allows the EVM to manage the complexity and trim the
program search space. The details of EVM architecture will
be provided later in this article.

In the context of meta-learning and exploration vs. ex-
ploitation, one possible approach is to split the search process
into two phases, as in [21]. One part of the search process
tries to exploit already built (partial) solutions, and performs
traditional exploration/exploitation of the search space. At the
same time, the other part of the search process, concurrently,
explores the program generators space (explores the meta-
search). For simple tasks the former will be more efficient and
will find a solution faster. For complex tasks, the time wasted
on traditional search (not the meta-search) is insignificantly
small compared to the time that meta-search techniques take;
therefore no substantial inefficiency can be expected. Other
improvements on this scheme may be possible in a specific
subclass of computational tasks. Such improvements must be
incorporated into the search process in an automated and
adaptable way in order to exploit the underlying regularities
of the problem, and the search process itself.

Applications of multi-task learning. From a practical per-
spective there are many problem domains that can be viewed
as sets of related tasks. For example, speech recognition may
be decomposed along many different axes: words, speakers,
accents, etc. Face recognition represents a potentially infinite
domain of related tasks. Medical diagnosis and prognosis
problems using the same pathology tests are yet another
example, as well as time-series prediction, database mining,
autonomous robots, personal software assistants, etc [1].See
also [3] for more considerations about applications. Multi-
task learning techniques have shown promising results when
applied to artificial neural networks [3], [24]. In these models
neural nets that learn different tasks usually share a common
hidden layer that successfully exploits regularities and com-
mon properties across multiple tasks. In most of the systems,
however, multiple-task problems are usually translated into
single-task problems. A potentially rich source of information
about the problem is then omitted and the possible benefits
of multi-task learning and meta-learning is lost. The main
advantage of multi-task and meta-learning systems is the
ability to reuse previously acquired knowledge and to exploit



MARIUSZ NOWOSTAWSKI ET. AL: EVM: LIFELONG REINFORCEMENT AND SELF-LEARNING 93

any regularities across different tasks that can be generalised.
Solutions, or partial solutions of previously solved problems,
can be valuable in solving new, unsolved (and often more
difficult) tasks. The system is designed to shift itsbias
accordingly to search for a hypothesis space that contains good
solutions to many of the problems in the environment. By
transferring knowledge across related learning tasks, a learner
becomes more experienced and generalises better.

V. EVM OVERVIEW

The Evolvable Virtual Machine architecture (EVM) [15],
[14], [13] is a computing architecture based on the notion of
distributed interactive asynchronously communicating compu-
tational cells. The EVM provides a massively decentralised
and distributed asynchronous framework for experimenting
with, and studying the properties of lifelong self-learning
systems. It can be used for distributed multi-task learning[3],
[17], for automated program discovery [20], and for lifelong
reinforcement learning. The main emphasis is on initial bias-
free state that requires a meta-learning that through rein-
forcement will diverge the random search into more efficient
learning strategy for a given problem domain.

The Evolvable Virtual Machine consists of two parts. The
abstract layer, called EVMA (Evolvable Virtual Machine
Architecture). And the concrete instantiation, called EVMI
(Evolvable Virtual Machine Instantiation). The full description
of the EVMA/EVMI together with a formalisms has been
presented in [13].

The current EVMI provides a framework to experiment with
and instantiate EVMA models. The current EVMI supports
most but not all of the EVMA features. The architecture
consists of independently operating computationalcells. The
cells operate in a local environment where they provide their
results and obtain their feedback. A computational entity,a
cell, acts (operates) in an unknown environment, trying to
maximise its own reward intake. The cell continuously adjusts
its actions in such a way as to collect more positive and avoid
negative feedback. The rewards (positive reinforcement) and
punishments (negative reinforcement) can be delayed in time
and do not necessarily correlate directly with the last actions
of the cell. As in Q-learning [12, p. 367–387], the actual real
reinforcement mechanism is unknown and can be subject to
dynamic changes.

The cell computations consume the resources that the cell
has been initiated with. As long as the cell’s reward mech-
anisms refuel the resources the cell continues to perform its
activities, and thetask is considered solved within the EVMI
context. The EVMI approximates an unknown, infinitely long,
computational solution to the task by a temporal snapshot that
has been computed up to a specified time mark. The task is
considered failed or unsolved when the activities of the cell
do not bring the required reward intake for the cell, and cell’s
computational expenditure cannot be balanced out with the
cell’s reward intake. In our experiments we have used two
types of situations:

• there is periodic feedback to the cell, with rewards, or
punishments, or both (positive and negative reinforce-
ment). The cell operates in an internal loop mode for
an extended amount of time. In this case the cell’s state
trajectory is evolving in the state space in a more or less
continuous fashion.

• there is only one reward feedback provided after all the
activities of the cell have ceased. In this case the cell’s
state trajectory has been clearly divided into generations.
After each activity-reward feedback cycle, the cell’s state
has been reset to the initial state. Note, that the en-
vironmental state is not being reset to its initial state,
but continues its own evolution in a continuous fashion.
This results in a complex dynamics between internal and
external activities of the cells.

Cells. Computational cells are organised into a regular
lattice (or grid). Neighbourhood is typically 4 or 8 adjacent
cells, but, this can be programmatically controlled. Various
topologies are possible, although in this article we only focus
on regular grids. EVMI cells are constrained in such a way
that an externally provided resource (reward) is necessaryfor
the cells to continue to exist (or to be allowed to perform their
activities). In other words the cells’ computational resources
(memory and CPU cycles) are abstracted into a single param-
eter, called aresource, which again, is balanced by a single
parameterreward. This is an external system-level constraint
that may not have any direct linkage with the problem domain
of any of the tasks. It can be treated simply as anorganising
principle [6]. It is a domain-independent artifact that mod-
els certain constraints that are conceptually (metaphorically)
equivalent to physical constraints. This physical constraints
are modelled through the abstract notions of aresourceand
reward.

Intra-cell computing. A cell’s program takes data from and
produces output to theenvironment. In the abstract architecture
these mechanisms can be arbitrary, and the EVMA does not
mandate any particular mechanism. For efficiency reasons
however, we have designed and used a number of fixed
mechanisms for the cell processing. Therefore, each cell’s
specialisation and program execution mechanism was built-
in, and could not be changed by a given cell itself. In the
abstract sense, these could have been reified and provided as
mechanisms on the base level, subject to direct manipulation,
degradation and improvement when needed. Experiments with
meta learning proved to be prohibitively slow.

At every iteration, the execution engine tries to solve
some tasks provided by the environment. For each task, it
runs the cell’s program (possibly calling some neighbours’
programs) in interaction with the task’s resource. If the output
is correct, the cell receives some rewards. A specialisation
mechanism uses these rewards to modify its state and provide
a new program for the next iterative step. Thespecialisation
mechanismis an umbrella term that relates to the ability of
the cell to trim its computational capabilities (that meanssome
of the computational capabilities are removed from the cell
repertoire).



94 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Individual cells work in a distributed and asynchronous
fashion. The processing of an individual cell is sequential
and consists of sets of operations, also callediterations. The
iterations can be imposed by the environment (as it was the
case with some of our experiments), can be managed by the
cell and cell program alone, or they can be in an arbitrary order
(subject to a mixture of environmental and cellular influences).

At every iteration, the specialisation mechanism of the cell
must generate one program. This program will try to solve
some tasks from the environment, and this process may yield
some rewards coming from the environment. From an artificial
life perspective, the program attempts to maximise the reward
and maintain its existence by trying to achieve homeostasis
with regard to the external resources (rewards)3.

Environment and resources.Every cell maintains a pro-
gram4. The cell’s goal is to find a successful program: one
that, by solving a task, yields enough rewards for the cell to
survive. Programs can call other programs.

When a given program obtains a reward, the reward will
be shared proportionally with any programs used asassistants
to compute the solution. All of the participants will benefit
from their relationship. In other words, symbiotic (mutualistic
or parasitic) relationships will appear between programs.This
ability to access other programs has thus facilitated complex
hierarchical organisation and self-assembly. As a consequence,
cells are able to collaborate to solve complex problems.
Problems that none of the cells would be able to solve on
their own can thereby be solved through cell collaboration.

Figure 1 depicts a simple example of cellC1 using other
cells during the course ofC1’s computation. The computation
starts withC1 executing its own instruction number1. The
second instruction ofC1 calls its right neighbour, the cellC3.
Therefore the computation follows to the first instruction of
the cellC3. C3’s program is executed up to instruction number
2, and the third instruction ofC3 calls the program of upper
neighbour, cellC5. And so on. On the bottom of the figure you
may see the actual order of instructions being executed and
where they belong across all cells. This type of hierarchical
assembly between the cells is distinct from the hierarchy on
the virtual machine level, which is supported by the EVM
assembly language. This multi-level machine hierarchy (as
opposed to cell’s hierarchy) is depicted on Figure 2. Note that
the Current Machine (CM) index and Higher Machine (HM)
index may point to various parts of the HM list.

The environment represents the external constraints on the
system. Its role is to keep the system under pressure to force
it to solve the tasks specified from outside. We have designed
the environment as a set ofresources. There is a one-to-one
mapping between the resources and the tasks to solve (every

3In terms of trying to achieve homeostasis, the homeostasis is either
achieved or not, and the cells that achieve it persist in the system and those
that fail are removed and replaced by other cells. Therefore, it appears as if
the cells are trying to achieve homeostasis, where in fact they merely follow
their own deterministic computational trajectories. The use of intentionality
and causality helps in discussing and explaining the dynamics of the system.

4A program in this case means simply a sequence of instructions in the
EVM assembly language.

Fig. 1. The dark cell executes its program. Arrows show instructions that
call neighbours’ programs.

HM List

List

Second level Machine

Machine List, PC, 
Program

Base Machine

Machine List, PC, 
Program

HM IndexCM Index

D
a
t
a
 
S
t
a
c
k

L
i
s
t
 
S
t
a
c
k

Fig. 2. EVM hierarchy. The HM (Higher Machine) List stores indices to
all created and managed machines. The CM (Current Machine) pointer points
to the currently executing machine, and the HM index points to the higher
machine that can be manipulated by the EVM instructions.

resource corresponds to a task). The purpose of these resources
is to give rewards to the cells when they solve their task.

Cell specialisationconsists of trimming the cell compu-
tational capabilties. The cell self-adapts to a particulartask
in the environment. Several specialisation mechanisms have
been studied: classic genetic algorithms, ad hoc stochastic
search (maintaining a tree of probabilities of potential build-
ing blocks), or an adaptation of an environment-independent
reinforcement learning method (proposed by [19]). Different
methods of learning have been experimented with, includ-
ing random search, stochastic search and genetic algorithms.
The results of our experiments have been published previ-
ously [14].

VI. SELF-LEARNING SYSTEM

One of the goals of AI learning algorithms in general is to
provide efficient solutions to a wide class of problems. This
means that the selection of instruction sets, the algorithmitself,
and any information that is fed into the algorithm is chosen
specifically to aid the goal. To make the search easier. To make
the search biased toward a particular problem at hand. The



MARIUSZ NOWOSTAWSKI ET. AL: EVM: LIFELONG REINFORCEMENT AND SELF-LEARNING 95

biases, the rules that can guide code synthesis, are essential in
any non-trivial computational search process.

The goal was to develop an adaptable, self-regulating sys-
tem, in which theexpert rulesandsearch biasare not given to
the systemab initio. We expect any search bias to be acquired
on-the-fly, during runtime, based on the binary feedback the
system obtains from the outside environment. In other words,
the biases and the expert rules are obtained through a series
of test cases, and should not be built into the actual learning
algorithm as such. It is our aim to provide an architecture that
facilitates investigations into different possible mechanisms of
code synthesis.

In the EVM architecture we use the concepts of sym-
biosis and exaptation augmented with mechanisms of bias-
optimal search techniques to build the necessary structures and
learning algorithm based on the past history of the system
itself. The design and implementation of the basic EVM is
a step towards the ultimate goal of a self-learning artificial
(computational) system. Bytruly self-learning system, we
mean an abstracted learning system inspired by biological
theory of reinforcement and conditioning, in which no prior
bias or knowledge is present. In particular, we stress that the
feedback (positive and negative) is (a) provided in binary form
only, (b) it is delayed, and (c) context sensitive, and the system
starts its learning process without any inductive bias. What it
means is that our search will (hopefully only initially) be no
different to random search (or enumeration). However, as time
progresses, the system should be capable of building the bias
based on the learning process itself. Note that this formulation
of self-learning systemdeparts from the traditional machine
learning systems, where the inductive bias is introducedab
initio through various elaborate mechanisms.

To express the notion ofself-learningmore clearly, let us
consider the following abstract architecture, consistingof four
elements:

• code generator (C) – this is an active unit of computation
that takes feedback stream as an input and generates the
program stream on its output;

• program stream (P ) – this is a sequence of programs that
is being tested by an environment; the environment then
generates the feedback stream;

• feedback stream (F ) – this is an outcome of evaluating
programs in a given environment;

• environment (E) – this an active unit that takes program
stream as its input, and generates feedback stream as its
output.

In a truly self-learning system, the last component, the
environmentE, is (by definition) unknowna priori. E may
be computable, in which case the sole purpose of the learning
systemC is to learn (discover) the functional mapping of the
environment, to discover the functionE – i.e. the functional
mapping between the programs fed on environment input,
and the feedback read on its output. Even ifE is ultimately
computable, it may be impractical to discover the actual
computation ofE due to computational limitations of the
learning computation itself (limitation ofC). In that case, the

learning system might try to approximate trueE by Eapprox.
Note, on more philosophical grounds,E may be ultimately
uncomputable (or unknowable, or undefinable), in which case
the purpose of the learning systemC is to approximate the
unknown/uncomputable environmentalE to the desired level
of accuracy, using a given model of computationC that the
learning system is using.

In soft computing and machine learning systems it is often
the case that both,C and E0 (initial environment) are given
in the form of computable functions. The task of the learning
system is then not to discover an unknown environmental
function E, but to convert a given form of the functionE0

into a different form, e.g.E1. In such a case, a purpose of
such (somewhat incorrectly called“learning” ) system is not
to learnE, but to (simply) translate a given computationE0

into a different computationE1
5.

Based on this formulation, most of the mainstream evolu-
tionary computation methods are not truly self-learning. For
example, genetic algorithms [27] (and related models, such
as original Koza’s tree-based genetic programming [10]) can
be seen as an automated computational method of re-coding
one solution (E0) to a problem provided by an expert, into
another solution (E1), discovered by the search mechanism.
The solution provided by an expert (E0) is in a form of
phenotype/genotype encodings and fitness function evaluation
mechanisms. The search processC is, in most cases, (ex-
tremely) encoding-sensitive. Some expert formulations of a
problem (a particular solution encoding and fitness function)
may lead to fast, effective and efficient re-coding by GAs for
a specific problem (E0 → E1). Some, on the other hand, may
fail to provide a re-coding at all (E0 → unknown).

Note, that, although the EVM belongs the category of truly
self-learning systems, for any practical reasons it would be
infeasible to start each time with an empty system without any
inductive bias whatsoever. Rather, in practical applications, the
EVM system is seeded with previously solved problems and
does in fact re-uses previously gathered learning biases, based
on a choice of particularC. Unlike GA, where fitness function,
crossover, mating etc., are all shared among all different search
domains, and the expert bias is encoded almost entirely all
within the E, in the EVM the expert bias is entirely encoded
in C itself, and E remains to be discovered. The crucial
difference between truly self-learning and typical machine
learning systems lies in the adaptive ability to modify pre-
existing search biases ofC during the evolution of the learning
process itself (E discovery process).

One example of a set of truly self-learning algorithms that
has inspired some of the characteristics of the EVM is the
environment-independent reinforcement acceleration (EIRA)
approach proposed by Schmidhuber.

5There are many different reasons why such a transformation is useful:
consider for example two computations computing the numberPi up to 2

million decimal places. One computation is expressed by a short program,
but takes many iterations to calculate the expansion. The other computation is
expressed as a long (over 2 million bytes) lookup that takes just one instruction
cycle to execute.



96 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

VII. E NVIRONMENT-INDEPENDENTREINFORCEMENT

ACCELERATION – EIRA

Environment-Independent Reinforcement Acceleration
(EIRA) is a reinforcement learning mechanism proposed by
Schmidhuber [18], [19]. EIRA is an environment-independent,
single-life (lifelong) reinforcement learning mechanismthat
guarantees lifelong performance improvement. EIRA is an
example of a truly self-learning system: there is no initial
human-expert bias provided initially to the system. The
system will learn all biases exclusively from the binary
feedback mechanism. The executing program monitors its
own performance, and it continuously tries different learning
policies. Some of the policies that perform worse than any
other are discarded, and the system keeps only theuseful
policies: those that bring more reward per time unit than
all the previously tested policies. One of the objectives in
designing EVM assembly language was to provide easy
mechanisms for plug-in reinforcement learning techniquesfor
lifelong continuous adaptation and performance improvement.
The built-in probability distribution manipulation instructions
are inspired by EIRA. The EVMA can be seen as a super set
of EIRA conceptual learning mechanism. It is important to
remember that EVMA extends the learning mechanisms by
meta-learning strategies that can work concurrently within the
same EVMA grid together with EIRA. Unlike EIRA, EVMA
also provides specialised mechanisms for dynamic updating
(forgetting) previously learned or established patterns and
program structures.

Reinforcement Acceleration Criterion (RAC). In EIRA,
a system policy is an arbitrary modifiable algorithm that maps
environmental inputs and internal states to outputs and new
internal states. In dynamic and unknown environments in the
real world, eachpolicy modification process(PMP) occurring
during system lifetime may have unpredictable influence on
environmental states, rewards, and PMPs at later times. Note
that this relates to the notion of multiple interactive machines.

Schmidhuber proposed thereinforcement acceleration crite-
rion (RAC) as a way of measuring performance improvements.
At a given time, the RAC is satisfied if the beginning of each
completed PMP that computed a currently valid policy modifi-
cation has been followed by long-term acceleration of average
reward intake. In other words, the rewards rate of a new policy
must be higher than those of the previous policies. The system
keeps only those probability modifications computed by useful
self-modification programs: those which bring more payoff
per time unit compared to all the previous self-modification
programs.

At special instants, calledcheckpoints, EIRA will restore all
the previous PMPs until it finds one that fulfills RAC.

There are different ways of implementing EIRA system.
Here we describe one possibility to apply it to cell special-
isation in the EVM system. Let every EVM cell contain
one programP , that is executed in a continuous fashion
(in a never-ending loop).P can call up its neighbours and
during its own program execution, it can call and execute

the neighbour programs too (finite number of iterations of
the loop, in most cases just one iteration).P has the ability
to modify itself, through self-referencing. BecauseP has the
ability to modify the way it modifies itself (meta-learning),
there is no intrinsic need for any other learning mechanism
to be added on top, other than to provide convenient expert
knowledge or initial search bias. The system is able to shiftits
inductive bias in a universal way. In other words, there is no
explicit difference between learning, meta-learning, andother
kinds of information processing. As a consequence, the system
can reproduce all traditional EC mechanisms as special cases
(extensions).

To achieve such a broad unification within the learning
process,P needs to have special meta-instructions that modify
P . Executing a meta-instruction corresponds to a PMP, as
discussed above.

The checkpoints can be done periodically by the environ-
ment itself (for instance every 100 time steps, if the expected
solution to the hardest task is less than 100 time steps). It is
more interesting, however, to introduce a special instruction,
called checkpoint-instruction, that triggers a checkpoint. As
P can modify itself, the frequency of checkpoints is also
dynamically and automatically tuned. In theory, the checkpoint
frequency may well reflect the difficulty of the tasks. This
mechanism will reflect also the dynamism and changeability
of the environment itself.

A policy’s usefulness is defined as the rewards/time ratio (or
rewards rate) from the beginning of the policy. The system
has to maintain a stack of PMPs. At checkpoints, it keeps
only useful PMPs. A PMP is considered useful if it fulfills
the RAC, i.e.:

• if there is no previous policy and the rewards rate of its
policy is greater than the global rewards rate from the
beginning.

• if the policy introduced by this PMP has a higher rewards
rate than all the previous policies.

All PMPs are thus restored until one is found that satisfies
RAC. For more detail about the implementation of that stack
and efficient memory management, please refer to [19].

There are inherent benefits of lifelong reinforcement learn-
ing models such as EIRA. They mimic closely biological
learning and provide an attractive theoretical and practical
framework for experimentation.

EIRA is designed to make optimal use of its computational
time/space resources, by exploitingarbitrary task-specific
regularities (if there are any) [18]. These are the objectives
for the EVMA, too. The EVM system should be able to:

1) develop arbitrary problem-specific representations,
2) run arbitrary learning algorithms,
3) find good, problem-specific learning algorithms, as

quickly as possible,
4) find algorithms for finding learning algorithms.

Implementation of policies. For every instruction ofP ,
there is a probability distribution over its possible values. That
is, for every instruction ofP there is an associated probability



MARIUSZ NOWOSTAWSKI ET. AL: EVM: LIFELONG REINFORCEMENT AND SELF-LEARNING 97

distribution from which that instruction is being sampled.
The EVMI maintains a table of probabilities as depicted in
Figure 3. Values forP ’s instructions are selected according to
their probability distribution. The meta-instructions ofEVM
assembly language,incP anddecP, that allow PMPs, consist
in increasing or decreasing entries in that table6.

Fig. 3. Policies are managed by maintaining probability distributions over
the possible values forP ’s instructions. InstructionsincP anddecP modify
these probability distributions. BecauseincP and decP can also modify
their own probability, we speak here ofmeta-learning. This table is modified
by the meta-instructions. At checkpoints, EIRA undoes the modifications that
have not been followed by an acceleration of the rewards intake. This table,
though, is never reset to its initial state.

The described mechanism expectsP to have fixed length.
To enable variable length programs, we introduce a special
halt instruction that will halt an executing program. However,
P may take too long to execute or it may never terminate. For
practical reasons programs operate in a time-bound computa-
tional model. That means that after a predefined time-limit,
the program is terminated. Further studies related to more
elaborate estimations of program terminations will be a subject
of further studies.

When a neighbour asks for a given cell’s program, the
EVM cell sends the programwithout the meta and checkpoint
instructions. The outer looping instructions (if present)are also
stripped out. The purpose of these special instructions is to
accumulate bias information about certain instructions ofthe
cell’s program, so as to increase their probabilities of being
used. The bias mechanism works exclusively on a given cell’s
program alone, and not on the one of its neighbours.

In our initial EVM implementation [15], we used the list-
stack and all the EVM instructions to manipulate it. The
list-stack simply becomes the cell’s machine. That way, the
program is able to generate machines of any dimensions
(i.e. any number of programs and any number of instructions
per program). The most interesting application are in the area
of executing programs on SIMD processors, such as on the
modern multicore processors and GPUs.

VIII. S UMMARY AND FUTURE WORK

This article presents the main concepts behind lifelong
reinforcement learning, multi-task learning, and self-learning

6We need two meta-instructions,incP and decP, which respectively
increase and decrease byδ the probability of having valuev for instructioni

of P . δ, v, andi are passed as arguments ofincP anddecP. Note that these
two instructions can be collapsed into a unique one if we allowed negative
increments.

systems. It also provides a general description of the EVM
architecture and EVM instantiation. We have discussed how
the multi-cellular computational EVM model mimics biologi-
cal systems and how it can be used for lifelong reinforcement
learning. For detailed description of the model together with
the experimental results please refer to [13].

Future work will consists of further extensions to the model.
We are planning to use the EVM learning and program
discovery in the context of speculative execution and code
optimisation for parallel programming architectures, such as
those based on Single Instruction Multiple Data. It is our belief
that automated code generation might assist in more robust and
flexible runtime computing environments deployed on SIMD
and multicore systems.

REFERENCES

[1] Jonathan Baxter. A model of inductive bias learning.Journal of Artificial
Intelligence Research, 12:149–198, 2000.

[2] M.A. Bozarth, G.J. Gerber, and R.A. Wise. Intracranial self-stimulation
as a technique to study the reward properties of drugs of abuse. Pharma-
cology, Biochemistry and Behaviour, 13(Suppl I):245–247, 1980. PMID:
7195575.

[3] Rich Caruana. Multitask learning.Machine Learning, 28(1):41–75,
1997.

[4] F. H. George.Cybernetics and Biology. Oliver & Boyd, Department of
Psychology, University of Bristol, first edition, 1965. SciQ-320-GA82.

[5] Christophe Giraud-Carrier, Ricardo Vilalta, and PavelBrazdil. Introduc-
tion to the special issue on meta-learning.Mach. Learn., 54(3):187–193,
2004.

[6] Hermann Haken.Synergetics, An Introduction: Nonequilibrium Phase
Transitions and Self-Organization in Physics, Chemistry,and Biology.
Springer-Verlag, Berlin,3rd revised and enlarged edition edition, 1983.

[7] John H. Holland. Hierarchical descriptions of universal spaces and
adaptive systems. ORA Projects 01252 and 08226, Universityof
Michigan, Dept. of Computer Science and Communication Sciences,
Ann Arbor, 1968.

[8] John H. Holland. Adaptation in natural and artificial systems, 1975.
[9] M. Hutter. The fastest and shortest algorithm for all well-defined

problems. International Journal of Foundations of Computer Science,
13(3):431–443, 2002.

[10] John R. Koza.Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection. MIT Press, 1992.

[11] Leonid A. Levin. Universal sequential search problems. Problems of
Information Transmission, 9(3):265–266, 1973.

[12] T. Mitchell, P. Utgoff, and R. Banerji. Learning by experimentation:
Acquiring and refining problem-solving heuristics. In R. Michalski,
J. Carbonell, and T. Mitchell, editors,Machine Learning: An Artificial
Intelligence Approach, chapter Chapter 6, pages 163–190. Springer-
Verlag, 1984.

[13] Mariusz Nowostawski. ”Evolvable Virtual Machines”. PhD thesis,
”Information Science Department, University of Otago, Dunedin, New
Zealand, 12 2008.

[14] Mariusz Nowostawski, Lucien Epiney, and Martin Purvis. Self-
Adaptation and Dynamic Environment Experiments with Evolvable
Virtual Machines. In S.Brueckner, G.Di Marzo Serugendo, D.Hales, and
F.Zambonelli, editors,Proceedings of the Third International Workshop
on Engineering Self-Organizing Applications (ESOA 2005), pages 46–
60. Springer Verlag, 2005.

[15] Mariusz Nowostawski, Martin Purvis, and Stephen Cranefield. An
architecture for self-organising evolvable virtual machines. In Sven
Brueckner, Giovanna Di Marzo Serugendo, Anthony Karageorgos, and
Radhika Nagpal, editors,Engineering Self Organising Sytems: Method-
ologies and Applications, number 3464 in Lecture Notes in Artificial
Intelligence. Springer Verlag, 2004.

[16] I. P. Pavlov. Conditioned Reflexes. Oxford University Press, 1927.
http://psychclassics.yorku.ca/Pavlov/.



98 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

[17] Juergen Schmidhuber. Self-referential learning, or on learning how to
learn: The meta-meta-... hook. Diploma thesis, Institut fuer Informatik,
Technische Universitaet Muenchen,, 1987. http://www.idsia.ch/ juer-
gen/diploma.html.

[18] Juergen Schmidhuber. On learning how to learn learningstrategies.
Technical Report FKI-198-94, Fakultät für Informatik, Technische Uni-
versität München, 1994.

[19] Juergen Schmidhuber. Environment-independent reinforcement acceler-
ation. Technical Note IDSIA-59-95, IDSIA, Lugano, 1995.

[20] Juergen Schmidhuber. A general method for incrementalself-
improvement and multiagent learning. In X. Yao, editor,Evolutionary
Computation: Theory and Applications, chapter 3, pages 81–123. Sci-
entific Publishers Co., Singapore, 1999.

[21] Juergen Schmidhuber. Optimal ordered problem solver.Technical Report
IDSIA-12-02, IDSIA, 31 July 2002.

[22] Juergen Schmidhuber. Optimal ordered problem solver.Machine
Learning, 54:211–254, 2004.

[23] E. L. Thorndike.Animal Intelligence. Macmillan, New York, 1911.

[24] Sebastian Thrun. Is learning then-th thing any easier than learning
the first? In D. Touretzky and M Mozer, editors,Advances in Neural
Information Processing Systems (NIPS) 8, pages 640–646, Cambridge,
MA, 1996. MIT Press.

[25] Sebastian Thrun and L. Pratt.Learning to Learn. Kluwer Academic
Publishers, 1998.

[26] Alan Mathison Turing. Intelligent machinery. Technical Report Machine
Intelligence 5, National Physical Laboratory, Edinburgh,1948.

[27] Michael D. Vose.The Simple Genetic Algorithm: Foundations and The-
ory. A Bradford Book, MIT Press, Cambridge, Massachusetts/London,
England, 1999.

[28] J. B. Watson. Kinesthetic and organic sensations and their role in the
reaction of the white rat to the maze.Psychological Review Monograph
Supplement, 8(33):1–100, 1907.

[29] Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-Task Learning
for Classification with Dirichlet Process Priors.The Journal of Machine
Learning Research, 8:35–63, 2007.


