IMCS) Proceedings of the International Multiconference on ISBN 978-83-60810-22-4
= Computer Science and Information Technology pp. 89-98 ISSN 1896-7094

EVM: Lifelong reinforcement and self-learning

Mariusz Nowostawski
Information Science Department
Otago University
PO Box 56
Dunedin, New Zealand
Email: mariusz@nowostawski.org

Abstract—Open-ended systems and unknown dynamical envi- repetitions, then that particular response will becomedeon
ronments present challenges to the traditional machine leaing tional to the stimulus. In experimental studies, where ¢ond
systems, and in many cases traditional methods are not appi- oning trials were not accompanied with positive feedback

ble. Lifelong reinforcement learning is a special case of dyamic S .
(process-oriented) reinforcement leaming. Multi-task kaming (féwards), the expected conditioning was not achieved. The

is a methodology that exploits similarities and patterns amss ~€arly work on biological learning and conditioning pereslv
multiple tasks. Both can be successfully used for open-ende (or projected) the living organisms as structured mechianis

systems and automated learning in unknown environments. D1 systems. Contemporary biology and psychology departs from
to its unique characteristics, lifelong reinforcement presents both this simplistic model and instead, treats associative gsses

challenges and potential capabilities that go beyond tradiional - . .
reinforcement learning methods. In this article, we preseh as being fundamental to all learning. In contemporary sdi

the basic notions of lifelong reinforcement learning, intoduce ON ponditioning, the eX(.:Iusiver mechanistic view is bereg .
the main methodologies, applications and challenges. Wesal defined to account for richer and more complex dependencies.

introduce a new model of lifelong reinforcement based on the These dependencies between the stimulus, conditioning and
Evolvable Virtual Machine architecture (EVM). positive and negative feedback loops can form a highly com-
plex, interlinked, and hierarchical network of dependeascit
. INTRODUCTION is important to note, that the role of a (positive and negativ

N THIS article we re-asses the state of reinforcement leaff€dback continues to play the central role in contemporary

;) e | b
ing methodologies in modern Al in the context of learnind€0ries of leaming as it did at the beginning2of" century.

in open-ended and unknown environments. We first analyse! N€ reward system in many biological systems is based on

the biological aspects of reinforcement learning, disahes Pinary (all or nothing) signalling. A subject receives thal f
basic concepts of conditioning and so called Law of Effecrt‘?ward_ if the expected conditioned response is achieved, or
Then we focus on the mechanisms of reinforcement itselfotherwise, there is no reward at all. There is no concept of
how it operates in biological systems. We approach the st@@tial reward for partial conditioned responses. For exam

of the reinforcement learning in the computational domai®) @nimal reaches for food/ catches a prey or it does not.
from the previously developed biological perspective.elat Wlt_hOUI_fOOd'_ there is no po§|t|ve feedback. It is |rnpor_t!amt

we introduce the EVM architecture. Then we define a machifiStinguish this type of learning, from other machine leagn
learning formalism, and based on it we define a truly seiféchniques where the feedback mechanism is provided in a
learning system class. We discuss what properties trufy saP™m ©of @ gradient, i.e. there are partial rewards for pértia
learning systems exhibits, and how appropriate search bi§SPonses (partial solutions). ,

can be obtained through the learning process itself. Fiest w -@W Of Effect. The Law of Effect[23] tries to capture
introduce and then discuss the relationship between twfio s&i'® idea that those aspects of behaviour which satisfy inerta

learning systems: EIRA and the EVM. We conclude the articRe€ds of an organism will tend to be repeated, whereas those
with short summary and plans for future work. which do not satisfy any needs will tend to be omitted from

future behaviour. Intuitively, it is clear that somethiriel the
Law of Effectmust operate on different levels of biological
organisation to facilitate the process of learning and tdap
Most of the modern theory of learning originated in th&ion. The reinforcement both, positive through rewards and
work of Watson [28] and then Pavlov [16]. The main ideasegatively through punishments is necessary for the psoces
are the notion otonditioning andconditioned stimulusvith of learning to occur. In the context of biological systems,
a conditioned responsén those models, a reward system is ¢he question is which features of the environment function
fundamental element. The basic idea is that positive fe’ddbas positive and which as negative reinforcers. The diffjcult
is an essential part of conditioning, i.e. given a condgin of setting up classes of reinforcers is mainly that a reicdor
stimulus positive feedback is employed to achieve the coment is dependent on the context in which it operates. The
ditioned response. In other words, when a positive rewareinforcement in one context will not be the same in another.
accompanies a particular response to a stimulus over mdnyact, positive reinforcementin one context may have #yac

Il. BIOLOGICAL LEARNING

89

90 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

opposite effect in another context. For example, when hyngr « Reinforcement works often as a binary system; a given
the smell of food provides positive reinforcement and iases reinforcement is present, or not. In biological systems
subject’s desire to eat. However, when a subject is full and there is often no gradual or partial negative or positive
satisfied, the smell of food may have quite the opposite effec reinforcement.
Detailed discussion on biological aspects of reinforcenien « Reinforcement is often not immediate; it frequently fol-
the context of cybernetics is provided by George [4]. lows the triggering organism actions with a delay.
Natural reinforcers work subject to their physical context « Reinforcementis context-dependant; the same stimuli can
They also operate over time delays. Often, a reinforcement provide opposite or contrasting reinforcement in différen
(in the form of a reward or punishment) does not occur im- contexts.
mediately after a cause. Both, negative feedback and yp®siti « The same stimuli can have opposite short-term and long-
reinforcement can take substantial amounts of time to occur term effects, hence short-term negative reinforcement can
The positive (or negative) feedback, may be immediately lead to a long-term positive feedback, and vice verse.
proceeded by events that have no causal relationship to the Generalisation skills and lifelong learning appears to be
reinforcement. For example, a dog might have chewed the essential in coping with the complexities of the dynamical
owner’s shoes after which he went in front of the house and environments and to facilitate the process of biological
lay down for some time. Once the owner notices the damage learning.
the dog makes, and punishes the dog, it may not be apparentearning how to learn. There are many open questions
for the dog (properly associated) what the reinforcementiis the area of biological learning. The emerging theories
actually for (chewing on the shoes or lying in front of thexnd overall picture of biological learning appears as a com-
house). Biological organisms are surprisingly well-aéidnn plex, highly dynamic network of interlinked dependencies.
selecting the appropriate causal relationships and fileout We perceive the learning process occurring simultaneaatsly
the events that do not have causal relationship to the rewagiferent levels of biological organisation, e.g. both be base
(or punishments). Animals and humans usually infer (most Rlvel (to learn the immediate tasks at hand) and at the meta-
the time without any cognitive or conscious reasoning) thevel — to learn the abstractions, generalisations andebias
correct context from cues and regularities of the envirammethat can be transferred, directly or indirectly, to enhamee’s
and the reinforcement itself. abilities to learn new tasks. In general, learning how tarlea
Short term vs. Iong term reinforcers. Sometimes, short- in bi0|ogica| systems appears to be important yet qui[e an
term positive (or negative) reinforcement is cancelled lmut ynknown phenomenon.
a long term negative (or positive) reinforcement. Biol@jic Binary reinforcement, lifelong learning, and meta-leagni
organisms seem to have little trouble learning the best-long these are the three fundamental properties that our EVM
term strategy that maximises the overall positive feedbagkodel tries to investigate and exploit through:
Howeer, there are certain exceptions. Sometimes, organism, 5 hierarchically organised computing architecture;
seem o be wired in such a way that short-term positive rein-, yeflection and reification mechanisms allowing the mod-
forcement is so strong that it overrides any long-term riegat ification of one’s own internal processing (learning):
reinforcement that the organism may experience. In extreme, keeping the history of earliediscoveriesxmemory);
cases, such a short-term override may eventually lead to the reusing learned skills in different contexts (exaptaton)
death of a biological organism. An example of such situation | he ability to deal with delayed rewards/punishments;
is studied for example through the intracranial self-statian . the ability to generalise previous experiences:
(ICS) experiments [2]. In a typical ICS experiment subjects , eta-learning constructs built-in into the architecture.
(e.g. rats or monkeys) are taught to activate self-stirfarat
(for example dopamine or cocaine stimulation) directlyheit I1l. COMPUTATIONAL LEARNING
brains through manipulation of certain physical objectfs A large part of computer science in the context of Al
as a switch or a button). After initial training, subjects aris concerned with the optimisation, prediction and the use
incapable of breaking the cycle and continue to perpetually heuristics to solve problems by means of computational
activate the self-pleasuring stimuli, paying no attentmfood learning systems. In this work, we are concerned exclugivel
or any other survival activities. The short-term reinfor@mntis with a small subset of machine learning inspired by highly
S0 strong, that the subjects can ultimately pleasure thgese dynamic biological learning systems that exhibit lifelong
to death [2]. learning process. These reinforcement learning systemsdo
In a majority of circumstances, however, the short artlerarchical short and long-term reward/punishment stings.
long term reinforcers work together and complement eadfie will briefly review the state of the art through discussion
other. Organisms’ adaptation can be viewed as a balanchgd analysis of various existing techniques.
act between different, sometimes conflicting, reinforcers Early reinforcement learning. Reinforcement learning
Based on the above discussion, a complex picture of biolaghncerns agents that sense and act in their environmeyrirts; tr
ical learning systems emerges. We will highlight below some learn to choose optimal actions to achieve a maximisation
of the main points. of the reward intake. Each time an agent performs an action,
« Reinforcement is a key element to biological learning. a trainer may provide a reward or penalty to indicate the

MARIUSZ NOWOSTAWSKI ET. AL: EVM: LIFELONG REINFORCEMENT AND SELF-LEARNING 91

desirability of the resulting state. The task of the agent environment, using the same sensors and actuators. These is
to learn from the, possibly delayed, rewards a sequencespogsibility ofre-settingthe agent state to the “starting point” —
actions that produces the greatest cumulative reward entake agent must continuously sense, learn and act. The agent
rate. may in fact never revisit any of its previous states in itdrent
The study of reinforcement machine learning is as old as thieetime. This is different from some learning methods,Isas,
theory of algorithmic computation itself. In his semindiele, for example, genetic algorithms, which generate a hypihes
Turing [26] studied a special type of unorganised machings be tested on a single isolated and idealised testcaser Aft
(u-machines) that to a certain extent can be seen as pret¢hat, a new hypothesis is tested on exactly the same isolated
sors of contemporary evolutionary and computational iearn test case, again, and again. In lifelong learning this is not
systems. He advised three types of unorganised machinespassible — any given (new) hypothesis cannot be tested on any
type, B-type and P-type. These machines consist of randorolythe old isolated and idealised test cases, because there i
connected two-state machines whose operation is synaanino possibility of reverting the environment precisely ty arf
by means of a central digital clock. By the application ois previous states. One may say that in lifelong reinforesim
“appropriate interference, mimicking educatio’’B-type ma- learning, the time flows in one direction. There is no potigjbi
chine can be trained ttdo any required job, given sufficient of resettingthe clock. Mobile robots cannot test a hypothesis
time and provided the number of units is sufficiefi#6]. and move from a given location only to restart again with
His P-type unorganised machines, hdwaly two interfering a different hypothesis from the same location again. Once a
inputs, one for ‘pleasure’ or ‘reward’ [...] and the otherifo decision has been taken, the situation has changed, and new
‘pain’ or ‘punishment’ ”. Turing studied P-types in the hopeconditions need to be taken into account, a new environment
of discovering training proceduremnalogous to the kind of state must be sensed, and new decision needs to be taken again
process by which a child would really be taughater, Turing Multi-task systems.We will use the term$earning taskor
said: | have done some [...] experiments with one such childelving tasks/problemisiterchangeably. Tasks that need to be
machine, and succeeded in teaching it a few things. solved can be provided to the system sequentially [20],,[22]
The foundations for many machine learning techniques hawethe tasks can be provided all at once, in a group. When tasks
been then laid by John Holland, [7], [8], who provided irlitiaare provided in sequence, it is referredragemental learning
mechanisms for many machine learning techniques includimgremental learning takes advantage of the fact thatezarli
early reinforcement learning algorithms and evolutior@mn- tasks (typically easier) can provide beneficial biases tdwa
putation. solving/learning later, usually harder, tasks. It is pblesior
Formally, we model the state of the environment (and thiecremental learning to use binary reinforcement mecinasis
agent) in timet ass; € S, whereS is the entire possible state Multi-task learningis an area of machine learning which
space. An agent performs actianse A that generate the nextstudies methods that can take advantage of previouslyddarn
states;; through the state transition functidfs;, a;). Allthe knowledge by generalising and reusing it in the course of
future states; o, s:+3, . .. can be influenced by a given actiorsolving a set of possibly related tasks. This is closelyteela
a:. The reward function of the state of the environment, in the the notion ofincremental learning Incremental learning
general case;(st, a;) € R can vary in time, too. The task ofis a special case of multi-task learning, where incremfntal
the agent is to choose such a sequence of actiptisat will more difficult tasks are provided to the system sequentially
maximise its reward intake over time. This can be expressidsuch a way that the system can tackle easier tasks first and
by different objective functions. The two most common aregradually solve more and more difficult tasks as time goes on.
1) maximisation of discounted cumulative rewardVulti-task learning is a more general term, where the difficu
max °EO ~ire s, where v is a parameter from the of individual tasks may or may not be of concern. There is
i=0)) research work conducted within the area of multi-task liggyn
range|0, 1] representing the memory of the preV'Oushépplied to various domains and experimental settings and
collected rewards — th_e larger thg the longer the employing different learning mechanisms, eg. [29]. If thgkis
system rememberspreviously achieved rewards. I:orshare some similar internal structure, the learner mayoéxpl

small the older rewards influence the cumulativg,eqe regularities and find it easier to learn them togettber
score less and less.

h than in isolation [24], [25]. Caruana and Baxter demonsttat
2) maximisation of average rewarthax h{ﬂ@le()T’tH- that learning multiple tasks within an environment of retht
More details related to reinforcement learning can be fou@sks can potentially give much better generalisation than
in the literature, for example [12], pages 367-387. learning a single task alone [3], [1].
Meta-learning [5] is a relatively new area of research
IV. LIFELONG REINFORCEMENT LEARNING within the machine learning and data mining fields. Re-

The reinforcement learning methodology is applied withisearchers within the field try to understand the process of
a context of autonomous intelligent agents and multi-ageg#ploiting knowledge about learning how to learn. The goal
systems. Agents, (e.g. robots), try to operate in compldg, to build algorithms that can improve the performance
unknown dynamical environments. Such environments requof the learning process itself. Recent advances provide the
that an agent learns several related tasks within the safoendations for constructing meta-learning assistandstask-

92 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

adaptive learners. One of the main motivations is the facbncerned with additions, and tasks concerned with miltipl
that successful applications of complex software systamsdations. Programs capable of addition and programs capable
the real-world require a continuous adaptation to new need$ multiplications are then stored in the OOPS framework and
changing requirements and changing contexts. When a givae used as first-order primitives when searching for smhsti
model fails to perform efficiently at a given time, one wouldo consecutive problems. An important difference between
expect the learning mechanism itself to re-learn, takirtg inEVM and OOPS is the fact that newly discovered programs
account previously learned experiences [5]. Meta-legrnim OOPS are simply added into the primitive instruction set.
capabilities are necessary in exploiting cumulative etxpeer This, for a large number of sub-tasks typical in long lifedon
gained from previous experiences. This is particularlyemt reinforcement learning will lead to an exponential growth o
in biological learning and in artificial multi-task leargin the program search space, due to the increase in the ingtruct
systems. set. In the EVM this has been addressed through the notion
One of the contributions that inspired the EVM architecturef computational levels. Newly discovered instructions ba
is the work related to the Optimal Ordered Problem Solveadded to the primitive level, just as in OOPS. But, they can
OOPS [22]. OOPS is based on the sequential exploratialso be added to new levels created and managed by the EVM
of program search spaces associated with Levin's univergiablf. Unlike OOPS, the meta-management of instructions
search algorithm [11]. OOPS uses self-delimiting binary-prallows the EVM to manage the complexity and trim the
grams and explores the space of programs by trying to fingrogram search space. The details of EVM architecture will
one that provides a solution to a given target set of problente provided later in this article.
Each new problem is provided to the system only after theln the context of meta-learning and exploration vs. ex-
previously provided problem has been successfully solvauloitation, one possible approach is to split the searclcgs®
Each solution found (to any of the previously solved task&)to two phases, as in [21]. One part of the search process
is stored in the system’s storage. Schmidhuber work exterides to exploit already built (partial) solutions, and foems
earlier work on bias-optimal search algorithms done by étutttraditional exploration/exploitation of the search spakethe
[9] (for bias-learning see also [12]). Inherently, suchreba same time, the other part of the search process, concysrentl
must deal with the trade-off between: explores the program generators space (explores the meta-
« exploration, that is the search for completely new prosearch). For simple tasks the former will be more efficient an

grams; the search starts from an empty program, anldl find a solution faster. For CompleX taSkS, the time wdste
explores all the possible programs from Scratch; on traditional search (not the meta-seal‘ch) is insigniﬂyan

« exploitation, search for variant solutions; the search triegmall compared to the time that meta-search techniques take
to reuse a“’eady exp|ored Subspaces of programs, and h@efore no substantial Inef'fICIency can be eXpeCted. Othe
some (or all) of the already gained experiences. improvements on this scheme may be possible in a specific

The assumption here is that exploiting experiences cehbctSUbCIaSS of cqmputational tasks. Such i_mprovements must be
in previous searches can solve the target problem fastés. .mcorporated m'go the search process in an .automated_ _and
is because the learning process can exploit any reguiatitae adaptable way in order to exploit the uqderlylng regulesit
have been discovered earlier. In the context of OOPS, earl?é the IPrOt_"em* ?nd :he sialrch process itself. ical
discovered programs are stored and they provide (partial PP ications of multi-task learning. rom a practica per-
solutions to other problems. In OOPS, meta-knowledge spective there are many problem domains that can be viewed

stored in the form of candidate program solutions. The syst S sets of related tasks. For ex?mp'e* speech recognitign ma
uses this information and tries to exploit it for incremeént e decomposed along many different axes: words, speakers,

self-improvement. For example, the task of performing |0n§ccents, etc. Face recognition represents a potentidihyten

addition and multiplicatiohican be split into individual tasks omain of r(_alated tasks. Medical diagnosis and prognosis
problems using the same pathology tests are yet another

15uch programs are binary strings with a specific length esttanto the €Xample, as well as time-series prediction, database ginin
program itself, or with special end-of-program markerst ilentify uniquely autonomous robots, personal software assistants, etS¢H.

an end of a given program in a binary sequence. Note that @ giegram 5|55 [3] for more considerations about applications. Multi
may end anywhere in, potentially, an infinite string of bikis is in contrast

with ordinary binary programs, which start at the beginninig: bit string and taSK learning techniques have shown promising results when
end at the end of the bit string. The advantage of self-détimiprograms applied to artificial neural networks [3], [24]. In these netsd

is that they can be spliced together and such splicing will a@ange their neural nets that learn different tasks usua”y share a cammo

semantics. . . .
2Long arithmetic operation means an operation that spangertstionger hidden Iayer that SucceSSfu”y expl0|ts regma”t'es anthe

than what the single arithmetic unit can handle in a singleragion. Consider mon properties across multiple tasks. In most of the systems

an arithmetic unit that can handleladigit binary operation of subtraction and however multiple-task problems are usua”y translatad in
addition with a single extra carry bit. If one now tries to &dbit long words, ’

the operation would be considered long addition, and tharagtic operation single-task prObIem_s' A pOtemi_a”y rich source of i_nfOtma)
would need to be chained and performed multiple times onithpls 1-digit ~ about the problem is then omitted and the possible benefits

arithmetic unit. It is similar to adding for example t#-digit long decimal of multi-task Iearning and meta-learning is lost. The main
numbers with a piece of paper. One needs to understand thigoadap to

number 19 (adding two arbitrary decimal digits) to be ablgéoform long adygntage of mumftaSk and meta'leaming systems .iS the
addition on arbitrary long decimal numbers, with a pencill afece of paper. ability to reuse previously acquired knowledge and to explo

MARIUSZ NOWOSTAWSKI ET. AL: EVM: LIFELONG REINFORCEMENT AND SELF-LEARNING 93

any regularities across different tasks that can be gesedal « there is periodic feedback to the cell, with rewards, or

Solutions, or partial solutions of previously solved perhk, punishments, or both (positive and negative reinforce-
can be valuable in solving new, unsolved (and often more ment). The cell operates in an internal loop mode for
difficult) tasks. The system is designed to shift iéas an extended amount of time. In this case the cell’s state
accordingly to search for a hypothesis space that contaiod g trajectory is evolving in the state space in a more or less

solutions to many of the problems in the environment. By continuous fashion.
transferring knowledge across related learning tasksarséds « there is only one reward feedback provided after all the

becomes more experienced and generalises better. activities of the cell have ceased. In this case the cell's
state trajectory has been clearly divided into generations

V. EVM OVERVIEW After each activity-reward feedback cycle, the cell's stat
has been reset to the initial state. Note, that the en-

The Evolvable Virtual Machine architecture (EVM) [15], vironmental state is not being reset to its initial state,
[14], [13] is a computing architecture based on the notion of pyt continues its own evolution in a continuous fashion.
distributed interactive asynchronously communicatinmpao- This results in a complex dynamics between internal and

tational cells. The EVM provides a massively decentralised external activities of the cells.
and distributed asynchronous framework for experimentingcells. Computational cells are organised into a regular
with, and studying the properties of lifelong self-leain|atice (or grid). Neighbourhood is typically 4 or 8 adjaten
systems. It can be used for distributed multi-task learf®g celis, but, this can be programmatically controlled. Vasio
[17], for automated program discovery [20], and for lifegon iopologies are possible, although in this article we onlyufo
reinforcement Iearnin_g. The main emphasis is on initiatsloia_On regular grids. EVMI cells are constrained in such a way
free state that requires a meta-learning that through rejfat an externally provided resource (reward) is necedsary
forcement will diverge the random search into more efficiefe cells to continue to exist (or to be allowed to perfornirthe
learning strategy for a given problem domain. activities). In other words the cells’ computational resms

The Evolvable Virtual Machine consists of two parts. Thg'nemory and CPU Cyc|es) are abstracted into a Sing]e param-
abstract layer, called EVMA (Evolvable Virtual Machinegter, called aesource which again, is balanced by a single
Architecture). And the concrete instantiation, called ENMparametereward This is an external system-level constraint
(Evolvable Virtual Machine Instantiation). The full degatfon that may not have any direct linkage with the problem domain
of the EVMA/EVMI together with a formalisms has beel’bf any of the tasks. It can be treated S|mp|y amnising
presented in [13]. principle [6]. It is a domain-independent artifact that mod-

The current EVMI provides a framework to experiment witlels certain constraints that are conceptually (metapaliy)c
and instantiate EVMA models. The current EVMI supportgquivalent to physical constraints. This physical comstsa
most but not all of the EVMA features. The architecturare modelled through the abstract notions afaourceand
consists of independently operating computatiac®ls The reward
cells operate in a local environment where they providerthei Intra-cell computing. A cell’s program takes data from and
results and obtain their feedback. A computational entty, produces output to thenvironmentin the abstract architecture
cell, acts (operates) in an unknown environment, trying tese mechanisms can be arbitrary, and the EVMA does not
maximise its own reward intake. The cell continuously atfjusmandate any particular mechanism. For efficiency reasons
its actions in such a way as to collect more positive and avdidwever, we have designed and used a number of fixed
negative feedback. The rewards (positive reinforcemem) amechanisms for the cell processing. Therefore, each cell's
punishments (negative reinforcement) can be delayed ia tigpecialisation and program execution mechanism was built-
and do not necessarily correlate directly with the lastoasti in, and could not be changed by a given cell itself. In the
of the cell. As in Q-learning [12, p. 367—387], the actuall reabstract sense, these could have been reified and provided as
reinforcement mechanism is unknown and can be subjectri@chanisms on the base level, subject to direct manipulatio
dynamic changes. degradation and improvement when needed. Experiments with

The cell computations consume the resources that the gakta learning proved to be prohibitively slow.
has been initiated with. As long as the cell’s reward mech- At every iteration, the execution engine tries to solve
anisms refuel the resources the cell continues to perfaem $ome tasks provided by the environment. For each task, it
activities, and thaaskis considered solved within the EVMI runs the cell's program (possibly calling some neighbours’
context. The EVMI approximates an unknown, infinitely longprograms) in interaction with the task’s resource. If thépoti
computational solution to the task by a temporal snapstatt tlis correct, the cell receives some rewards. A specialisatio
has been computed up to a specified time mark. The taskrigchanism uses these rewards to modify its state and provide
considered failed or unsolved when the activities of thé cel new program for the next iterative step. Témecialisation
do not bring the required reward intake for the cell, and'cellmechanisiris an umbrella term that relates to the ability of
computational expenditure cannot be balanced out with ttee cell to trim its computational capabilities (that meaome
cell's reward intake. In our experiments we have used twaf the computational capabilities are removed from the cell
types of situations: repertoire).

94 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Individual cells work in a distributed and asynchronou
fashion. The processing of an individual cell is sequenti
and consists of sets of operations, also caitethtions The
iterations can be imposed by the environment (as it was t
case with some of our experiments), can be managed by
cell and cell program alone, or they can be in an arbitrargord
(subject to a mixture of environmental and cellular influesjc

At every iteration, the specialisation mechanism of thé ce _ _ o IS gz
. . Instructions executed: i - =
must generate one program. This program will try to sol NAGNENARBE
some tasks from the environment, and this process may Vi IR Cs TR Cx

some rewards coming from the environment. From an artificial

life perspective, the program attempts to maximise the r@we9- 1. The dark cell executes its program. Arrows show imsions that
h L . . . gi’ﬁ neighbours’ programs.

and maintain its existence by trying to achieve homeosta:

with regard to the external resources (rewatds)

Environment and resources.Every cell maintains a pro-

granf. The cell'sgoal is to find a successful program: one
that,. by solving a task, yields enough rewards for the cell to [S]
survive. Programs can call other programs.

When a given program obtains a reward, the reward will

joe3s e3lea
joe3S 3ISTT

be shared proportionally with any programs use@dssistants M Index L fndex

to compute the solution. All of the participants will benefit

from their relationship. In other words, symbiotic (muigtt Second level Machine
or parasitic) relationships will appear between prograhhsgs NachihiiRat o
ability to access other programs has thus facilitated cerpl — — Program

hierarchical organisation and self-assembly. As a coresazp)
cells are able to collaborate to solve complex problems.
Problems that none of the cells would be able to solve on
their own can thereby be solved through cell collaboration. "”a"’g;’:g’;;fn" e

Figure 1 depicts a simple example of céll using other
cells during the course df';’'s computation. The computation
starts withC'; executing its own instruction numbér The Fig. 2. EVM hierarchy. The HM (Higher Machine) List storeglices to
second instruction of’; calls its right neighbour, the cells. all created and managed machines. The CM (Current Machaiejep points
Therefore the computation follows to the first instruction otgé;(t}‘fin%“{;iﬂﬂg’aﬁxsgunﬂgﬂi&ﬁa‘ig?%ﬁ?\: E‘SMHMS;?SSTO%'D““E higher
the cellCs. C5’s program is executed up to instruction number

2, and the third instruction of’; calls the program of upper

neighbour, cell’s. And so on. On the bottom of the figure youresource corresponds to a task). The purpose of these cesour
may see the actual order of instructions being executed g8do give rewards to the cells when they solve their task.
where they belong across all cells. This type of hierardhica Cell specialisationconsists of trimming the cell compu-
assembly between the cells is distinct from the hierarChy ®8ional Capab“ties_ The cell Se|f_adapts to a particmk
the virtual machine level, which is supported by the EVMh the environment. Several specialisation mechanismeg hav
assembly language. This multi-level machine hierarchy (ggen studied: classic genetic algorithms, ad hoc stochasti
opposed to cell's hierarchy) is depicted on Figure 2. No& thsearch (maintaining a tree of probabilities of potentialdsu
the Current Machine (CM) index and Higher Machine (HMjng blocks), or an adaptation of an environment-independen
index may point to various parts of the HM list. reinforcement learning method (proposed by [19]). Differe
The environment represents the external constraints on fiethods of learning have been experimented with, includ-
system. Its role is to keep the system under pressure to fojigg random search, stochastic search and genetic algarithm

it to solve the tasks SpeCified from outside. We have deSign’ﬁHe results of our experiments have been pub“shed previ_
the environment as a set ofsources There is a one-to-one ously [14].

mapping between the resources and the tasks to solve (every

Base Machine

V1. SELF-LEARNING SYSTEM

3In terms of trying to achieve homeostasis, the homeostasis is either ; ; ; ;
achieved or not, and the cells that achieve it persist in y#istéem and those One of the goals of Al Ieammg algorlthms n general Is to

that fail are removed and replaced by other cells. Thereforgppears as if Provide efficient solutions to a wide class of problems. This
the cells are trying to achieve homeostasis, where in fagt therely follow means that the selection of instruction sets, the algoritseif,
their own Qetermlnlstlc f:ompqtatlonal trajeqtques. Thee wf intentionality and any information that is fed into the algorithm is chosen
and causality helps in discussing and explaining the dycswi the system. p . .

4A program in this case means simply a sequence of instnsciiorthe SPECHfically to aid the goal. To make the search easier. Temak
EVM assembly language. the search biased toward a particular problem at hand. The

MARIUSZ NOWOSTAWSKI ET. AL: EVM: LIFELONG REINFORCEMENT AND SELF-LEARNING 95

biases, the rules that can guide code synthesis, are edsentilearning system might try to approximate trieby Eqpproz.
any non-trivial computational search process. Note, on more philosophical grounds, may be ultimately

The goal was to develop an adaptable, self-regulating sysicomputable (or unknowable, or undefinable), in which case
tem, in which theexpert rulesandsearch biasare not given to the purpose of the learning systefhis to approximate the
the systemab initio. We expect any search bias to be acquiragthknown/uncomputable environmentfalto the desired level
on-the-fly, during runtime, based on the binary feedback tle¢ accuracy, using a given model of computati©nthat the
system obtains from the outside environment. In other wordsarning system is using.
the biases and the expert rules are obtained through a serig® soft computing and machine learning systems it is often
of test cases, and should not be built into the actual legrnithe case that both; and E, (initial environment) are given
algorithm as such. It is our aim to provide an architectueg thin the form of computable functions. The task of the learning
facilitates investigations into different possible megisens of system is then not to discover an unknown environmental
code synthesis. function E, but to convert a given form of the functiaf,

In the EVM architecture we use the concepts of syninto a different form, e.gE;. In such a case, a purpose of
biosis and exaptation augmented with mechanisms of bigsich (somewhat incorrectly callétearning”) system is not
optimal search techniques to build the necessary stricane to learn F, but to (simply) translate a given computatidiy
learning algorithm based on the past history of the systéfto a different computatiot; °.
itself. The design and implementation of the basic EVM is Based on this formulation, most of the mainstream evolu-
a step towards the ultimate goal of a self-learning artificigionary computation methods are not truly self-learninge F
(computational) system. Byruly self-learning system, we example, genetic algorithms [27] (and related models, such
mean an abstracted learning system inspired by biologi¢a) original Koza's tree-based genetic programming [10f) ca
theory of reinforcement and conditioning, in which no priope seen as an automated computational method of re-coding
bias or knowledge is present. In particular, we stress th&t tone solution £) to a problem provided by an expert, into
feedback (positive and negative) is (a) provided in binaryf another solution £;), discovered by the search mechanism.
only, (b) it is delayed, and (c) context sensitive, and trte&sy The solution provided by an experE() is in a form of
starts its learning process without any inductive bias. ¥Wa phenotype/genotype encodings and fitness function evatuat
means is that our search will (hopefully Only |n|t|a”y) be n mechanisms. The search proc(ﬁsis’ in most cases, (ex_
different to random search (or enumeration). However,rae ti tremely) encoding-sensitiveSome expert formulations of a
progresses, the system should be capable of building tise Bigoplem (a particular solution encoding and fitness fumjtio
based on the learning process itself. Note that this fortimna may lead to fast, effective and efficient re-coding by GAs for
of self-learning systendeparts from the traditional machiney specific problem&, — E;). Some, on the other hand, may
learning systems, where the inductive bias is introduaed faj| to provide a re-coding at allE, — unknown).
initio through various elaborate mechanisms. Note, that, although the EVM belongs the category of truly

To express the notion dfelf-learningmore clearly, let us self-learning systems, for any practical reasons it wowdd b
consider the following abstract architecture, consisthur ,feasible to start each time with an empty system withoyt an
elements: inductive bias whatsoever. Rather, in practical applicej the

« code generatoi{) — this is an active unit of computationgy/\ system is seeded with previously solved problems and

that takes feedback stream as an input and generatesdbgs in fact re-uses previously gathered learning biaseg
program stream on Its output; on a choice of particula®'. Unlike GA, where fitness function,

« program streamK) — this is a sequence of programs thagrossover, mating etc., are all shared among all differestch

is being tested by an environment; the environment theiymains, and the expert bias is encoded almost entirely all

generates the feedback stream; _ within the £, in the EVM the expert bias is entirely encoded
« feedback ;treanjF() - th|§ is an outcome of evaluatingin ¢ itself, and E remains to be discovered. The crucial
programs in a given environment; difference between truly self-learning and typical maehin

« environment) — this an active unit that takes programearning systems lies in the adaptive ability to modify pre-
stream as its input, and generates feedback stream agi{ting search biases 6f during the evolution of the learning
output. process itself £ discovery process).

In a truly self-learning system, the last component, the one example of a set of truly self-learning algorithms that
environmentk, is (by definition) unknowre priori. 2 may has inspired some of the characteristics of the EVM is the
be computable, in which case the sole purpose of the learnigigironment-independent reinforcement acceleratiomRAg!
systemC' is to learn (discover) the functional mapping of th%pproach proposed by Schmidhuber.
environment, to discover the functiail — i.e. the functional
mapping between the programs fed on environment inpu'[5There are many different reasons why such a transformasiomséful:
and the feedback read on its output. EverFifis ultimately consider for example two computations computing the nunitienp to 2

computable, it may be impractical to discover the actu#tillion decimal places. One computation is expressed by aatgtrogram,
but takes many iterations to calculate the expansion. Ther @omputation is

ComPUtation of & _due_‘ to cqmput.ational limitations of theexpressed as a long (over 2 million bytes) lookup that takstsgne instruction
learning computation itself (limitation af'). In that case, the cycle to execute.

96 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

VII. ENVIRONMENT-INDEPENDENTREINFORCEMENT the neighbour programs too (finite number of iterations of
ACCELERATION— EIRA the loop, in most cases just one iteratiof).has the ability

to modify itself, through self-referencing. BecauBehas the

Environment-Independent Reinforcement Acceleratiogijity to modify the way it modifies itselfneta-learning,
(EIRA) is a reinforcement learning mechanism proposed Biere is no intrinsic need for any other learning mechanism
Schmidhuber [18], [19]. EIRA is an environment-indeperideng, pe added on top, other than to provide convenient expert
single-life (lifelong) reinforcement learning mechanishat ynowledge or initial search bias. The system is able to dift
guarantees lifelong performance improvement. EIRA is aRqctive bias in a universal way. In other words, there is no
example of a truly self-learning system: there is no initiglypicit difference between learning, meta-learning, attter
human-expert bias provided initially to the system. Thgings of information processing. As a consequence, thesyst
system will learn all biases exclusively from the binargan yeproduce all traditional EC mechanisms as speciabcase
feedback mechanism. The executing program monitors {@(tensions).
own performance, and it continuously tries different léagn 1 achieve such a broad unification within the learning

policies. Some of the policies that perform worse than amy,cessp needs to have special meta-instructions that modify
other are discarded, and the system keeps onlyuS&ul p pyecuting a meta-instruction corresponds to a PMP, as
policies: those that bring more reward per time unit thafiscussed above.

all the previously tested policies. One of the objectives in 1o checkpoints can be done periodically by the environ-

designing EVM assembly language was to provide €agyen: jtself (for instance every 100 time steps, if the exgect
mechanisms for plug-in reinforcement learning technidoes oy tion to the hardest task is less than 100 time steps3. It i

lifelong continuous adaptation and performance improveme .o interesting, however, to introduce a special insimagt

The_buil_t-in probability distribution manipulation insittions - jjeq checkpoint-instructionthat triggers a checkpoint. As
are inspired by EIRA. The EVMA can be seen as a super sgt .o mogify itself, the frequency of checkpoints is also
of EIRA conceptual learning mechanism. It is important t§y namically and automatically tuned. In theory, the chedkp
remember that EVMA extends the learning mechanisms B¥q,ency may well reflect the difficulty of the tasks. This

meta-learning sFrategies that_can work corjcurrently withe mechanism will reflect also the dynamism and changeability
same EVMA grid together with EIRA. Unlike EIRA, EVMA ¢ 11 environment itself.

also provides specialised mechanisms for dynamic updatingy jicy's usefulness is defined as the rewards/time ratio (o
(forgetting) previously learned or established patternsl arewards rate) from the beginning of the policy. The system
program structures. has to maintain a stack of PMPs. At checkpoints, it keeps

Reinforcement Acceleration Criterion (RAC). In EIRA, 41y yseful PMPs. A PMP is considered useful if it fulfills
a system policy is an arbitrary modifiable algorithm that magne RAC ie.:

environmental inputs and internal states to outputs and new
internal states. In dynamic and unknown environments in the®
real world, eactpolicy modification proces@PMP) occurring

during system lifetime may have unpredictable influence on
environmental states, rewards, and PMPs at later times Not

that this relates to the notion of multiple interactive miaels.)] o
Schmidhuber proposed theinforcement acceleration crite- All PMPs are thus restored until one is found that satisfies
AC. For more detail about the implementation of that stack

rion (RAC) as a way of measuring performance improvemeng. e
At a given time, the RAC is satisfied if the beginning of eacANd €fficient memory management, please refer to [19].

completed PMP that computed a currently valid policy modifi- There are inherent benefits of Iifelo_ng_ reinforcemgnt Ie_arn
cation has been followed by long-term acceleration of ayeral"d Mmodels such as EIRA. They mimic closely biological
reward intake. In other words, the rewards rate of a new polit€@Ming and provide an attractive theoretical and prattic
must be higher than those of the previous policies. The systffi@mework for experimentation. _ _
keeps only those probability modifications computed byuisef EIRA is designed to make optimal use of its computational
self-modification programs: those which bring more payoffne/space resources, by exploitirabitrary task-specific
per time unit compared to all the previous self-modificatiofpgularities (if there are any) [18]. These are the objestiv
programs. for the EVMA, too. The EVM system should be able to:

At special instants, callecheckpointsEIRA will restore all 1) develop arbitrary problem-specific representations,
the previous PMPs until it finds one that fulfills RAC. 2) run arbitrary learning algorithms,

There are different ways of implementing EIRA system. 3) find good problem-specific learning algorithms, as
Here we describe one possibility to apply it to cell special- quickly as possible,
isation in the EVM system. Let every EVM cell contain 4) find algorithms for finding learning algorithms.
one programpP, that is executed in a continuous fashion Implementation of policies. For every instruction ofP,
(in a never-ending loop)P can call up its neighbours andthere is a probability distribution over its possible vaL€&hat
during its own program execution, it can call and executs, for every instruction of there is an associated probability

if there is no previous policy and the rewards rate of its
policy is greater than the global rewards rate from the
beginning.

« if the policy introduced by this PMP has a higher rewards
rate than all the previous policies.

MARIUSZ NOWOSTAWSKI ET. AL: EVM: LIFELONG REINFORCEMENT AND SELF-LEARNING 97

distribution from which that instruction is being sampledsystems. It also provides a general description of the EVM
The EVMI maintains a table of probabilities as depicted iarchitecture and EVM instantiation. We have discussed how
Figure 3. Values foiP’s instructions are selected according téhe multi-cellular computational EVM model mimics biolegi
their probability distribution. The meta-instructions BWVM cal systems and how it can be used for lifelong reinforcement
assembly languagencP anddecP, that allow PMPs, consist learning. For detailed description of the model togethehwi

in increasing or decreasing entries in that table the experimental results please refer to [13].

Future work will consists of further extensions to the model

We are planning to use the EVM learning and program

instructions of program p v ') °
discovery in the context of speculative execution and code

Fig. 3. Policies are managed by maintaining probabilitytritistions over
the possible values faP’s instructions. Instructions ncP anddecP modify

these probability distributions. BecausencP and decP can also modify
their own probability, we speak here wfeta-learning This table is modified
by the meta-instructions. At checkpoints, EIRA undoes thualifications that
have not been followed by an acceleration of the rewardkent&@his table,
though, is never reset to its initial state.

(1]
(2]

The described mechanism expeétsto have fixed length. [3]
To enable variable length programs, we introduce a special
halt instruction that will halt an executing program. However,[4]
P may take too long to execute or it may never terminate. Fgs;
practical reasons programs operate in a time-bound computa
tional model. That means that after a predefined time-limi
the program is terminated. Further studies related to more
elaborate estimations of program terminations will be gesttb
of further studies.

When a neighbour asks for a given cell's program, the
EVM cell sends the programithoutthe meta and checkpoint
instructions. The outer looping instructions (if presed also 8
stripped out. The purpose of these special instruction® is !
accumulate bias information about certain instructionshef
cell's program, so as to increase their probabilities ohgei [10]
used. The bias mechanism works exclusively on a given cel[lﬁ]
program alone, and not on the one of its neighbours.

In our initial EVM implementation [15], we used the list-[12]
stack and all the EVM instructions to manipulate it. The
list-stack simply becomes the cell's machine. That way, the
program is able to generate machines of any dimensions
(i.e. any number of programs and any number of instructioHs!
per program). The most interesting application are in tlea ar
of executing programs on SIMD processors, such as on the
modern multicore processors and GPUs.

(7]

VIIl. SUMMARY AND FUTURE WORK

This article presents the main concepts behind Iifeloritlgs]
reinforcement learning, multi-task learning, and se#rieng

6We need two meta-instructions,ncP and decP, which respectively
increase and decrease byhe probability of having value for instruction:
of P. ¢, v, and: are passed as arguments ofc P anddecP. Note that these
two instructions can be collapsed into a unique one if wenadth negative [16]
increments.

0 1 2 3 4 5 6 7

add 09 o] 01| 001] 02| o o8 o optimisation for parallel programming architectures, rsas
u ., [AneP U-OITIRO'S, MROSTIROOSO0 N0 RO S0 those based on Single Instruction Multiple Data. It is odidfe
0 decP 0| 0.01 0.02] 0.02] 0.6 0 0.01 0.1
‘2 2 |const 2 | 005 05| 0.04[001 01| 0.1] 005 07 that automated code generation might assist in more rohdst a
2@
g > [gote 0.01] 0.02| 06| 001 0.05] o 0.1] 0.04 flexible runtime computing environments deployed on SIMD

1 0| 0.07 0] 0.2] 0.01 0.9 0.02| 0.03 .
= and multicore systems.

REFERENCES

Jonathan Baxter. A model of inductive bias learnidgurnal of Artificial
Intelligence Resear¢hl2:149-198, 2000.

M.A. Bozarth, G.J. Gerber, and R.A. Wise. Intracranielfstimulation
as a technique to study the reward properties of drugs oeaBlmarma-
cology, Biochemistry and Behaviqur3(Suppl 1):245-247, 1980. PMID:
7195575.
Rich Caruana.
1997.

F. H. George.Cybernetics and BiologyOliver & Boyd, Department of
Psychology, University of Bristol, first edition, 1965. Sgi320-GA82.
Christophe Giraud-Carrier, Ricardo Vilalta, and PaBehzdil. Introduc-
tion to the special issue on meta-learnifgach. Learn, 54(3):187-193,
2004.

Hermann Haken.Synergetics, An Introduction: Nonequilibrium Phase
Transitions and Self-Organization in Physics, Chemisary Biology
Springer-Verlag, Berlin3"? revised and enlarged edition edition, 1983.
John H. Holland. Hierarchical descriptions of univérspaces and
adaptive systems. ORA Projects 01252 and 08226, Univexsity
Michigan, Dept. of Computer Science and Communication ries,
Ann Arbor, 1968.

John H. Holland. Adaptation in natural and artificial ®mss, 1975.

M. Hutter. The fastest and shortest algorithm for all kesfined
problems. International Journal of Foundations of Computer Science
13(3):431-443, 2002.

John R. KozaGenetic Programming: On the Programming of Comput-
ers by Means of Natural SelectioMIT Press, 1992.

Leonid A. Levin. Universal sequential search problenfgoblems of
Information Transmissigr9(3):265-266, 1973.

T. Mitchell, P. Utgoff, and R. Banerji. Learning by expaentation:
Acquiring and refining problem-solving heuristics. In R. dalski,

J. Carbonell, and T. Mitchell, editor8fachine Learning: An Artificial
Intelligence Approach chapter Chapter 6, pages 163-190. Springer-
Verlag, 1984.

Mariusz Nowostawski. "Evolvable Virtual Machines” PhD thesis,
"Information Science Department, University of Otago, Bdim, New
Zealand, 12 2008.

Mariusz Nowostawski, Lucien Epiney, and Martin Purvis Self-
Adaptation and Dynamic Environment Experiments with Eable
Virtual Machines. In S.Brueckner, G.Di Marzo Serugenddi&es, and
F.Zambonelli, editorsProceedings of the Third International Workshop
on Engineering Self-Organizing Applications (ESOA 20Q&)ges 46—
60. Springer Verlag, 2005.

Mariusz Nowostawski, Martin Purvis, and Stephen Cfieie An
architecture for self-organising evolvable virtual mags. In Sven
Brueckner, Giovanna Di Marzo Serugendo, Anthony Karagenyrgnd
Radhika Nagpal, editor&ngineering Self Organising Sytems: Method-
ologies and Applicationsnumber 3464 in Lecture Notes in Atrtificial
Intelligence. Springer Verlag, 2004.

I. P. Pavlov. Conditioned Reflexes Oxford University Press, 1927.
http://psychclassics.yorku.ca/Pavlov/.

Multitask learning.Machine Learning 28(1):41-75,

98

[17] Juergen Schmidhuber. Self-referential learning, orlearning how to

learn: The meta-meta-... hook. Diploma thesis, Institet funformatik,

Technische Universitaet Muenchen,, 1987. http://wwwaids/ juer-

gen/diploma.html.
[18] Juergen Schmidhuber.
versitat Munchen, 1994.
[19]
ation. Technical Note IDSIA-59-95, IDSIA, Lugano, 1995.
Juergen Schmidhuber. A general method for incremerstlf-
improvement and multiagent learning. In X. Yao, editByolutionary

[20]

On learning how to learn learrstigtegies.
Technical Report FKI-198-94, Fakultat fur Informatikedhnische Uni-

Juergen Schmidhuber. Environment-independent aegafment acceler-

[24]

[25]
[26]

[27]

Computation: Theory and Applicationshapter 3, pages 81-123. Sci-[28]

entific Publishers Co., Singapore, 1999.
[21]
IDSIA-12-02, IDSIA, 31 July 2002.
Juergen Schmidhuber. Optimal ordered problem solvéachine
Learning 54:211-254, 2004.
[23] E. L. Thorndike. Animal Intelligence Macmillan, New York, 1911.

[22]

Juergen Schmidhuber. Optimal ordered problem soleshnical Report

[29]

PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

Sebastian Thrun. Is learning theth thing any easier than learning
the first? In D. Touretzky and M Mozer, editor8dvances in Neural
Information Processing Systems (NIPS)p&ges 640-646, Cambridge,
MA, 1996. MIT Press.

Sebastian Thrun and L. Prattearning to Learn Kluwer Academic
Publishers, 1998.

Alan Mathison Turing. Intelligent machinery. Techaidkeport Machine
Intelligence 5, National Physical Laboratory, EdinburB48.

Michael D. Vose.The Simple Genetic Algorithm: Foundations and The-
ory. A Bradford Book, MIT Press, Cambridge, Massachusettsdoon
England, 1999.

J. B. Watson. Kinesthetic and organic sensations aeit tble in the
reaction of the white rat to the mazBsychological Review Monograph
Supplement8(33):1-100, 1907.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-3k Learning
for Classification with Dirichlet Process PriorShe Journal of Machine
Learning Researgh8:35-63, 2007.

