
Preprints of the 30th IFAC Workshop on Real-Time Programming and  
 4th International Workshop on Real-Time Software, pp. 79 – 84  

Hardware Testing on the Level of Tasks

Thomas Kaegi -Trachsel*, Igor Schagaev**
Juerg Gutknecht* 

*ETH Zurich, Zurich , Switzerland (e-mail: {thomas.kaegi, gutknecht}@inf.ethz.ch)
**London Metropolitan University, London England (e-mail: i.schagaev@londonmet.ac.uk) 

Abstract: In this paper we give an introduction into fault tolerant computing and explain the generalized 
algorithm of fault tolerance with the several steps required to make a system fault tolerant. We show that 
having a hardware test assigned to every task is a powerful way to detect certain types of faults. To re-
duce the testing overhead and keep the system responsive, we show an algorithm that partitions the tests 
into the ones that are supposed to run asynchronously from the synchronous tests. 

Keywords : real-time, scheduling algorithms, fault tolerance, operating systems, diagnostic tests 

1. INTRODUCTION

Applications for fault tolerant systems are expanding faster 
than we could have imagined and are steadily applied in new 
fields, especially in embedded systems. Any embedded safety 
critical  system, for example the ones used in air plane on-
board systems must provide two features, namely Fault Tol-
erance (FT) and Real Time (RT) behaviour. For a system to 
provide these two features, the hardware (HW) as well as the 
system software (SSW) must tightly work together and there-
fore  be  designed  and  implemented  in  a  mutual  depended 
process. In addition, it is essential to already know the types 
of faults the system must tolerate (Sogomonyan et al., 1988; 
Siewiorek, 1998; Pierce, 1965).

In general, two ways exist how to create a reliable system. 
First by using and combining multiple unreliable, or in other 
words unhardened components (von Neumann, 1956) or sec-
ond by using higher reliability components, hardened compo-
nents or such that include various types of internal redundan-
cy to maximise their reliability and efficiency. (Schagaev I., 
1989; Zalewski et al. 2001)).

Over the years, various system types were defined that react 
to faults in different ways. A graceful degradable system is a 
system that can recover itself after the occurrence of a fault 
and continue processing in a degraded mode (Laprie, 1995). 
A system that can stop itself correctly after the detection of a 
fault is called a fail-stop system (Kopetz et al., 1990).

Consequently,  Avizienis  (Avizienis  et  al.,  1971;  Avizienis, 
1975; Ying, Avizienis, 1980; Avizienis, Laprie, 1986), Laprie 
(Avizienis,  Laprie,  1986;  Laprie  1995)  and  Siewiorek 
(Siewiorek, 1998) defined that a system is fault tolerant if it 
recovers itself to full performance or at least to a degraded 
mode that still provides all essential functionality.

Faults are typically separated into two categories, permanent  
faults and malfunctions. Malfunctions are transient faults usu-
ally  induced  by external  events  such  as  alpha  particle  im-
pacts.  In  contrast  to  malfunctions  that  do not  permanently 

damage  the  hardware,  it  is  not  possible  to  fix  permanent 
faults. These faults can have different manifestations such as 
stuck  bits  or  an  arbitrary  behaviour  of  a  component 
(Siewiorek,  1990).  Practice  shows,  that  malfunctions  occur 
much more often than permanent faults, especially in space 
borne systems or flight systems, where the ratio of malfunc-
tions to permanent faults can be up to 63 1010 − .

2. GENERALISED ALGORITHM OF FAULT 
TOLERANCE

Several  authors (Sogomonyan et  al.,  1988; Zalewski  et al., 
2001) proposed to consider fault tolerance not as a feature, 
but as a process called Generalized Algorithm of Fault Toler-
ance (GAFT).  Different  types  of  redundancy  (information, 
time  and  structural) are  used  for  the  implementation  of 
GAFT, as shown in Table 1. Every step of the GAFT imple-
mentation is based on using various redundancy types either 
in software (SW) or in hardware (HW).

The taxonomy of Table 1 might be used for comparison and 
overview of different design solutions of FT systems. It also 
allows deriving  the  efficiency  and  fault  coverage  of  every 
step in the algorithm. Therefore,  it provides a tool to assist 
the developer in the selection of the most efficient solution in 
terms of overhead and coverage for the implementation of FT 
systems considering all possible approaches.

We define a system as  fault tolerant if and only if it imple-
ments  GAFT  transparently  for  applications.  Depending  on 
the actual implementation, the algorithm may vary in the time 
required to execute each step, the used redundancy types and 
the tolerated fault types. 

As an example, the main function of an on-board flight con-
trol system is the implementation of control algorithms. Let’s 
call  the primary function “process  one” or P1 according to 
(Stepanyants  et al.,  2001). Therefore,  if the system ensures 
for the process P1 full functionality and transparent applica-

79 



80 PREPRINTS OF WRTP/RTS. MRĄGOWO, 2009

tion recovery from a predefined set of faults in a given time 
frame, the system is fault tolerant.

Table 1: GAFT vs. redundancy types

Steps Redundancy types
      hw                   sw___
  i     s       t        i      s       t  

A.Prove the absence of faults, 
ELSE 1

 B.Determine type of fault 1

 C.If  fault type is permanent 
 THEN 1

  D.Reconfigure hardware 2 2

 E.Prove software consistency -

 F.Locate faulty states 3 3

 G.Recover software 3 3

Table 2: Redundancy types

Nr. Name
Redundancy 

type Description

1 Task 
checking

SW(I,S) Hardware checking on 
the level of tasks.

2 HW re-
conf.

SW(S), 
HW(S)

Disable and exclude the 
faulty element

3 Task 
restart

SW(t), SW(i) Task restart

Table 1 and  Table 2 show a possible minimal implementa-
tion of GAFT where  Table 2 shows all applied redundancy 
measures. For step E, we always consider the task as affect-
ed by the fault and restart it accordingly. It also shows that a 
redundancy measure can cover multiple steps in GAFT, as 
for example the software based checking can also detect the 
fault type. 

The  implementation  of  the  hardware  checking  (step  A of 
GAFT) can be done on different levels with different  tim-
ings:

• microseconds for the instruction level
• milliseconds for the procedure level
• hundreds of milliseconds for the module level
• seconds to tens of seconds at the task level
• tens of seconds to minutes or even hours at the sys-

tem level.

The different  implementations  have  different  properties  in 
terms of timing, fault coverage, types of faults that can be to-
lerated, power consumption, complexity and cost. It is there-
fore wise to combine several different checking schemes in 
one system. For example, it  might be beneficial  to protect 
the processor and memory by hardware schemes on the level 
of  instructions  (duplicated  processors,  triplicate  memory) 
and use higher level schemes (procedure or module) for the 
other  hardware  components  due  to  cost  and power  const-
raints. The implementation levels are not mutually exclusive, 
as for example the combination of hardware and software 
based checking can significantly improve fault coverage.

In general, the higher the implementation level the less hard-
ware support is  required,  but  with higher  timing and soft-
ware coding overhead. 

A good fault tolerant system tolerates the vast majority of 
malfunctions within the instruction execution, which makes 
them invisible  for  other  instructions  (and  software).  Mal-
functions with longer time range or permanent faults might 
be detected  and recovered  differently,  for  example,  at  the 
procedural or task level.

The complexity of GAFT implementations also depend on 
the types  of  faults  that  have to be tolerated.  Even though 
malfunctions occur an order of magnitude more often than 
permanent  faults,  it  is  necessary  to  implement  special 
schemes  for  HW  reconfigurability  and  recoverability  to 
eliminate the impact of permanent faults on the system.

3. CHECKING PROCESS ON THE LEVEL OF TASKS

We present a possible implementation of the first step of the 
GAFT algorithm, namely the proof of the hardware integrity 
on the task level. As shown in the previous section, only cer-
tain types of faults can be tolerated on the instruction level 
with reasonable hardware overheads. Thus it seems wise to 
use task based checking, which we discuss here further.

Consider a sequence of tests and programs (tasks) denoted T 
and P in Figure 1. The initial test T starts at every operation 
cycle followed by the task and a re-execution of the test. The 
successful  completion of this cycle guarantees the absence 
of permanent faults in hardware during the execution of P. 
Even if a permanent fault occurs during the execution of P, 
the second test  detects  this.  The actual  implementation of 
such a test can be done in software or hardware (firmware 
based) or both combined. 

 

Figure  1: Sequence of hardware integrity through program 
execution

As an optimisation, the second test execution can be consid-
ered  as  the  initial  test  of  the  next  program  execution  as 
shown in Figure 2. 

 

Figure 2: Regular sequence of program execution with proof 
of hardware integrity

During boot up, a testing phase is required to guarantee the 
correctness of the hardware before the first task execution. 
The applied tests might  vary in  depth (coverage),  type  of 
faults (single,  multiple etc) and the set of the tested hard-
ware.



THOMAS KAEGI-TRACHSEL ET. AL.: HARDWARE TESTING ON THE LEVEL OF TASKS 81

Software based tests need a processor and memory to exe-
cute the test, even if a peripheral component is tested. In or-
der to guarantee that faults in hardware components that are 
not subject of the test itself do not have an influence on the 
outcome of the test, the order of the tests must follow the 
principle of growing core: If a test of a hardware component 

iu  has implicit dependencies on another hardware compo-

nent ju , the test of ju must be executed first. 

If the resources needed by a task are known in advance, it is 
sufficient to run after the task execution only the testing pro-
cedures of the accessed hardware resources  (selective test-
ing), again by using the principle of growing core. This way, 
the system stays fully operational even if faults are present 
in hardware components that are not in use. Spare compo-
nents could be used for relocation of a program running on a 
faulty  hardware  component.  Of  course,  periodical  tests  of 
spare components are also required to ensure hardware in-
tegrity.  If  a non replaceable faulty hardware component is 
used by non critical tasks only, the system might also termi-
nate these tasks and turn off the faulty component. This way, 
the system can still perform all critical tasks even in the case 
of faulty hardware.

For debugging and external diagnostic purposes, the results 
of the tests should be available for  external  hardware  and 
within the system itself. Thus, the various hardware element 
test results should be organised in so-called test syndromes. 
For every hardware component, for example the register file, 
ALU, internal bus or cache memory state register, the check-
ing procedures present the syndrome of the hardware checks, 
the system state in binary form as 0,0,0,0,0,0. In case of a 
non-zero syndrome, further analysis of the hardware condi-
tions is required to define actions. This is not covered in this 
paper as it would correspond to step B to G in GAFT.

A test can also provide more information to ease recovery. If 
for example the testing schemes discover stuck bits in mem-
ory, it is sufficient to recover programs that access the af-
fected  locations  and  not  all  programs  that  are  using  this 
memory chip.

Hardware  device  drivers  could  provide  their  own  testing 
schemes, possibly a combination of hardware and software 
based testing. I/O devices such as UARTs could effectively 
be tested by cross connecting the input and output wires by 
very simple additional hardware logic and transferring vari-
ous character patterns in different modes.

3.1 Analysis of the checking process

Applications are nowadays so complex that they tend to sat-
urate the computing system they are running on, which lim-
its diagnosis possibilities. Especially in multi processor sys-
tems, a high interest arises to test some hardware units when 
other hardware units execute tasks. This approach is called 
sliding  dropping  diagnosis  (SDD)  (Bogdanov,  Schagaev, 
1990).

In principle, two SDD types can be considered: synchronous 
and asynchronous.

An example: The CTSS Operating System for the CRAY-1 
(Fong, Kirby, 1985) supports synchronous SDD with inter-
ruption of user tasks for testing hardware. Periodically every 
15 minutes, the user tasks are interrupted and the diagnostic 
routines are executed. These routines are 'invisible' from the 
user  task’s  point  of  view,  as  the entire  system is  stopped 
while the tests are executed. 

The Synapse N+1 (Serlin, 1984) fault tolerant operating sys-
tem serves as an example of asynchronous SDD. The OS im-
plements a self loading algorithm to schedule tasks for pro-
cessors. The same algorithm is applied for SDD too, as diag-
nostics routines are loaded as tasks and run on free proces-
sors.

The actions required for the implementation of synchronous 
SDD are as follows:

1. Unloading of the currently running task state from 
some hardware parts (e.g. RAM)

2. Loading and initialization of the diagnostic routines
3. Execution of the diagnostic process
4. Unloading of the diagnostic routines and perform-

ing further actions in case of faults. If high priority 
interrupts  occur  during  testing,  some  temporary 
data might be needed to continue the testing after 
processing the interrupt

5. Reloading of the user task and continue processing

As asynchronous  SDD tests do not  interrupt  running pro-
cesses, as they are allocated on free processors, only steps 2 
– 4 are required.  The task unloading time is much higher 
than the task switch time, as the resources occupied by this 
task must be released, which might also involve moving the 
code and data of this application to another part of the mem-
ory. The same applies of course for reloading a task.

For the further analysis of the SDD, we consider the follow-
ing three cases:

1) T c  and all task completion times are known. 
2) T c  is  known but  the  task  completion  times  are 

not. 
3) T c  is unlimited and the task completion times are 

not known 
A SDD process that ends in checking all hardware units is 
called a diagnostic cycle and requires time T c  to complete. 

3.2 The system model

The diagnosis algorithms and all analysis in this chapter are 
done on the basis of a multi processor system with a set of 
U  identical processors (units). A single processor system 
is included in this analysis as it corresponds to the special 
case of  }{ 1uU = , which would of course extremely sim-
plify the analysis. In addition, we assume that all scheduled 
tasks are independent, i.e. they have no time, control or in-
formation dependencies. Further, the task switch time (not to 
be mistaken with the task load and unload time in case of 
synchronous diagnosis) is so short in contrast to the task ex-
ecution time that it can be safely ignored.



82 PREPRINTS OF WRTP/RTS. MRĄGOWO, 2009

We define the required time for a single processor to com-
plete the asynchronous SDD as  T ad  and to complete the 

synchronous SDD as T sd . As all processors are considered 

equal, all T ad  and T sd  are equal as well. Both diagnosis 
modes share the common task of performing the actual test, 
whereas the synchronous mode also involves unloading and 
reloading of the interrupted task. 

Consequently:

)( ruadsd TTTT ++= (1)

where  T u  is  the time of unloading and  T r  the time of 
reloading the user task in synchronous diagnostics.

In order to have an upper bound on the checking overhead at 
any given point in time, we propose here that at any given 
moment in time, the diagnostic process can run on at most 
one processor. Otherwise, by accident, a simultaneous test-
ing of all processors would turn the system completely unre-
sponsive.

In this spirit, it is also necessary to relax the strict order of 
the testing explained in chapter 3, and allow the testing to be 
done during task execution. The recovery in this case would 
involve higher cost as the outcome of the last task run cannot 
be trusted and must be repeated as well.

3.3. Diagnostic process algorithm

The real value of the asynchronous SDD depends on the se-
quence in which the units are diagnosed. The most natural 
way to appoint a diagnostic process for a unit is when the 
unit gets free. However, if a long running task is assigned to 
a single processer, it is not diagnosed for a long time. There-
fore, in this special case, the synchronous SDD is preferable.

On the other hand, time critical tasks in a real time system 
should not be interrupted, and thus the asynchronous SDD 
should be applied. To decrease time overheads but still pro-
vide  completed  testing,  a  combination  of  both  diagnosis 
modes seems to be ideal.

According to Blazewicz (Blazewicz  et al., 2007), even the 
simple case of the Problem max|| CP where a set of inde-
pendent tasks is scheduled on identical  processors without 
preemption with the goal to minimise the schedule length is 
a problem of complexity NP-hard. Thus, our problem which 
imposes further restrictions on the scheduling algorithm and 
is therefore is also NP-hard is not perfectly solvable in a real 
system with a high number of tasks. The use of an approxi-
mation algorithm seems to be therefore the way to go.

Consider case 1) where  T c and all task completion times 

are known. Assume there exists an upper bound for  T c . 

We now add every unit ui  in U={ui . .. un} , i=1 .. .n  ei-

ther to  U a  ui∈U a   if the completion time  ti  of the 

task running on unit  ui  satisfies  tiT ad≤T c  or to  U s  
ui∈U s   if  t. iT adT c . Obviously, it is impossible to 

test any unit in U s  asynchronously, so this step seems logi-

cal. But even if U s={}  it might not be possible to reliably 

test all units in  U a  asynchronously.  In fact, when a user 
task has finished on one unit while a testing process is run-
ning on another processor, the scheduler will assign a new 
task to the just released processor according to the constraint 
that  only  one  diagnostic  procedure  can  run  concurrently. 
This case is triggered if the completion time of two units ui  

and u j  are in the range of t j−t i≤T ad . Even though both 

tasks finish before  T c−T ad , there is not enough time left 
to test both in asynchronous mode. Therefore, the separation 
of units to two subset  U a  and  U s  is necessary but not 
sufficient.

We present below the procedure P that chooses a subset of 
units R  for the synchronous SDD in accordance with T c  

and the task completion times. The subset  R∈U a  formed 
by procedure P is tested synchronously as well as all units 
from subset  U s .  R∪U s  is therefore tested synchronous-

ly, U a ∖R  asynchronously.

3.4. Diagnostic procedure P

First, we sort all units ui∈U  in increasing order according 
to their completion time. This step is skipped in the algo-
rithm as  any standard  sorting  algorithm with  O n log n  
can be used. 

For case 1), it is heuristically checked if  ti1tiT ad . If 
this is the case (case a. of  Figure 4), no testing is ongoing 
when the task ui1  ends, and therefore the testing process 
can immediately be started. This case corresponds to step 3 

i=1,k=1,R={}, j=i+1;
1. if ti <= Tc -Tad then 
2. while tj <= Tc -Tad do 
3. if tj > ti + kTad then 
k=1; i=j;

else
   4. if tj < ti + kTad – (Tu + Tr) then 

assign user task to uj; 
set new completion time of u j ; 

    restore ordering; 
else
5. k=k+1;

    if ti + kTad > Tc then 
uj ∈ R; 

end;
end;

  end; 
j=j+1;

end
end
if j < n then
uk ∈ R, k={j…n} 

end;

Figure 3: Procedure P



THOMAS KAEGI-TRACHSEL ET. AL.: HARDWARE TESTING ON THE LEVEL OF TASKS 83

of procedure P, when unit  u j=u i1  is left in the asyn-
chronous testing mode.

Now, if this condition does not hold (case b. of Figure 4), the 
task  u j=u i1  finishes while  the unit  ui  is  being diag-

nosed. Remember that the task u j  cannot finish before task 
ui  as all tasks are ordered according to their finishing time. 

If the task time including T uT r  of this task is still small-

er than tiT ad  (case b. of Figure 4) then the idle time of 
this task is considered as too long or in other words the per-
formance impact  would be too high,  and thus a new user 
task is assigned to u j . Of course, the finishing time of u j  
has to be adapted as well. In  a next step, the just updated 
u j  must be placed at the correct position in all units to re-

store the ordering property.

For  all  yet  undecided  cases,  i. e. 
tiT ad−T uT r ≤t i1t iT ad ,  the  decision  is  made 

easy: If enough time is available to perform the testing asyn-
chronously, it is done so, otherwise synchronously (step 5 of 
Figure 3). Even if ui1  is scheduled for synchronous test-
ing and has to be included in set R , the time overheads will 
be  less  than  with  asynchronous  testing  but  more  waiting 
takes place.

We  just  illustrated  the  algorithm  on  the  example  of  two 
tasks. The algorithm P in Figure 4 however was extended to 
support  n  units.  It  is  also  explained  below why not  the 
completion times for the tasks are used but an approximation 
instead.

A still unanswered question is when the synchronous diag-
nosis of R∪U s  should be performed. If possible, the tests 
for  these  units  are  executed  within  the  gaps  between  the 
asynchronous diagnosis of the units U a ∖R , when the gaps 

are at least of length T sd . If not enough gaps are available, 
the synchronous diagnosis could also be scheduled in gaps 
smaller than T sd , which would delay the next T ad . This 
approach is especially useful if the difference between the 
gap and  T sd  is small. If  T c  is exceeded, the problem is 

not schedulable and it is necessary to extend T c . 

If one wants to minimise performance losses when  T c  is 
not limited, every unit except one gets a user task and the re-
maining one performs the asynchronous testing.

For case 2)  where  T c  is  known but the task completion 
times are unknown, it is possible to perform the full testing 
if  T c≥nT sd . This ensures that even if all tasks are diag-
nosed  in  the  more  time  consuming  synchronous  mode, 
enough time is available. For case 2) the testing algorithm is 
as follows:

Tests are performed asynchronously as long as enough time 
is  left  to  perform  all  remaining  tests  synchronously,  i.e. 
n−i T

sd
T

c
−T∗  with T∗  as the current time and i  

the number of the currently executed task. 

In the case 3) where T c is not known and therefore unlimit-
ed and the task completion times are also not known, it is 
hard to optimize the system diagnosis due to the lack of in-
formation. However, it is still possible to apply the here pre-
sented approach. Consider a system that currently tests unit 
ui . Suppose now, that unit u j  completes a user task while 
ui  is  tested.  By using the test  completion time which is 

known, it is possible to find out whether it is worth waiting 
for the test to complete or not. Thus, if the remaining testing 
time for  ui  is less than  ru TT + , it is worth for  u j  to 

wait for the completion of  ui  and then perform an asyn-

chronous test. Of course, if  u j  finishes and no testing is 

currently  ongoing,  u j  can  immediately  initiate  its  asyn-

chronous testing. In  other cases  u j  has to be tested syn-
chronously. 

Although  T c  cannot be strictly determined, the diagnosis 
process has a finite character as every task will finish even-
tually and thus every unit will be tested in the end.

3.5 Extension to diagnostic procedure

We  now  leverage  the  above  constraint  that  all  tasks  are 
ready at t=0  which is unrealistic especially in control syst-
ems and introduce a task ready time t ri  for every task. The 

task finishing time changes accordingly to ti=t rit pi , i.e. 
the ready time + the task processing time of task number i .

In addition, we extend the task checking from the processor 
only to  the  full  hardware  used  by  the  task  and  introduce 
tadi ,  the asynchronous task checking time for  task num-

ber i .

Taking this change into account, we modify the procedure in 
Figure 5. First, we want to keep the real time nature of the 
algorithm and sort the tasks according to their finishing time. 
Except for continuously running tasks, which can be tested 
at any time, it is advisable to move the testing to the end of a 
task processing to minimise recovery time in case of a fault.

i=1,R={}, j=i+1, tsum =0; 
If ti <= Tc – tadi then 

 

Figure 4: Task execution examples



84 PREPRINTS OF WRTP/RTS. MRĄGOWO, 2009

tsum = tadi ; 
while tj <= Tc – tadj do 
if tj > ti + tsum then 
i=j; tsum = tadi ; 

else
   If  tj < ti + tsum – (Tu + Tr ) then 

assign user task to u j , 
set new completion time of uj, 

    restore ordering 
else
tsum = tsum + tadj ; 

    if ti + tsum > Tc then 
uj ∈ R ; 

    end; 
end;

end;
j=j+1;

end
end
IF j < n THEN
 u  ∈ R, k={j…n}; 
distribute(R);

END;

Figure 5: Modified algorithm P

The  changes  in  the  algorithm  are  twofold.  First,  the  task 
checking time is no longer constant, thus we replace kT ad  

by the sum of the task checking times t sum . 

Second, as not all tasks are ready at t=0 , it is possible that 
some processors are free at some given time, which allows 
us to test the hardware used by tasks asynchronously even if 
they are not currently running. This is possible due to the na-
ture of the applications in our case, namely reoccurring peri-
odic tasks in a closed control system.

Case d0 in Figure 6 shows the special case of a continuously 
running process. This task is synchronously tested at a time 
where no other processor is being tested. Task that perform 
only testing can run on all idle processors to increase fault 
coverage and reduce fault latency.

4. CONCLUSION & OUTLOOK

In this paper we showed the power of tasks with assigned 
hardware tests and show how they can efficiently be run on a 
multiprocessor system.

Further work on this topic includes the introduction of task 
dependencies, a constraint that is often given in real world 
applications,  but  not  covered  in  this  paper.  Also  helpful 
would be a thorough formal analysis of procedure P and its 
extensions.

The introduced algorithm is also applicable to time-sharing 
systems  with  preemptive  multitasking.  The  preemption 
mechanism to schedule the tests might be helpful, however, 
this is subject to further research.

5. REFERENCES

Avizienis A. et al. (1971). The Star (Self-Testing and Repai-
ring)  computer:  An  Investigation  of  the  Theory  and 
Practice  of  Fault-Tolerant  Computer  Design,  IEEE 
Trans. on Computers , Vol. C-20 (11), pp. 1312-1321 

Avizienis A. (1975). Architectures of fault tolerant comput-
ing systems, Proc.  FTCS Symposium , pp. 3-16 

Avizienis A., Laprie J. (1986). Dependable computing: from 
concepts  to  design  diversity.  Proc.  IEEE,  Vol.  74, 
No. 5. 

Blazewicz, J. et al. (2007). Handbook on Scheduling, From 
Theory to Applications, Springer Verlag Berlin Heidel-
berg, ISBN 978-3-540-28046-0 

Bogdanov, J. J., Schagaev I. (1990), Sliding Slotting Diag-
nosys in Multiprocessors, IMECO Congress Proc. , pp. 
141 – 150, Helsinki 

Fong, Kirby W. (1985). The NMFECC Cray Time-Sharing 
System, Softw., Pract. Exper. , Vol. 15, pp. 87-103. 

Laprie, J. C. (1995). Dependable computing and fault toler-
ance:  concepts  and  terminology,  FTCS, 1995,  High-
lights  from Twenty-Five  Years,  Twenty-Fifth  Interna-
tional Symposium on, pp. 2+. 

Kopetz,  H.  et  al.  (1990).  Tolerating  transient  faults  in 
MARS, Proc.,  20th International Symposium on Fault  
Tolerant  Computing Systems ,  Newcastle  Upon Tyne, 
U.K., pp. 466-473 

Pierce  W.H.  (1965),  Failure-Tolerant  Computer  Design, 
Academic Press Inc., New York. 

Schagaev I. (1989). Yet another approach to classification of 
redundancy,  Proc. FTSD , Prague, Czechoslovakia, pp. 
485-490 

Serlin O. (1984). Fault-Tolerant Systems in Commercial Ap-
plications, Computer , vol. 17, no. 8, pp. 19-30, 

Siewiorek D. (1990), Faults and Their Manifestation, Fault-
Tolerant  Distributed  Computing,  vol.  448/1990,  pp. 
244-261, Springer 

Siewiorek  D.  (1998).  Reliable  Computer  Systems:  Design 
and Evaluation. Burlington, Digital Press 

Stepanyants A., et al. (2001). Malfunction Tolerant Proces-
sor and Its Reliability Analysis, Goteborg, Sweden

Sogomonyan  E.,  Schagaev  I.  et  al.  (1988).  Hardware  and 
software means for fault-tolerance of computer system. 
IBID, Automatic and Remote Control , No. 2, pp. 3-53. 

von Neumann J. (1956). Probabilistic logic and the synthesis 
of reliable organisms from unreliable components.  In: 
Automata Studies, Ann. of Math. Studies No. 34 (C. E. 
Shannon and J. McCarthy, eds.), pp. 43-49.  Princeton 
Univ. Press, Princeton, New Jersey.

Ying  Wang,  Avizienis  A.  (1980).  An  Unified  Reliability 
Model for Fault Tolerant Computers, IEEE Trans. Com-
puters, Vol. C-29, No.11, pp. 1002-1011.

Zalewski J., Schagaev I. et al. (2001). Redundancy classifi-
cation for Fault Tolerant Computer Design, Proc. 2001 
IEEE  Systems,  Man,  and  Cybernetics  Conf.,  Tucson, 
AZ, Vol. 5, pp. 3193-3198

Figure 6: Example of new scheduling


