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Abstract—The authors consider the impact of the structure of
the matrix on the convergence behavior for the GMRES pro-
jection method for solving large sparse linear equation systems
resulting from Markov chains modeling. Studying experimental
results we investigate the number of steps and the rate of
convergence of GMRES method and the IWZ preconditioning for
the GMRES method. The motivation is to better understand the
convergence characteristics of Krylov subspace method and the
relationship between the Markov model, the nonzero structure
of the coefficient matrix associated with this model and the
convergence of the preconditioned GMRES method.

I. INTRODUCTION AND MOTIVATION

M
ARKOV chains are a particularly robust and wide used

tool for analyzing a variety of stochastic (probabilistic)

systems over time.
A CTMC (Continuous-Time Markov Chain) may be rep-

resented by a set of states and a transition rate matrix Q

containing state transition rates as coefficients. To compute

the steady-state probabilities we must solve a (homogeneous)

sparse system of linear equations, of the form QTx = 0,

of size equal to the number of states in the CTMC. Q is

a singular matrix demanding adequate methods to solve the

equation. Solving the equation system generally requires ap-

plying iterative methods, projection methods or decomposition

methods but occasionally (for the need of an accurate solution)

direct methods are used as well. The rich material concerning

the methods mentioned above can be found in [13].
In this article we consider one of the Krylov subspace

methods, namely the GMRES method. This method was first

introduced by Y. Saad in the article [12] as the method to

solve linear systems of equations. GMRES for Markov chains

was studied in the article [11]. The full GMRES algorithm is

guaranteed to converge in at most n steps, but it is not useful

for large systems of equations, because a good approximate

solution is often computed quite early, after very few iterations.

In the literature, we find results, which would provide an

upper bound on the convergence rate of the GMRES [9]. The

traditional bounds of the residual are expressed in terms of

eigenvalues of Q and the condition number of the eigenvector

matrix. It is of limited practical interest because we need

the condition number, which is typically not known. For any

matrix determination of its condition number is a task of

the complexity O(n3). In practice, it is difficult to use the

theoretical knowledge about the convergence of the GMRES

method.

One of the tools used in the convergence analysis of

GMRES are numerical experiments. We perform numerical

experiments to help us understand the effect of nonzero

structure of the matrix on the convergence characteristics of

preconditioned Krylov subspace methods. We try to provide

some properties of the coefficients of the matrix Q, which

affect the convergence of the method GMRES and the pre-

conditioned GMRES.

One of the famous preconditioning techniques is incomplete

factorization, for example IWZ factorization. The incomplete

WZ factorization is originally described in our previous works

[3], here we discuss its performance for Krylov subspace

methods like GMRES.

Basing on our previous investigation we consider impact

of the incomplete WZ factorization on the GMRES method

for the numerical solution of Markov chains. We study re-

lationship between the number of iterations, the convergence

rate of the GMRES method and properties of the matrix Q.

Research was carried out for two models. The first model

concern matrices associated with some abstract model. These

matrices have not got any structure. The second model concern

matrices known from the literature as the epidemic model and

this matrix has got a structure.

The rest of the paper is organized as follows. Section II

presents the problem. In Section III Krylov subspace are

reminded. Section IV recall briefly the IWZ preconditioning.

Section V presents two test models. Section VI describes

conducted numerical experiments. Section VII contains some

conclusions.

II. CTMCS AND THE STEADY-STATE SOLUTION

While modeling with Markov chains, in a steady state

(independent of time), we obtain a linear equation system like

following;

QTx = 0, x ≥ 0, xT e = 1 (1)

where Q is a transition rate matrix, x is an unknown vector

of states probabilities and e = (1, 1, ...., 1)T . The matrix Q is

a square one of size n× n, usually a big one, of rank n− 1,

sparse, with dominant diagonal.
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1) choose:

• an initial approximation x(0)

• a subspace K spanned by V = [v1, . . . ,vm]
• a subspace L spanned by W = [w1, . . . ,wm]

2) r(0) ← −QTx(0)

3) y← (WTQTV)−1WT r(0)

4) x(0) ← x(0) +Vy

Fig. 1. A basic projection step for the equation QTx = 0

III. KRYLOV SUBSPACE METHODS — GMRES

In this section we recap the basics of projection methods.

The projection methods consist in approximating the solu-

tion vector with a vector from a small-dimension subspace.

Such approximations are repeated until our approximation

is sufficiently close to the solution — in some sense the

projection methods are iterative methods.

The projection methods need more space than iterative

methods (because they have to store huge basis vectors of

subspaces), but can converge faster than classical iterative

methods — although the convergence rate is much better for

the matrices ‘more beautiful’ in their structure than the ones

arising in solving Markov chains.

A. The Projection Step

To solve a linear system Ax = b by a projection method

first we have to choose two subspaces of dimension m from

the n-dimensional space:

• K which is a subspace containing the approximation;

• L which is a subspace defining constraints for selection

of approximation from K.

Let the subspace K be spanned by V = (v1, . . . ,vm). The

approximated solution is in K so it can be written

x = Vy

where y is an m-dimensional unknown vector. To find y we

require that the residual vector b − Ax = b − AVy be

orthogonal to the subspace L spanned by W = (w1, . . . ,wm),
that is:

WT (b−AVy) = 0,

and then (if the matrix WTAV is nonsingular):

y = (WTAV)−1WTb.

If we know an initial approximation x(0) we will rather

seek a difference d between the exact solution x and x(0):

x = x(0) + d. Setting r(0) = b −Ax(0) we are to solve the

equation

Ad = r(0),

what can be done with the described above projection step.

A basic projection step for our equation 1 (where A = QT

and b = 0) is shown in Figure 1.

1) v1 ← v/||v||2
2) for j = 1, 2, . . . ,m:

a) w← Avj

b) for i = 1, 2, . . . , j:

i) hij ← vT
i w

ii) w← w − hijvi

c) hj+1,j ← ||w||2
d) vj+1 ← w/hj+1,j

Fig. 2. The basic Arnoldi process for a subspace Km(A,v)

The most efficient method for general, non-symmetric co-

efficient matrices (like QT ) are methods based on Krylov

subspaces. A Krylov subspace is defined by its dimension m,

a matrix A and a vector v:

Km(A,v) = span{v,Av,A2v, . . . ,Am−1v}.

Many of such methods require that an orthonormal basis be

found for the Krylov subspace. Unfortunately, classical Gram-

Schmidt orthogonalization is numerically poor. To deal with it

there are two main kinds of methods: Arnoldi process (which

is a modified Gram-Schmidt orthogonalization) and Lanczos

methods (originally for symmetric coefficient matrices but

generalized in some ways).

B. The Arnoldi Process

The Arnoldi process [1] on its own (see Figure 2) generates

the orthonormal basis V = (v1, . . . ,vm) for the subspace

Km(A,v) and an upper Hessenberg matrix H = (hij):

H =




h11 h12 h13 · · · h1,m−1 h1m

h21 h22 h23 · · · h2,m−1 h2m

0 h32 h33 · · · h3,m−1 h3m

0 0 h43 · · · h4,m−1 h4m

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · hm,m−1 hmm




,

which represents the linear transformation A restricted to

Km(A,v) with respect to the basis V, that is H = VTAV.

The original Arnoldi process applied to a linear system

Ax = b is called the full orthogonalization method (FOM)

[10] but a better approach is the generalized minimum residual

algorithm (GMRES) [12]. Both the methods are shown in

Figure 3. They differ only in one step — how to find the

vector y (but both the procedures are projections [12]).

The GMRES algorithm is very popular in its iterative form.

In the iterative GMRES after computing the new vector x(0),

the new residual −QTx(0) is checked if it is sufficiently close

to 0. If not, the whole algorithm is repeated with the new x(0)

as the initial guess.

One of the advantages of this method is no fill-in generation

(because the matrix Q is only used in the matrix-vector

multiplication), the other is the fast convergence rate. The
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1) choose x(0) and m
2) r(0) ← −QTx(0)

3) β ← ||r(0)||2
4) v1 ← r(0)/β
5) for j = 1, . . . ,m:

a) w← QTvj

b) for i = 1, . . . , j:

i) hij ← vT
i w

ii) w← w − hijvi

c) hj+1,j ← ||w||2
d) vj+1 ← w/hj+1,j

6) FOM only:

find y = (y1, . . . , ym) from the m×m Hessenberg

system Hy = βe1
7) GMRES only:

find y = (y1, . . . , ym) minimizing ||βe1 − H̄y||2
where H̄ = (hij) is an (m + 1) × m upper

Hessenberg matrix

8) x(0) ← x(0) +
∑m

i=1 viyi

Fig. 3. The FOM and GMRES methods for the equation QTx = 0

iterative GMRES algorithm is also convenient to vectorize [5]

and parallelize [4]).
One of the problems which materialize when using the

GMRES method is to select the optimal parameter m. The

lower the value of the parameter m, the shorter loop and thus

the less calculation time and space. Additionally, the vector v

is also shorter.

IV. IWZ PRECONDITIONING

The convergence rate of iterative methods depends on

properties of the coefficient matrix of the linear system. If

matrix Q is ill-conditioned, this can make the convergence of

iterative methods slow. One way to prevent such problems is

to transform the system (1) into an equivalent system (having

the same solution), but with better numerical properties. Such

a transformation can be done by preconditioning, that is by

converting the system (1) into:

M−1QTx = 0,

n∑

i=1

xi = 1, x ≥ 0, (2)

where the nonsingular matrix M (known as a preconditioner)

approximates the matrix QT in a manner. The system (2)

has the same solutions as (1) but it is (hopefully) better

conditioned.
The matrix M should have the following properties:

• its use should entail low memory requirements;

• its inverse should be cheaply applicable;

• the transformed problem (2) should converge faster (in

computational less time) than the original problem.

There is a clear conflict among these three requirements, espe-

cially for the construction of general purpose preconditioners.

Fig. 4. The form of the output matrices in the WZ factorization (left: W;
right: Z)

Generally, computing and using a good preconditioner is

an expensive task consisting of finding the matrix M and its

inverse. If the preconditioning is to be used, that cost should

be refunded by reduced number of iterations needed to acquire

required accuracy — or by using the same preconditioner for

various linear systems.
The preconditioner matrix is usually built on the basis of

the original coefficients of the matrix Q. In [2] preconditioners

for Krylov subspace methods for solving large singular linear

systems arising from Markov modeling are considered. The

incomplete WZ factorization is originally described in our

previous works [3]; here we only recall it. The WZ factor-

ization consists in decomposition of the given matrix (QT in

the paper) into a product of two matrices: W and Z (Figure

4).
Incomplete WZ factorization (denoted IWZ) is based on the

described above WZ factorization, where we find matrices W̃

and Z̃ (of the form of matrices W and Z shown in Figure 4)

and the product W̃Z̃ is a kind of approximation for the matrix

QT .
In IWZ computations are conducted as in complete WZ

factorization, but new non-zero elements (wij and zij) arising

in the process are dropped if they appear in the place of a zero

element in the original matrix QT . Hence, the factors together

have the same number of non-zeros as the original matrix QT .

It is worth noting that we got the inverse of W̃, because [14]:

W̃−1 = (−1) · (W̃ − I) + I (3)

(just like W−1 = (−1) · (W − I) + I). (4)

After IWZ we have:

QT = W̃Z̃+RWZ , (5)

where W̃ and Z̃ are (respectively) matrices of the form of

W and Z from Figure 4 and the remainder matrix RWZ is

supposed to be small in a sense.

V. THE TEST MODELS

Two models are chosen to test: an abstract model (Model

I) and a model of epidemics known from literature (Model

II). Parameter d was introduced for the characterization of

the matrixes. So, d is an average number of non-zeros in a

row/column of the matrix.
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TABLE I
ESSENTIAL CHARACTERISTICS OF THE MATRICES USED IN TESTS

Group Matrix ID n nz d

I 1 100 1190 11.9
II 2 100 388 3.88
I 3 1500 37955 25.3
II 4 1500 5873 3.9
I 5 3000 120590 40.2
II 6 3000 11636 3.9

TABLE II
THE TEST MATRIX ATTRIBUTES FOR A 2D MARKOV MODEL.

ID 7
Nx 64
Ny 16
n 1105
nz 9457
d 8.56

A. Model I

In this section we describe matrices corresponding to the

model I. Matrices (with IDs from 1 to 6) used in tests were

generated by the paper authors on the basis of some abstract

queuing models — the matrices are infinitesimal generators of

Markov chains describing these models — and they are neither

symmetric nor anyway structural. In Table I the essential

characteristics of the matrices are presented (n is the number

of rows/columns of the matrix, nz is the number of non-zeros

in the matrix, d = nz/n).

For these matrices we can observe, that the matrices might

have the same size and a different value of the parameter d.

The matrices were divided into two groups, the first group

include matrices with d > 8, the second group include

matrices with d ≤ 8.

B. Model II

The matrix from model II was generated from a standard

two-dimensional model [6], [7]. Table II shows the test matrix

attributes for a 2D Markov model. This particular example has

been taken from [8], [7]. The model is discussed there and it

has been used to compare different solution methods in [13].

The state of the chain is described as a two-dimensional

vector. In the first dimension, the state variable assumes all

values from 0 through Nx; in the second dimension the state

variable takes on values from 0 through Ny . The states of such

a chain are described with two numbers (u, v), u = 0, . . . , Nx,

y = 0, . . . , Ny (here Nx = 64, Ny = 16) and transitions

are only allowed from (u, v) to (u′, v′) if |u′ − u| ≤ 1 and

|v′−v| ≤ 1. There was assumed — as in [6] — that only some

transition from each state are permitted. This two-dimensional

Markov chain model allows for transitions from any non-

boundary state to adjacent states in fixed directions (chosen

from North, South, East, West, North-East, North-West, South-

East, South-West). A sample scheme of the model (with

allowed directions: South, East and North-West) is shown in

Figure 5.

Fig. 5. A sample scheme of a two-dimensional Markov chain.

Fig. 6. The structure for the model II matrix

The matrix describing the two-dimensional Markov chain

has a structure shown in Figure 6.

VI. EXPERIMENTAL RESULTS

The experiment was performed on a Pentium IV 2.8GHz

computer, 1GB RAM, with Debian GNU/Linux operating

system. We used high-level programming language, namely

Octave.

A vector x(0) = (x
(0)
i ) with x

(0)
i = 1

i
was chosen as an

initial vector. (We chose x
(0)
i = 1

i
because the starting vector

can be selected almost freely, but its elements should not be

equal — x
(0)
i = 1

i
fulfils this condition.) As a measure of

accuracy of the solution we chose:

ε(k) = ||0−QTx(k)||2. (6)

Accuracy has been studied experimentally for the matrix

of model I and model II. We study both the number of

iterations needed to achieve a given accuracy, and the rate of

convergence. The stopping criterion used is that the 2-norm

of the residual ||QTxk||2 is less than e−15
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Fig. 7. Relationship between the parameter m and the average number
of iterations needed to achieve accuracy e−16 for GMRES method and
IWZGMRES method, for matrices of Group I (d > 8) and II (d <= 8).

A. Number of iterations

Table III shows numbers of iteration used to achieve a

given accuracy for selected parameters m for two methods:

GMRES(m) alone (denoted GMRES(m)) and GMRES(m) pre-

conditioned with IWZ (denoted IWZGMRES(m)).

Figure 7 shows the relationship between the parameter m
and the average number of iterations needed to achieve a given

accuracy. The average number of iterations is counted for two

groups of matrices. First for the group with d > 8 (matrix

number 1, 3, 5) and the second group of matrices with d ≤ 8
(matrix number 2, 4, 6).

Applications that may be present at the table III and Figure

7 are as follows:

• With the increase of parameter m the average number

of iterations needed to achieve the assumed accuracy of

the method GMRES(m) and IWZGMRES(m) decreases

inversely.

• For each matrix from the first group number of iterations

needed to achieve the assumed precision for the selected

value of parameter m is almost the same. Analogous

relationship can be seen for matrices of the second group.

It means that regardless of the size of the matrix the

number of iterations needed to achieve a given accuracy

is the same and depends on the parameter d.

• In the method IWZGMRES(m) the number of iterations

needed to achieve a given convergence is less than the

GMRES(m) method, regardless of the parameter m and

the parameter d.

Let us define the coefficient p(m), which shows the rela-

tionship between the number of iterations needed to achieve

(given the convergence e−16) in the method of GMRES(m)

and the method IWZGMRES(m).

Let IIWZGMRES(m)(m) mean the number of iterations

needed to achieve the fixed accuracy of the method IWZGM-

RES(m) depending on the parameter m
Let IGMRES(m)(m) mean the number of iterations needed

to achieve the fixed accuracy of the method GMRES(m)

Fig. 8. Relationship between the parameter m and the value of the coefficient
p(m) for matrices 3 (m1500) and 4 (m1500_3)

Fig. 9. Relationship between the parameter m and the value of the coefficient
p(m) for matrices 5(m3000) and 6 (m3000_3)

depending on the parameter m.

Let

p(m) =
IIWZGMRES(m)(m)

IGMRES(m)(m)
.

Figure 8 shows the relationship between the parameter m
and the value of the coefficient p(m) for the matrices 3 and

4 in Table II. Matrices have size 1500 and vary in the value

of the parameter d. Figure 9 shows the relationship between

the parameter m and the value of the coefficient p(m) for the

matrices with the numbers 5 and 6 in Table II. Matrices have

size 3000 and vary in the value of the parameter d.

Figures 8 and 9 show how the value of the parameter m
influence the convergence. The conclusions are:

• With the increase of parameter m (where m changes from

1 to 10) the value of the coefficient of p(m) grows.

• Value of the parameter p(m) for the matrices of group I

is higher than for the matrices in group II.

• For the matrices of the group II growth factor p(m) is

more uniform than for the matrix of the group I.

Let

p = max
1<=m<=10

|p(m)|.
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TABLE III
NUMBER OF ITERATION k NEED TO ACHIEVE A GIVEN ACCURACY ε(k) = e−16 FOR THE SELECTED OF THE VALUE PARAMETER m.

m = 1 m = 5 m = 10
ID GMRES(m) IWZGMRES(m) GMRES(m) IWZGMRES(m) GMRES(m) IWZGMRES(m)

1 45 29 8 6 4 3
2 87 69 17 13 8 7
3 44 24 7 5 4 3
4 185 88 30 17 14 9
5 42 21 6 4 3 2
6 271 92 32 16 15 8

TABLE IV
VALUE OF THE PARAMETER p FOR MATRICES OF THE MODEL I

ID p

1 0.8
2 0.8
3 0.8
4 0.64
5 0.8
6 0.56

TABLE V
VALUE OF THE PARAMETER p(m) FOR THE MATRIX OF MODEL II FOR

DIFFERENT VALUES m

m p(m)
5 0.86

14 1.0
25 1.33
29 1.14
33 1.0
41 1.0
49 1.0
61 0.67

Now, p can be interpreted as a number that indicates how

many times GMRES(m) method can be faster, if we use IWZ

as a preconditioning method.

Table IV shows the value of p for the matrices of model I.

From table IV it can be deduced that the matrices of group

I, the coefficient p is the same regardless of the size of the

matrix and the rate is 0.8. While for the matrices of group II

ratio p decreases with increasing size of the matrix.

Table V provides a value for p(m) for model II. The value

of p(m) is the highest for m = 25 and for m = 33, m =
41, m = 49 is a constant which means that preconditioning

has no effect on the rate of convergence, and for example

m = 61 this ratio is less than 1 which means that the method

IWZGMRES(61) is faster convergent than the GMRES(61).

B. The convergence rate of the GMRES

Figures 10 and 11 present relationship between the num-

ber of iterations and the convergence log(||QTxi||2) for the

matrices with the number 3 and 4 for methods GMRES(m),

IWZGMRES(m) for a few selected values of parameter m. The

plot shows that the higher value of the parameter m, the more

rapidly convergent is the method GMRES(m). Analogously,

the higher value of the parameter m means that IWZGM-

RES(m) method is faster convergent.

The convergence curve log(||QTxi||2) as a function i is

almost of the same shape for a particular parameter m for the

Fig. 10. Plot of the convergence curve log(||QT xi||2) as a function of i

for the matrix 3

Fig. 11. Plot of the convergence curve log(||QT xi||2) as a function of i

for matrix 4

GMRES(m) method and the IWZGMRES(m) method, only for

the IWZGMRES(m) method the curve is shifted upwards. It

means that the IWZGMRES(m) method is faster convergent

than the GMRES(m) method.

Figures 12 and 13 show relationship between the number of

the iterations and the convergence log(||QTxi||2) for matrices

size, respectively 1500 and 3000 with different parameter d
for the GMRES(m) methods and the IWZGMRES(m) methods

for the parameter m = 8. The plots show that the GMRES(m)

method and the IWZGMRES(m) method are faster convergent

for matrices 3 and 5 than for matrices 4 and 6. The rate of

the convergence depends on the d of the matrix and not on its
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Fig. 14. Plot of the convergence curve log(||QT xi||2) as a function of i

for the matrix of the model II

Fig. 12. Plot of the convergence curve log(||QT xi||2) as a function of i

for the matrix 3 and 4

Fig. 13. Plot of the convergence curve log(||QT xi||2) as a function of i

for the matrix 5 and 6

size.

Figure 14 shows relationship between number of itera-

tions and the convergence log(||QTxi||2) for the GMRES(m)

method and the IWZGMRES(m) method for parameter m
with values m = 25, m = 33 i m = 49. Figure 14 and

Table V present, that for certain values of m the method

GMRES(m) had got a faster rate of convergence and for some

the IWZGMRES(m) method had.

VII. CONCLUSION

Those numerical experiments helped us understand the

effect of the nonzero structure and the size of the matrix

on the convergence characteristics of preconditioned Krylov

subspace methods like GMRES. The rate of convergence of

the projection methods GMRES does not depend on the size

of the matrix. Speed of convergence in terms of numbers of

iterations of GMRES depends on the structure of the matrix.

Tested matrices from two different models were characterized

by the fact that the matrices of the model I have no structure,

the matrix form the model II has got some structure.

Matrices from the first model was characterized by a param-

eter d. Namely, the set of matrices, which have a low value

of the parameter d, (d < 8) are slowly convergent and require
additional techniques to improve the rate of convergence. This

technique was preconditioning.

The convergence, expressed in terms of p showed that we

can identify the most optimal value of the parameter m, for

which instead of the use of the GMRES(m) method we use the

preconditioned GMRES(m) method, namely IWZGMRES(m).

On the basis of additional studies it may be concluded

that irrespectively of the size and structure of the matrix

GMRES(m + 1) is faster convergent than the GMRES(m)

for any matrix: similarly for the IWZGMRES(m) method the

same dependence holds. With the increase parameter m, the

rate of convergence of the method GMRES(m) increases, of

course, up to some m0, for which the rate is the largest, for

all m > m0 the rate is already the same.

The numerical example shows, that it is good to examine

whether the matrix associated with a Markov chain is struc-

tured and has some properties, for example, the parameter d. If

there is no structure you can use the preconditioning technique.

For the matrix of the model II it is not always the

IWZGMRES(m) improves the convergence rate, because the

matrices a structure. For this model we need to develop a

separate algorithm to determine the vector of probabilities.

These algorithms should take advantage of some properties of

matrices associated with models.
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