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Abstract—Modeling of optimized motion controller is one of
the interesting problems in the context of behavior based mobile
robotics. Behavior based mobile robots should have an ideal
controller to generate perfect action. In this paper, a nonlinear
identification Takagi-Sugeno fuzzy motion controller has been
designed to track the positions of a moving object with the mobile
platform. The parameters of the controller are optimized with
Particle swarm optimization (PSO) and stochastic approximation
method. A gray predictor has also been developed to predict the
position of the object when object is beyond the view field of the
robot. The combined model has been tested on a Pioneer robot
which tracks a triangular red box using a CCD camera and a
laser sensor.

I. INTRODUCTION

O
BJECT detection and tracking is an essential ingredient

of any motion planning controller employed for mobile

robot navigation. Mobile robot navigation is known as the

ability of a robot to act based on its knowledge and sensor

values in order to reach its goal position as efficiently and as

reliably as possible [1]. Wide variety of sensors such as sonar,

laser range finder, infra-red, Global Positioning System (GPS)

and vision are used for mobile robot navigation. The vision

based navigation is widely used [2], since vision gives the

rich information about the surroundings. Vision is an attractive

sensor as it helps in the design of economically viable systems

with simpler sensor limitations. It facilitates passive sensing

of the environment and provides valuable information about

the scene that is unavailable to other sensors [3].

An ample of work has been done on vision based object

tracking. Ramesh et.al. in [4] proposed the Mean shift al-

gorithm for object tracking that can be used for the images

with static distribution. The Continuously Adaptive Mean

Shift Algorithm (CAMShift), which is an adaptation of the

Mean Shift Algorithm has been proposed by Bradski [5]

to track the head and face movement using a one dimen-

sional histogram (hue) consisting of quantized channel from

the HSV color space. CAMShift operates on a probability

density image obtained by histogram back-projection. In this

paper, a hybrid CAMShift algorithm [6], that overcomes the

assumption of single hue, has been used for object tracking.

The computational cost of mean matching algorithm used in

the hybrid CAMShift algorithm is high. So, instead of using

mean matching algorithm for the detection of object when

the CAMShift fails to detect the object, a gray predictor has

been used to predict the position of the object. Gray predictor

re-initializes the CAMshift window not only when CAMshift

fails to detect the object but also when the object goes out

from the robot’s view.

The outputs of the hybrid CAMShift algorithm are the

centroid coordinates of the object in the image frame. In

order to obtain the global position and orientation of the

object or even just to determine their relative pose, various

algorithms of calibration and transformation are required. All

the proposed approaches formulate the vision-based navigation

problem as a two-step process: first, to transfer the visual

features back to pose information, and then make a motion

plan in the pose space. The calibration techniques, that transfer

the visual features from image space to pose space introduce

unnecessary uncertainty into the system. In this paper, a

simple transformation technique has been proposed to transfer

centroid coordinates of the object from image frame to the

robot frame.

Once the coordinates of the object centroid are known in

the robot frame, the next task is to design motion controller

to effectively track the object. Since the primary focus of

machine intelligence and advanced robotics is to capture the

human faculties in the robot, fuzzy logic controllers are often a

good choice. These controllers are developed to utilize human

expert knowledge in controlling various systems and they have

capability to express knowledge in the form of linguistic rules.

Among various fuzzy modelling themes, the Takagi-Sugeno

(T-S) model has been one of the most popular frameworks as

it exhibits both high nonlinearity and simple structure [7][8]. In

this paper, a T-S fuzzy controller has been modeled to control

the motion of the robot while tracking the object. The structure

identification of the premise part (i.e. membership functions)

of rules of T-S fuzzy controller is carried out using PSO

[9], while the identification of consequent part (i.e. weight

parameters) of rules of T-S fuzzy controller is carried out using

stochastic approximation method [10].

II. OUTLINE OF OUR APPROACH

The goal of this work is to design a vision and laser sensor

based optimized motion controller for the mobile robot to

make it track the moving object in an effiecient manner. The
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outline of our approach for tracking the moving object is

illustrated in figure 1. The first step inculdes the initialization

of the robot and selection of object in the current frame.

Next, frames are captured from the resulting video stream

and the hybrid CAMShift algorithm is run over to detect the

presence of the object in the scene. In case object is detected

the algorithm returns the centroid coordinates of the object

in image frame. If hybrid CAMShift fails to detect the object

then the output of algorithm will be origin coordinates. Failure

of the algorithm occurs either due to fast motion of the object

or when the object goes out from the robot’s view. In case of

failure of the algorithm, a gray predictor is used to predict

the centroid coordinates of the object. If the predicted x-

coordinate lies in the range of image width, then the failure of

the algorithm is due to fast motion of the object. In this case,

the center coordinates of the CAMShift window are replaced

by the predicted coordinates of the gray predictor. In case,

when predicted x-coordinate does not lies in the range of

image width, the reason of the algorithm failure is the absence

of the object in the robot’s view. The robot is then commanded

to turn by an angle, calculated using the predicted x coordinate

as follows:

β = −
φ

2
+

x

xmax

.φ (1)

where, β is the required turning angle, xmax is the maximum

x coordinate of the image (width of the image in pixels), φ is

the view angle of the camera.

The CAMShift window is then reinitialized with the cen-

ter x coordinate of the window as (xmax/2) and center y
coordinate of the window as the predicted y coordinate of

the gray predictor. In both the cases, the CAMShift window

size is taken to be equal to its initial window size. Once the

object centroid coordinates are obtained in the image frame,

a coordinate converter, as described in section IV, is used

to transform the object centroid coordinates from the image

frame to the robot frame. The object centroid coordinates

in the robot frame are then sent to an optimized T-S fuzzy

motion controller, described in section VI, to generate desired

translational and rotational velocities for the robot. The robot is

then commanded to move with the translational and rotational

velocities as generated by the controller.

Rest of the paper is organized as follows. In section III,

the gray fuzzy predictor is discussed to predict the position

of the object when it goes out from the robot’s view or the

hybrid CAMShift algorithm fails to detect the object. Section

IV gives the details of the transformation of object coordinates

from the image frame to the the robot frame. Section V

briefly explains the PSO method and the T-S fuzzy model.

Section VI presents modelling of the T-S fuzzy controller for

the object tracking using PSO and stochastic approximation

method. Experimental results are presented in section VI and

finally the paper is concluded in section VII.

III. GRAY PREDICTOR

A system with partial known information and certain un-

known information is defined as a gray system. The gray
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Fig. 1. flow diagram of our approach

theory, originally developed by Deng [11], employed the

method of data generation instead of statistic regulation, to

obtain more regular generating sequence from those initial

random data. The gray prediction is to establish a gray model

extending from the past information to the future based upon

the past and present known or undeterminate information.

Then the gray model can be used to predict the future variation

trend of the system.

Gray Prediction model for tracking The procedure of gray

prediction model is as follows:

• Establish the initial sequence from observed data

x(0) = (x(0)(1), x(0)(2), x(0)(3), ..., x(0)(n) (2)

where, x(0)(i) represent the base line data with respect

to time i.
• Generate the first-order accumulated operation sequence

(AGO) sequence x(1) based on the initial sequence x(0)

x(1) = (x(1)(1), x(1)(2), x(1)(3), ..., x(1)(n) (3)

where,

x(1)(k) =

k
∑

i=0

x(0)(i) (4)
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• Compute the mean value of the first-order AGO sequence:

z(1)(k) = 0.5x(1)(k) + 0.5x(1)(k − 1) (5)

• Define the first-order gray-differential equation of se-

quence x(1) as:

dx(1)(k)

dk
+ az(1)(k) = b (6)

where, a and b express the estimated parameters of gray

prediction model.

• Utilize the least square estimation, we can drive the

estimated first-order AGO sequence x̂(1)(k + 1) and the

estimated inversed AGO sequence x̂(0)(k+1) as follows:

x̂(1)(k + 1) =

[

x(0)(1)−
b

a

]

e−ak +
b

a
(7)

x̂(0)(k + 1) = x̂(1)(k + 1)− x̂(1)(k) (8)

where, parameter a and b can be conducted by following

equations:
[

a
b

]

= (BTB)−1BT y (9)

B =









− 1
2 (x

(1)(1) + x(1)(2)) 1
− 1

2 (x
(1)(2) + x(1)(3)) 1

... ..
− 1

2 (x
(1)(n− 1) + x(1)(n)) 1









(10)

y =
[

x(0)(2), x(0)(3), x(0)(4), ...., x(0)(n)
]T

(11)

In this paper, we modeled two gray predictor to predict the

x and y coordinate of the object centroid. We used last

six centroid coordinates to generate accumulated operation

sequence.

IV. TRANSFORMATION OF THE OBJECT COORDINATES

FROM THE IMAGE FRAME TO THE ROBOT FRAME

To design any motion controller for the robot, it is necessary

to transform the coordinates of the gravity center of the object

from the image frame to the robot frame. As x coordinate of

the object in the image frame is invariant to the size (width)

of the object, it can be used to calculate the direction of the

object with respect to the robot. But y coordinate of the object

in the image frame varies with the size (height) of the object,

so, it cannot be used to determine the distance of the object

with respect to the robot. To get the accurate coordinates of the

gravity center of the object in the robot frame, x co-ordinate

of the object in the image frame and laser sensor data are used.

As view angle of the camera and size of the image are known,

direct relationship between the x coordinate of the object in

the image frame and angle of the object w.r.t. the robot can

be established as:

α = −
φ

2
+

x

xmax

φ (12)

α is the angle of the of the object w.r.t. the robot at a particular

x coordinate of the object in the image frame. In our case,

camera view angle is 40◦, and size of image is 640× 480.

Once the angle of the object w.r.t. the robot is obtained, the

distance of the object can easily be measured with the help

of the laser data. Laser can give the distance reading from

−90◦ to +90◦ with a resolution of 0.5◦. The nearest integer

value of the angle α is choosen and the minimum of the three

laser reading at α − 1,α and α + 1 is taken. As the object is

in motion, so it may happen that at a particular angle α, the

laser ray may not come back from the object. So, 1◦ offset is

put to get the accurate reading. Using this transformation, the

polar coordinates (α, r) of the gravity center of the object in

the robot frame are obtained.

V. DESCRIPTION OF PARTICLE SWARM OPTIMIZATION

AND T-S FUZZY MODEL

A. Particle swarm optimization

PSO is an optimization technique developed by Kennedy

and Eberhart [9]. It is inspired by the formation of swarms by

animals such as bird flocking and fish schooling. The principle

behind PSO is that each individual in the swarm, called a

particle, will move towards the best performing particle in

the swarm while exploring the best experience each particle

has [12]. The particle update their velocities as follows [13]:

v(k + 1) = η(k + 1).v(k)

+c1(k + 1).r1.(P
lbest(k)− P (k))

+ c2(k + 1).r1.(P
gbest(k)− P (k)) (13)

where, k is the generation number, v denote the particle

velocities, η denotes the inertia weight, r1and r2 are random

numbers between 0 and 1, c1 is the cognitive parameter, c2
is the social parameter, P lbest is the local best solution and

P gbest is the global best solution of the group.

The inertia weight η represents the degree of momentum

of the particles. This parameter is used for balancing be-

tween local and global explorations. In early generations, it

is set higher, so that the particles are allowed to have much

exploration capability and pursue an aggressive search of

the solution space. Once the algorithm is found to converge

towards the optimum, this coarse tuning is gradually converted

to finer tuning by making η smaller in later generations. In this

paper, a linearly adaptable inertia weight is employed [14],

which starts with a high value ηmax and linearly decreases to

ηmin at the maximum number of generations. This means that

η(k + 1) is calculated from

η(k + 1) = ηmax −
ηmax − ηmin

Genmax

.Gen (14)

where, Genmax is the maximum number of generations and

Gen is the current generation number.

The constants c1 and c2 represent the weights of the stochas-

tic acceleration terms that pull each particle toward the local

best and global best positions. With a large cognitive compo-

nent and small social component at the beginning, particles are

allowed to move around the search space, instead of moving

toward the best solution. In the latter part of the optimization,

a small cognitive component and large social component
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are used, to allow the particles to converge on the global

optima. In this paper, we use linearly time-varying acceleration

coefficients over the evolutionary procedure. Therefore, the

acceleration coefficients c1(k + 1) and c2(k + 1) can be

expressed as follows [15]:

c1(k + 1) = c1max −
c1max − c1min

Genmax

.Gen (15)

c2(k + 1) = c2min −
c2min − cmin

Genmax

.Gen (16)

To limit the searching space v is limited to be within a

certain range of vmin ≤ V ≤ vmax.

The particle positions is updated as:

P (k + 1) = P (k) + v(k + 1) (17)

Where, P is the positions of the particle. P should also be

limited to be within a certain range of Pmin ≤ P ≤ Pmax for

limiting the searching space.

The evaluation of the particle performance is based on a

problem specific fitness function that decides the ‘closeness’

of the particle to the optimal solution. The particle which has

the best fitness in any generation till the current generation

is known as global best particle and its position is known as

global best solution (P gbest). For each particle, there is a local

best solution (P lbest), which is the position of the particle at

generation g in which that particle has the best fitness till the

current generation.

B. The T-S Fuzzy Model

The T-S fuzzy model constructs a map from input space

to output space through a fuzzy average of local models. The

local models can be either linear or nonlinear. In this paper,

the map is built using local linear models. The ith rule in a

T-S fuzzy model with k inputs has the following form:

Ri : IF x1 is Ai
1 and x2 is Ai

2 ....xk is Ai
k

THEN yi = wT
i x+ bi

where, Ri is the ith rule (i = 1,2....m); m-is the number

of rules; x =[x1,x2,.....xk]T is a input vector; wi ǫ R1×k;

bi is the constant; Ai
1,Ai

2,....,Ai
k are fuzzy sets and yi is the

consequence of the ith rule.

The possibility that the ith rule will fire is given by the

minimum of all the membership functions associated with the

ith rule (Mamdani’s implication [16]).

µi = min(µi
1, µ

i
2, .....µ

i
k) (18)

where, µi is the membership value for the ith rule and µi
k is

the membership value of the kth input in the Ai
k fuzzy set.

The weighted membership value for the ith rule is given by:

σi =
µi

Σk
i=1µi

(19)

By using center of gravity method for defuzzification, the

overall output of the T-S fuzzy system is given by:

y =

k
∑

i=1

σi ∗ yi (20)
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VI. MODELLING OF THE T-S FUZZY CONTROLLER FOR

OBJECT TRACKING

Modelling of the T-S fuzzy controller required the follow-

ings steps:

1) Acquisition of real-time data for training and testing the

T-S fuzzy model.

2) Design and develop the T-S fuzzy model using training

data.

• Identification of the parameters of the premise part

of the rules.

• Identification of the parameters of the consequent

part of the rules.

3) Verification of the designed T-S fuzzy controller to

demonstrate the desired object tracking behavior on the

Pioneer robot.

A. Acquisition of real-time data for training and testing

To collect the training and testing data, the robot had

driven manually using a joystick to set both translational and

rotational velocities, guiding the robot to follow the moving

red box. The human driver had no visual contact with the

object and the robot, he used the robot’s camera video stream

and his sensor motor coordination to steer the robot towards

the box.

The robot was driven in this manner for one hour. During

this time, the placement angle of the object w.r.t. the robot and

the distance of the object from the robot, and the robot’s trans-

lational and rotational velocities were logged every 500ms.

The robot’s maximum translational velocity is set to 750

mm/sec.The object position w.r.t. the robot was estimated with

the hybrid CAMShift algorithm and laser data, as discussed

in section II and IV.

B. Design of T-S fuzzy controller

For object tracking behavior the inputs to the T-S fuzzy

model are the object position in the robot frame, i.e., object

placement angle w.r.t. the robot and the object distance from
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the robot, and the current translational and rotational velocities

(V (t),ω(t)) of the robot. Outputs of the T-S fuzzy model are

desired translational and rotational velocities (V (t+ 1),ω(t+
1)) of the robot required to reach the object.

Placement angle (α) and distance (d) of the object are

fuzzified into four zones each as shown in figure 2 and 3

respectively. Initially, a Gaussian membership function is taken

for each zone and later on membership functions are updated

using particle swarm optimization. The total number of rules

(k) is equal to the product of number of zones for α and

number of zones for d ,i.e., 4 ×4 = 16. For each rule the

membership value is calculated as follows:

µi =
∏

(µαi
, µdi

) (21)

where, µαi
is the membership value of α in ith rule and µdi

is the membership value of d in ith rule.

For each rule the outputs are given as:

Vi(t+ 1) = wT
i x+ bi (22)

ωi(t+ 1) = w
′T
i x+ b′i (23)

where, x = [d,α,V (t),ω(t)]T is a input vector; wi and w′

i are

parameter vectors to be updated to make the model for a given

behavior and bi and b′i are constants.

The overall outputs of the T-S fuzzy system are given as:

V (t+ 1) =

k
∑

i=1

σi ∗ Vi(t+ 1) (24)

ω(t+ 1) =

k
∑

i=1

σi ∗ ωi(t+ 1) (25)

After defining the structure for the T-S fuzzy controller, the

parameters of the structure are identified as follows:
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1) Identification of the parameters of the premise part of

the rules using particle swarm optimization: The membership

functions used in the premise part of the T-S fuzzy controller

are all of Gaussian forms. The parameters that define the Gaus-

sian membership function are mean m and the deviation σ.

The Gaussian membership function is defined as:

Gmf (x) = e−
(x−m)2

2σ2 (26)

Since, we have defined 2 inputs each having 4 zones, so there

are 8 membership functions and a total of 16 parameters that

need to be updated. Therefore, in the PSO, each particle is

to have 16 dimensions. We have defined 20 particle in the

swarm and total searching iterations has been set to 2000. The

minimum and maximum value of inertia weight have been set

to be 0.1 and 0.9 respectively. For weights of the stochastic

acceleration minimum and maximum value have been set to

0.5 and 2.5 respectively. The fitness function that evaluates

the fitness of each particle has been defined as:

f(x(k) =

Gmax
∑

g=0

ǫ2 (27)

where, x(k) is the kth particle of the swarm, Gmax is the

maximum number of generation and ǫ is the output error. At

the completion of the all iterations, the membership functions

for the inputs of the T-S fuzzy controller have been modified

significantly as shown in figure 4 and 5.

2) Identification of parameters of the consequent part of

the rules using stochastic method: There are several methods

described in the literature for the parameters estimation [17].

Least-mean square algorithm based on the idea of stochastic

approximation is widely used. It was developed by Widrow

and Hoff [18] and is used for adjusting the weights in a liner

adaptive system. For consequent part parameters identification

we have used stochastic approximation method, as described

by the Jelena in [10]. Once the training is over, the learned

T-S fuzzy model with 16 rules is validated using test data. One

sample rule of the learned T-S fuzzy model is given here:
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• If α is Negative big and d is Near, then

V1(t+ 1) = 0.6506d− 0.00009α− 0.00173V (t)

+0.00007ω(t)− 0.0169

ω1(t+ 1) = 0.0046d+ 1.37α− 0.0295V (t)

−0.026ω(t)− 0.173

C. Experimental results and Observations

We applied the testing data set and observed the error. The

RMS error during testing of the model is shown in figure 6.

Figure 7 shows the desired and actual translational velocities

of the robot for the object tracking behavior during testing.

Desired and actual rotational velocities of the robot for the

object tracking behavior during testing is shown in figure 8. As

compared to our previous work [19], the rms error has reduced

significantly. The reason of error reduction is the updation

of the parameters of the membership functions in this work.

Searching mode for the robot, which is a slow process is not

required in this case, as the grey predictor predict the position

of the object quite efficiently, when the algorithm fails to detect

the object. A test run of the designed model in action can be

seen in the following video [20].

VII. CONCLUSION

This paper has presented a T-S fuzzy model based sensor-

motor coordination scheme for object tracking. The object is

detected using vision sensor and the laser is used to transform

the image coordinates of the object into the robot frame

coordinates. Particle swarm optimization is used to optimized

the parameters of membership functions of the T-S fuzzy

model. Since the robot behavior is expressed as if-then rules,

the behavior modelling can be easily interpreted. A gray

predictor is developed to predict the position of object, when

it is not in the view of the robot. The control scheme has

been implemented on a Pioneer robot for tracking a triangular

box. The experimental result shows that the robot is able to

track any object in any arbitrary trajectory using the proposed

controller.
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