
Integration of Scheduling Analysis into UML Based

Development Processes Through Model

Transformation

Matthias Hagner and Ursula Goltz
Institute for Programming and Reactive Systems,

TU Braunschweig,
Mühlenpfordtst. 23,

38106 Braunschweig, Germany,
{hagner, goltz}@ips.cs.tu-bs.de

Abstract—The complexity of embedded systems and
their safety requirements have risen significantly in
recent years. Models and the model based development
approach help to keep overview and control of the
development. Nevertheless, a support for the analysis
of non-functional requirements, e.g. the scheduling,
based on development models and consequently the
integration of these analysis technologies into a devel-
opment process exists only sporadically. The problem
is that the analysis tools use different metamodels
than the development tools. Therefore, a remodeling
of the system in the format of the analysis tool or a
model transformation is necessary to be able to perform
an analysis. Here, we introduce a scheduling analysis
view as a part of the development model, which is a
MARTE annotated UML model to describe a system
from the scheduling behavior point of view. In addition,
we present a transformation from this annotated UML
model to the scheduling analysis tool SymTA/S and a
treatment of the analysis results to integrate scheduling
analysis into a development process.With our approach
it is not necessary to remodel the system in an analysis
tool to profit from the analysis and its results. Addi-
tionally, we illustrate our approach in a case study on
a parallel robot controller.

I. Introduction

Model based development is widely appreciated in the
embedded systems domain to cope with the complexity.
As a generic and standardized approach, UML [1] has
established as one of the most important notations for
modeling software. The MARTE profile (UML Profile
for Modelling and Analysis of Real-Time and Embedded
systems) [2] makes domain specific ideas, relevant for real-
time and embedded systems design, available in a unified
modeling framework. Based on this profile, we have defined
the UML scheduling analysis view [3] as a part of the
design model that concentrates on the scheduling analysis
aspects and leaves out all unnecessary information to help
the developer focusing on these aspects. This approach is
based on the cognitive load theory [4], which states that
human cognitive productivity dramatically decreases with
the amount of different dimensions to be considered at the
same time.

Besides specification and tracing of timing requirements
through different design stages, the major goal of enriching
models with timing information is to enable early val-
idation and verification of design decisions. As designs
for an embedded or safety critical systems may have
to be discarded if deadlines are missed or resources are
overloaded, early timing analysis has become an issue and
is supported by a number of specialized analysis tools
like SymTA/S [5], MAST [6], and TIMES [7]. However,
the metamodels on which analysis models of the tools are
based differ from each other and in particular from UML
models used for design, especially the UML scheduling
analysis view. Thus, to make an analysis possible and to
integrate it into a development process, the developer has
to remodel the system in the analysis tool. To avoid this
major effort, an automatic model transformation is needed
to build an interface that enables automated analysis of a
MARTE extended UML model using existing RT analysis
technology.

In this paper, we introduce a method to integrate the
scheduling analysis into a UML based development pro-
cess. With our approach it is possible to add scheduling
parameters to a UML model and to perform scheduling
analysis based on this model. Therefore, we demonstrate
a model transformation (realized with the Atlas Trans-
formation Language - ATL [8]) from our proposed UML
scheduling analysis view as an extension of Papyrus for
UML1 to the scheduling analysis tool SymTA/S. After the
analysis, the results are published in the UML develop-
ment model to give the developer a feedback concerning
the scheduling behavior such that he/she can draw the
right conclusions. Consequently, the developer does not
need to see SymTA/S or to know how to use the analysis
tool to profit from scheduling analysis.

This paper is structured as follows: Section II gives an
introduction over the integration of scheduling analysis
into the development process, Section III presents the
UML scheduling analysis view, in Section IV, SymTA/S

1http://www.papyrusuml.org

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 797–804

ISBN 978-83-60810-27-9

ISSN 1896-7094

978-83-60810-27-9/09/$25.00 c© 2010 IEEE 797

is explained, Section V and VI present the transformation
from the UML scheduling analysis view to SymTA/S and
the recirculation and publication of results of the analysis.
In Section VII we apply our approach to a case study of our
Collaborative Research Centre 562. Section VIII concludes
the paper.

II. Integration of Scheduling Analysis into a
Development Process

The idea of performing scheduling analysis based on
UML models assumes that all the information that is
needed for the analysis is already part of the UML model.
There is no scheduling analysis tool that is based on UML
models or that uses UML models as an input. Therefore,
the transformation described in Section V is necessary. But
for this transformation, it is necessary that all information
needed is already part of the UML development model.
If this is the case, the data/necessary information of the
system is transformed into the format of the analysis tool.

After the transformation is done, the analysis examines
the response times of the tasks and the utilization of
the resources. It checks if task chains are executed fast
enough or deadlines are missed. Following the analysis,
the results are published again in the UML scheduling
analysis view (see Figure 1 for the workflow). These steps
are done automatically and the developer only has to
start the workflow and gets back the analysis results
immediately. Afterwards, he/she just has to interpret the
analysis results. Consequently, the developer does not need
to see or use the analysis tool, as he/she can model and
parameterize the system in the UML development model.
Even the analysis results are published using UML and
the MARTE profile.

UML Model

(Scheduling

Analysis View)

SymTA/S

Transformation of the information

 into the format of SymTA/S

Publish the analysis result

Fig. 1. Illustration of the transformation flow

This approach is independent from the point in time
during the development process, as long as the system
under consideration is completely described to meet the
criteria of a scheduling analysis. It is useful at the begin-
ning of a development process to help making decisions
concerning the number of resources or the distribution,
even if at this time mainly estimated values must be used
and the system is not completely designed (e.g. tasks

are still combined and not yet broken down). At a later
stage of development, more exact/measured (execution)
times can be used to determine more accurate analysis
results. Regardless of the development stage, the workflow,
described in Figure 1, is the same.

III. The UML Scheduling Analysis View

The UML scheduling analysis view [3] was designed re-
garding the information required by a number of schedul-
ing analysis tools (e.g. SymTA/S). Therefore, it concen-
trates on and highlights timing and scheduling aspects.
Unlike usual design models, it contains all necessary infor-
mation for an analysis (priorities, scheduling algorithms,
task execution times, etc.).

The view consists of three different UML diagram types
and a selection of MARTE stereotypes and tagged values
(see Figure 2). The diagram types are class diagrams as an
architectural view (to describe the structure, associations,
and allocations of the systems’ elements), object diagrams
as a view on the runtime system (to instantiate the
concrete system that should be analyzed based on the
architectural view), and activity diagrams as a workload
view (to describe workload situations, flows, and depen-
dencies of tasks).

<<saExecStep>> store()

<<schedulableResource>>

DataControl

deadline=(5,ms)
priority=5
respT=[$r1,ms]
execTime=[1,ms]
sharedRes=SharedMemory

Fig. 2. Example of MARTE stereotypes and tagged values

The stereotypes and the tagged values are based on the
MARTE UML profile. We only used a small amount of the
defined elements for the scheduling analysis view. One goal
of the view is to keep it as simple as possible. Therefore,
only elements are used that are necessary to describe all
the information that is needed for an analysis. In Table I
all used stereotypes and tagged values are presented.

Class diagrams are used to describe the architectural
view/the structure of the modeled system. The diagrams
show resources, tasks, and associations between these
elements. Furthermore, schedulers and other resources,
like shared memory, can be defined. Figure 3 shows a
class diagram of the scheduling analysis view that de-
scribes the architecture of a sample system. The func-
tionalities/the tasks and communication tasks are rep-
resented by methods. The tasks are described using the
«saExecStep» stereotype. The methods that represent the
communication tasks (transmitting of data over a bus)
are extended with the «saCommStep» stereotype. The
tasks or communication tasks, represented as methods,
are part of schedulable resource classes (marked with the
«schedulabeResource» stereotype), which combine tasks

798 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

TABLE I
Elements of the scheduling analysis view

Stereotype used on Tagged Values

«saExecHost» Classes, Objects Utilization, mainScheduler, isSched
«saCommHost» Classes, Objects Utilization, mainScheduler, isSched

«scheduler» Classes, Objects schedPolicy, otherSchedPolicy
«schedulableResource» Classes, Objects
«saSharedResources» Classes, Objects

«saExecStep» Methods deadline, priority, execTime, usedResource, respT
«saCommStep» Methods deadline, priority, execTime, msgSize, respT

«saEndToEndFlow» Activities end2endT, end2endD, isSched
«gaWorkloadEvent» Initial-Node pattern

«allocated» Associations

or communications that belong together, e.g. since they
are part of the same use case or all of them are service
routines. Processor resources are represented as classes
with the «saExecHost» stereotype and bus resources are
classes with the «saCommHost» stereotype. The tasks
and communications are mapped on processors or busses
by using associations between the schedulable resource
and the corresponding bus or processor resource. The
associations are extended with the «allocated» stereotype.
Scheduling relevant parameters (like deadlines, execution
times, priorities, etc.) are added to the model using tagged
values.

<<saExecStep>> run()

<<schedulableResource>>

GUI

<<saCommStep>> send()

<<schedulableResource>>

Communiction

<<saExecStep>> save()

<<schedulableResource>>

DataControl

<<saExecHost>>

CPU

<<saCommHost>>

Bus

<<saExecHost>>

CPU2

<<allocated>>

<<allocated>>

<<allocated>>

Fig. 3. The architectural view of the scheduling analysis view

The object diagram or runtime view is based on the
class diagram/architectural view of the scheduling analysis
view. It defines how many instances are parts of the
runtime system respectively what parts are considered
for the scheduling analysis. It is possible that only some
elements defined in the class diagram are instantiated.
Furthermore, some elements can be instantiated twice or
more (e.g. if a processor is redundant). Only instantiated
objects are taken into account for the scheduling analysis
and, consequently, for the model transformation.

Activity diagrams are used to describe the behavior of
the system. Therefore, workload situations are defined that
outline the flow of tasks that are executed during a certain
mode of the system. The dependencies of tasks and the
execution order are illustrated. The «gaWorkloadEvent»
and the «saEnd2EndFlow» stereotypes and their corre-
sponding tagged values are used to describe the workload

behavior parameters like the arrival pattern of the event
that triggers the flow or the deadline of the outlined
task chain. For example, in Figure 4, it is well defined
that at first cpu.run() has to be completely executed,
before communication.send() is scheduled etc.. There are
restrictions like that no decision nodes are allowed, because
the analysis tool SymTA/S does not support these model
elements.

cpu.run()

communication.send()

datacontrol.save()

<<saEnd2EndFlow>>

Fig. 4. A workflow description of the scheduling analysis view

The scheduling analysis view can be easily be extended,
if necessary. If a scheduling analysis tool offers more
possibilities to describe or to analyze a system (e.g. a
different scheduling algorithm) and needs more system
parameters for it, these parameters have to be part of
the scheduling analysis view. Therefore, the view can be
extended with new tagged values that offer the possibility
to add the necessary parameters to the system description
(added to Table I).

Another advantage of using the scheduling analysis view
is that the tagged values help the developer to keep track
of timing requirements during the development, as these
parameters are part of the development model. This espe-
cially helps to keep considering them during refinement.

IV. Scheduling Analysis with SymTA/S

We use SymTA/S (Symbolic Timing Analysis for
Systems) [4] for the scheduling analysis. The example
depicted in Figure 5 is the SymTA/S representation of the

MATTHIAS HAGNER, URSULA GOLTZ: INTEGRATION OF SCHEDULING ANALYSIS 799

system described in Section III and illustrated in Figure
3 and Figure 4. There is one source (trigger), two CPUs
(CPU and CPU2), which run two tasks (run and save),
and a bus (Bus) with one communication task (send). All
tasks are connected using event streams, representing task
chains.

SymTA/S links established analysis algorithms with
event streams and realizes a global analysis of distributed
systems. At first, the analysis considers each resource on
its own and identifies the response time of the mapped
tasks. From these response times and the given input event
model it calculates the output event model and propagates
it by the event stream. If there are cyclic dependencies, the
system is analyzed from a starting point iteratively until
reaching convergence.

V. Transformation and Analysis

During the transformation, the information is taken
from the UML metamodel of the scheduling analysis view
and is placed in the metamodel of SymTA/S. The schedul-
ing analysis view is modeled in Papyrus for UML and saved
as an XMI[9] file. SymTA/S files are also based on XML.
Therefore, the ATL transformation [8] has to read the XMI
file and create a, for SymTA/S valid, XML file containing
the system represented in the scheduling analysis view.

First, the transformation checks whether the model
is suitable at all for a transformation. After that, the
hardware components are transformed. The transforma-
tion searches for all objects with the «saExecHost»
stereotype and generates CPU objects for them in the
SymTA/S model. The same happens with objects with
the «saCommHost» stereotype for busses.

Thereafter, the activity diagrams/workflow descriptions
are considered, and, depending on the parameters of
the initial nodes, corresponding source elements in the
SymTA/S model are created. In the next step, all tasks
and communication tasks (all methods with a «saEx-
ecStep» or «saCommStep» stereotype) are created as
often, as the class/schedulable resource they belong to is
instantiated in the scheduling analysis view (e.g. if a class
“Calculate” with the «schedulableResource» stereotype
has a method calculateValues() that has the «saExec-
Step» stereotype, and the “Calculate” class is instantiated
two times in the scheduling analysis view, there will be
two calculateValues tasks in the SymTA/S model).

Analyzing the «allocated» stereotypes does the map-
ping: For example, if there is an «allocated» marked
association between a resource and a class with a
«schedulabeResource» stereotype, all methods/tasks of
the «schedulabeResource» class are mapped on this re-
source in the SymTA/S model. The corresponding parame-
ters of the tasks (annotated with tagged values in the UML
scheduling analysis view) are entered into the SymTA/S
model.

In the last step of the transformation, the event streams
in SymTA/S are created based on the dependencies de-

scribed in the activity diagrams/workflow descriptions.
The activity diagrams of the UML scheduling analysis
view are observed and the dependencies are added to the
SymTA/S model. It is only necessary to detect which
actions are connected in the UML view and to reproduce
these connections using Event Streams in SymTA/S. As
SymTA/S does not offer decision nodes, these elements
are not supported during the transformation.

After the complete transformation, SymTA/S is used for
the analysis. For this, the tool is started with the created
XML file as a parameter. SymTA/S analyses the system
and writes back the results into the XML file.

VI. Publishing the Analysis Results in the
Scheduling Analysis View

After the analysis is finished, the results are published
in the scheduling analysis view. The developer gets the
information whether there are tasks or paths/task chains
that are not schedulable or that miss their deadlines. Some
of the tagged values of the scheduling analysis view are
used to give the developer a feedback about the analysis
results. For example, in Figure 2 the respT tagged value is
empty before the analysis and has a variable ($r1), which
means that the response time of the corresponding task
is entered at this point after the analysis. There are also
other parameters, which give a feedback to the developer
(see also Table I):

a) respT: The respT tagged values gives a feedback
about the response time of the (communication) tasks and
is offered by the «saExecStep» and the «saCommHost»
stereotype.

b) end2endT: As the respT, the end2endT tagged
values offers the response time, in this case of a path/task
chain and is offered by the «saEnd2EndFlow» stereotype.
It is not a summation of all response times of the tasks
that are part of the path, but a worst case calculated re-
sponse time of the whole path examined by the scheduling
analysis tool (for more details see [5]).

c) Utilization: The «saExecHost» and the
«saCommHost» stereotype offer a utilization tagged
value that gives a feedback about the load of the CPU
or the bus. The value is given in percent. If the value is
higher than 100%, it is obvious that this resource is not
schedulable (and the isShed tagged value is false too),
but even if the value is only slightly under 100% , this is
a warning for the developer that this resource is nearly
overloaded.

d) isShed: This tagged value gives a response whether
the tasks mapped on this resource are schedulable or
not (false or true) and is offered by the «saExecHost»
and the «saCommHost» stereotype. The tagged values
are connected to the Utilization tagged value (e.g. if
the utilization is higher than 100%, the isShed tagged
value is false). This tagged value is also offered by the
«saEnd2EndFlow» stereotype. As the «saEnd2EndFlow»

stereotype defines parameters for a path/task chain, the

800 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Fig. 5. A sample of a system described in SymTA/S

isShed tagged value gives a feedback whether the deadline
for the path is missed or not.

After an analysis is finished, the developer can check if
the system is schedulable. For this, the developer checks
if the paths/tasks chains are schedulable (isShed tagged
value of the «seEnd2EndFlow» stereotype). If this is false,
the developer has to find the reason why the scheduling
failed. The end2EndT tagged value shows to what extent
the deadline is missed, as it gives the response time of the
path/task chain. The response times of the tasks and the
utilization of the resource give also a feedback where the
bottleneck might be (e.g. a resource with a high utilization
and tasks scheduled on it with long response times is more
likely a bottleneck as resources with low utilizations).

VII. Case Study

The aim of the Collaborative Research Centre 562
(CRC 562)2 is the development of methodological and
component-related fundamentals for the construction of
robotic systems based on closed kinematic chains (parallel
kinematic chains - PKMs), to improve the promising
potential of these robots, particularly with regard to high
operating speeds, accelerations, and accuracy [10]. This
kind of robots features closed kinematic chains and has
a high stiffness and accuracy. Due to low moved masses,
PKMs have a high weight-to-load-ratio compared to serial
robots. The demonstrators which have been developed in
the research center 562 move very fast (up to 10 m/s)
and achieve high accelerations (up to 100 m/s2). The high
velocities induced several hard real-time constraints on the
software architecture that has been designed to control the
robots. The latest version is PROSA-X (Parallel Robots
Software Architecture - eXtended) which uses multiple
control PCs to distribute its algorithmic load. PROSA-
X is a generic architecture which is used to control
several different robots. A specifically tailored middleware
(MiRPA-X) and a bus protocol that operates on top of a
FireWire bus (IAP) realize communication satisfying the
hard real-time constraints [11]. The architecture is based
on a layered design with multiple real-time layers within
QNX3 to realize e.g. a deterministic execution order for
critical tasks [12].

The robots are controlled using cyclic frequencies be-
tween 1 and 8 kHz. If these hard deadlines are missed, this
could cause damage to the robot and its environment. To

2http://www.tu-braunschweig.de/sfb562
3QNX Neutrino is a micro kernel real-time operating system.

avoid such problems, a scheduling analysis on the basis of
models ensures the fulfillment of real-time requirements.
The case study presented below has been performed in
this context and is based on [13].

In Figure 6 a scheduling analysis view representation of
the software architecture, PROSA-X [14], is presented. It
consists of a control PC (“Control PC1”), which performs
various computing tasks (“CP1 Tasks”). The control PC
is connected via a FireWire (IEEE 1394) data bus with
a number of other processors (“DSP 1-7”). The DSPs
supervise and control the machine.

The methods represent the following tasks:

• IAP D : This instance of the IAP bus protocol re-
ceives the DDTs (Device Data Telegram) that contain
the instantaneous values of the DSP nodes over the
FireWire bus.

• HWM : The Hardware Monitoring takes the instan-
taneous values received by the IAP D and prepares
them for the control.

• DC : The Drive Controller operates the actuators of
the parallel kinematic machine.

• SMC : The Smart Material Controller operates the
active vibration suppression of the machine.

• IAP M : This instance of the bus protocol IAP sends
the setpoint values, calculated by DC and SMC, to
the DSP node.

• CC : The Central Control activates the currently re-
quired sensor and motion modules (see below) and
collects their results.

• CON : Contact Planner. Combination of power and
speed control. For the end effector of the robot to
make contact with a surface.

• FOR: Force Control, sets the force for the end effector
of the robot.

• CFF : Another Contact Planner, similar to CON.
• VEL: Velocity Control, sets the speed for the end

effector of the robot.
• POS : The Position Controller sets the position of the

end effector.
• SAP : The Singularity Avoidance Planner plans paths

through the work area to avoid singularities.
• SEN : An exemplary Sensor Module.

Next we explain the real-time demands on the system.
There is no deadline on a specific task, but there are
deadlines on task chains/workflows. The first task chain
receives the instantaneous values and calculates the new
setpoint values (IAP D, HWM, DC, SMC). The deadline

MATTHIAS HAGNER, URSULA GOLTZ: INTEGRATION OF SCHEDULING ANALYSIS 801

<<saExecStep>> IAP_N1()

<<schedulableResource>>

IAP_Nodes_1
<<saExecHost>>

DSP_1

<<allocated>>

<<saExecStep>> IAP_N2()

<<schedulableResource>>

IAP_Nodes_2
<<saExecHost>>

DSP_2

<<allocated>>

<<saExecStep>> IAP_N3()

<<schedulableResource>>

IAP_Nodes_3
<<saExecHost>>

DSP_3

<<allocated>>

<<saExecStep>> IAP_N4()

<<schedulableResource>>

IAP_Nodes_4
<<saExecHost>>

DSP_4

<<allocated>>

<<saExecStep>> IAP_N5()

<<schedulableResource>>

IAP_Nodes_5
<<saExecHost>>

DSP_5

<<allocated>>

<<saExecStep>> IAP_N6()

<<schedulableResource>>

IAP_Nodes_6
<<saExecHost>>

DSP_6

<<allocated>>

<<saExecStep>> IAP_N7()

<<schedulableResource>>

IAP_Nodes_7
<<saExecHost>>

DSP_7

<<allocated>>

<<saCommStep>> MDT()

<<schedulableResource>>

fwCom1

<<saCommStep>> DDT1()
<<saCommStep>> DDT2()
<<saCommStep>> DDT3()
<<saCommStep>> DDT4()
<<saCommStep>> DDT5()
<<saCommStep>> DDT6()
<<saCommStep>> DDT7()

<<schedulableResource>>

fwCom2

<<saCommHost>>

FireWire

<<allocated>>

<<allocated>>

<<saExecHost>>

Control_PC1

<<saExecStep>> IAP_D()
<<saExecStep>> HWM()
<<saExecStep>> DC()
<<saExecStep>> CC()
<<saExecStep>> CFF()
<<saExecStep>> FOR()
<<saExecStep>> MPI()
<<saExecStep>> POS()
<<saExecStep>> SMC()
<<saExecStep>> CON()
<<saExecStep>> VEl()
<<saExecStep>> SEN()
<<saExecStep>> SAP()
<<saExecStep>> IAP_M()

<<schedulableResource>>

CP1_Tasks

<<allocated>>

Fig. 6. The architectural view of the PROSA-X system

for this is after 250 microseconds (see Figure 7 for the
scheduling analysis view description).

cp1_tasks.IAP_D()

cp1_tasks.HWM()

datacontrol.SMC()

<<saEnd2EndFlow>>

cp1_tasks.DC()

Fig. 7. The receiving of the instantaneous values and the calculation
of the new setpoint values

The second task chain contains the sending of the
setpoint values to the DSPs and their processing (IAP M,
MDT, IAP N1, . . . , IAP N7, DDT1, . . . , DDT7). This
must be finished within 750 microseconds (see Figure 8).

Finally, the third chain comprises the control of the
sensor and motion modules (CC, CON, FOR, CFF, POS,
VEL, SEN, SAP) and has to be completed within 1945
microseconds (see Figure 9).

The system was modeled in Papyrus for UML as a
Scheduling Analysis View. Every element of the architec-
tural view (depicted in Figure 6) is instantiated once in
the runtime view.

cp1_task.CC()

<<saEnd2EndFlow>>
cp1_task.SAP()

cp1_task.CON()

cp1_task.POS()

cp1_task.VEL()

cp1_task.FOR()

cp1_task.CFF()

cp1_task.SEN()

Fig. 9. Control of the sensor and motion modules

The ATL transformation creates a corresponding
SymTA/S model and makes it possible to analyze the
system. The transformation was successful, the output
model was analyzed by SymTA/S and confirms to the
expectations: The analysis was successful, all paths keep
their real-time requirements, the resources are not over-
loaded. The SymTA/S model is depicted in Figure 10.

After the successful analysis, the results are published
back into the scheduling analysis view (see section VI).

The analysis has confirmed that the system is schedula-
ble. We also integrated this analysis into our approach for
finding the best distribution using graph partitioning [15].

VIII. Conclusion and Further Work

We have presented a model transformation from a
MARTE annotated UML model to the scheduling anal-
ysis tool SymTA/S to make a scheduling analysis based

802 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

cp1_tasks.IAP_M()

fwcom1.MDT()

<<saEnd2EndFlow>>
iap_nodes.IAP_N1()

iap_nodes_2.IAP_N2()

iap_nodes_5.IAP_N5()

iap_nodes_6.IAP_N6()

iap_nodes_3.IAP_N3()

iap_nodes_4.IAP_N4()

iap_nodes_7.IAP_N7()

fwcom2.DDT1()

fwcom2.DDT2()

fwcom2.DDT5()

fwcom2.DDT6()

fwcom2.DDT3()

fwcom2.DDT4()

fwcom2.DDT7()

Fig. 8. Sending of the setpoint values to the DSPs

on UML design models possible and to limit the ef-
fort for a developer to get feedback concerning the
timing/scheduling behavior. We have demonstrated this
transformation on a parallel robot controller of our CRC
562. Further steps would be to create more model trans-
formations for other non-functional parameters to corre-
sponding analysis tools.

Another extension of this approach would be to describe
a method how to create the scheduling analysis view and
how to add the necessary and typically missing parameters
to this view to make a scheduling analysis possible (we
have made first approaches in [16] and [17]). It is also
possible to integrate further tools into the method (e.g.
aiT [18]).

Furthermore, a method to help finding the bottleneck if
an analysis fails would be of great benefit.

Acknowledgment

The authors would like to thank Symtavision4 for the
grant of free licenses.

References

[1] OMG Object Management Group, “Unified modeling language
specification,” 2003.

[2] ——, “UML profile for modeling and analysis of real-time and
embedded systems (MARTE),” 2009.

[3] M. Hagner and M. Huhn,“Tool support for a scheduling analysis
view,” in Design, Automation and Test in Europe (DATE 08),
2008.

[4] J. Sweller, “Evolution of human cognitive architecture,” in The
Psychology of Learning and Motivation, vol. 43, 2003, pp. 215–
266.

[5] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter,
and R. Ernst, “System level performance analysis - the
SymTA/S approach,” IEEE Proceedings Computers and Digital
Techniques, vol. 152, no. 2, pp. 148–166, March 2005. [Online].
Available: citeseer.ist.psu.edu/jersak05system.html

[6] M. G. Harbour, J. J. G. Garćıa, J. C. P. Gutiérrez, and J. M. D.
Moyano, “Mast: Modeling and analysis suite for real time ap-
plications,” in ECRTS ’01: Proceedings of the 13th Euromicro
Conference on Real-Time Systems. Washington, DC, USA:
IEEE Computer Society, 2001, p. 125.

4http://www.symtavision.com

[7] E. Fersman and W. Yi, “A generic approach to schedulability
analysis of real-time tasks,” Nordic J. of Computing, vol. 11,
no. 2, pp. 129–147, 2004.

[8] OMG Object Management Group, “MOF 2.0, query / views /
transformation ad/2002-04-10, revised submission, version 1.0,
2003/08/18, OpenQVT.”

[9] ——, “XML model interchange(XMI),” 1998.
[10] J.-P. Merlet, Parallel Robots. Kluwer Academic Publishers,

2000.
[11] N. Kohn, J.-U. Varchmin, J. Steiner, and U. Goltz, “Universal

communication architecture for high-dynamic robot systems us-
ing QNX,” in Proceedings of International Conference on Con-
trol, Automation, Robotics and Vision (ICARCV 8th), vol. 1.
Kunming, China: IEEE Computer Society, December 2004, pp.
205–210, iSBN: 0-7803-8653-1.

[12] J. Maass, N. Kohn, and J. Hesselbach, “Open modular robot
control architecture for assembly using the task frame formal-
ism,” International Journal of Advanced Robotic Systems, vol. 3,
no. 1, pp. 1–10, 2006, iSSN: 1729-8806.

[13] A. Bragenheim, “Realisierung einer Modelltransformation zur
Schedulability-Analyse von UML-Modellen mit SymTA/S,”
2009.

[14] J. Steiner, U. Goltz, and J. MaaSS, “Dynamische verteilung
von steuerungskomponenten unter erhalt von echtzeiteigen-
schaften,” in 6. Paderborner Workshop Entwurf mechatronis-
cher Systeme, 2009.

[15] J. Steiner, A. Amado, U. Goltz, M. Hagner, and M. Huhn,
“Engineering self-management into a robot control system,” in
Proceedings of 3rd International Colloquium of the Collaborative
Research Center 562, 2008.

[16] M. Hagner and M. Huhn, “Modellierung und analyse von zei-
tanforderungen basierend auf der uml,” in Workshop, ser. LNI,
H. Koschke, Ed., vol. 110, 2007, pp. 531–535.

[17] M. Hagner, M. Huhn, and A. Zechner, “Timing analysis using
the MARTE profile in the design of rail automation systems.” in
4th European Congress on Embedded Realtime Software (ERTS
08), 2008.

[18] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm, “Reliable
and precise wcet determination for a real-life processor,” in
EMSOFT ’01: Proceedings of the First International Workshop
on Embedded Software. London, UK: Springer-Verlag, 2001,
pp. 469–485.

MATTHIAS HAGNER, URSULA GOLTZ: INTEGRATION OF SCHEDULING ANALYSIS 803

Fig. 10. The SymTA/S description of the PROSA-X system

804 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

