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Abstract—Low–level vision approaches, such as local image
features, are an important component of bottom–up machine
vision solutions. They are able to effectively identify local visual
similarities between fragments of underlying physical objects.
Such vision approaches are used to build a learning system
capable to form meaningful visual objects out of unlabelled
collections of images. By capturing similar fragments of images,
the underlying physical objects are extracted and their visual
appearances are generalized. This leads to formation of visual
objects, which (typically) represent specific underlying physical
objects in a form of automatically extracted multiple template
images.

I. INTRODUCTION

Image understanding, although generally considered the

highest level of machine vision applications, provides useful

information for low–level image processing tasks. For exam-

ple, noise removal, image segmentation, etc. can be performed

more effectively if the presence of certain contents is known

or assumed in the processed images. On the other hand, the

results of low–level operations are usually indispensable to

detect such contents in unknown images. This contradiction

is apparently one of the most challenging issues in advanced

applications of machine vision.

A similar, and equally challenging, problem exists in

content-based visual information retrieval (CBVIR). Two op-

erations can be relatively easily done for a given image,

namely (1) image annotation (manually performed by a hu-

man) and (2) low–level feature extraction (performed automat-

ically by dedicated algorithms). However, a semantic gap [1]

exists between these two operations, i.e. it is usually very

difficult to relate image features to semantically meaningful

image tags.

The paper proposes a technique that handles the above

contradictions from the low–level perspective. In general, we

attempt to automatically build image semantics using purely

visual characteristics of the images. The content of images

is assumed unknown and random (although they may be col-

lected from a certain “world”). The first step of the proposed

approach, i.e. the automatic formation of visual objects [2]

(which typically correspond to physical objects depicted in the

images) is discussed in the paper in detail. Such visual objects

are built as groups (clusters) of prototypes [2] containing

multiple similar fragments identified in the available collection

(database) of images. If the database is a representative de-

scription of the “world”, we identify typical components and,

thus, provide a certain level of understanding of that “world”.

The presented results are development of preliminary ideas

highlighted in [3].

The similarity between image fragments is determined using

sets of locally computed feature vectors, i.e. the proposed

method falls into the local category. Each feature vector de-

scribes a small fragment of the image (usually an elliptical or

circular keypoint). To calculate the keypoints, we use popular,

widely discussed approaches such as Harris-Affine [4] and

SIFT [5], [6].

Detection and clusterization of similar fragments in the im-

age database is executed in four steps: (1) image pre-retrieval,

(2) image fragment matching, (3) formation of prototypes

from similar fragments, (4) formation of visual objects from

prototypes. The first two steps are responsible for localization

of similar image fragments within the database. Image pre–

retrieval is introduced solely for a higher efficiency of the

method, while image fragment matching is the key operation

in finding similar image fragments.

In the remaining two steps, relations are established between

similar image fragments identified in the first two steps. Pro-

totypes are formed based on intersections of image fragments

located within the same image. These multiple intersecting

fragments come from matching of the same image with other

images. The last step merges prototypes found in different

images into visual objects.

The general idea of the proposed method is illustrated in

Fig. 1 and detailed explanations of the underlying algorithms

are provided in Section II.

Altogether, the automatic visual object formation is a group-

ing algorithm. Its input is a collection (database) of unlabelled

images. The output is a set of groups (visual objects), where

each group consists of image fragments that have been found

mutually similar. The number of output visual objects is

determined fully automatically based on the visual properties

of database images.
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(C) Fragment intersection based grouping (I1)
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(D) Extraction of k-connected subgraphs (I1, ..., In)
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Fig. 1. Steps of the proposed automatic visual object formation method; (A)
image pre–retrieval to limit number of matches, (B) image fragment matching
to extract similar fragments in different images, (C) formation of prototypes
out of intersecting fragments in the same image, (D) formation of objects out
of prototypes from different images.

II. VISUAL OBJECT FORMATION

A. Efficient image pre–retrieval (step A)

Given a collection {I1, I2, ..., In} of n unlabelled images,

our objective is to identify the presence of similar fragments

within these images. Therefore, for a collection of n images

we have to match up to n2 image pairs. This can be a time–

consuming operation even for a small database. Given a pair

of images I and J , similar fragments are identified using an

image fragment matching method (described in Section II-B).

The results of such a matching are accurate, but the operation

is computationally intensive. Therefore, we have introduced

an efficient image pre–retrieval scheme so that the system

can be applied to image collections of relatively large sizes.

The proposed pre–retrieval mechanism is one of the novelties

presented in this paper.

For a query image Ix : x ∈ {1, ..., n}, we attempt to identify

the most relevant (candidate) images {I1
x, I

2
x, ..., I

m
x } : m≪n

from the whole database {I1, I2, ..., In}. Detection of frag-

ments similar to unspecified fragments of Ix query is at-

tempted within those candidate images only.

The candidate images are identified using a specialized

similarity function s(I,J ) defined for a pair of images I and

J . The similarity function is called image topology similarity.

The function can be converted (if necessary) into an image–

distance function using a variety of approaches. Unlike many

classic image similarity measures, the proposed similarity

function is able to identify images that are very different but

contain similar fragments. The idea of the proposed function

is conceptually similar to the previously proposed topological

image fragment matching algorithm [7], i.e. it is based on pairs

of matched keypoints. The main difference is that in here we

use weaker topological constrains.

The proposed similarity function is defined as follows: First,

we obtain matched pairs of keypoints P (I,J ) between the

input images (details to be discussed later). Having a non-

empty set of such pairs P , we check the topological con-

strains for each keypoint pair (pI , pJ) ∈ P . The topological

constrains are verified within spatial neighbourhoods N (pI)
and N (pJ ) of both keypoints from the pair. The spatial

neighbourhood is defined as a set of r keypoints being the

nearest neighbours in terms of image coordinates (Euclidean

distance d) of a given keypoint. The neighbourhoods are found

off–line and the nearest neighbours can be cached for each

keypoint (and quickly retrieved on demand). Formally, the

spatial neighbourhood N (pX) for a keypoint pX from an

image (set of keypoints) X is equal to:

N (pX) = arg min
N∈X

∑

n∈N

d(n, pX), |N | = r. (1)

Given N (pI) and N (pJ ) neighbourhoods of pI and pJ
keypoints, we check how many pairs of matched keypoints

P (I,J ) can be found within these neighbourhoods. The larger
number of found keypoint pairs, the more credible (topologi-

cally) is the selected keypoint pair (pI , pJ) ∈ P . We can now

define a topological verification function t(I,J , pI , pJ) for
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a pair of keypoints (pI , pJ) ∈ P as the normalized number

(r is the neighbourhood size) of matched pairs found in the

neighbourhoods (× stands for Cartesian product):

t(I,J , pI , pJ) =
1

r

∣

∣

∣

[

N (pI)×N (pJ )
]

∩ P (I,J )
∣

∣

∣
. (2)

An illustrative example is shown in Fig. 2.

Image I

pI pJ

Image J

Fig. 2. Illustration of the topological constrains. Only three (dashed lines)
out of r = 4 neighbours are matched keypoint pairs, t(I,J , pI , pJ) =

3

4
.

The similarity function s(I,J ) between two images I
and J is defined using the topological verification function

t(I,J , pI , pJ) for all matched keypoint pairs P (I,J ) of

both images (Eq. 3). The normalization factor Pmax(I,J )
is the maximum possible number of matched keypoint pairs

generated by the matching routine, given images I and J .

s(I,J ) =
∑

(pI ,pJ )∈P (I,J )

t(I,J , pI , pJ)

Pmax(I,J )
. (3)

An important property of the proposed similarity function

is that it can detect the presence of similar fragments (even

very small ones) in images with very complex and diversified

backgrounds. The function is also computationally effective;

it requires only O(pr) operations, where p is the number of

keypoint pairs P (I,J ) and r is the size of the neighbourhood

(the costs of keypoint matching are not included into the

complexity of the function). Additionally, it is not sensitive

to a certain level of inaccuracies in keypoint matching.

Efficiency of keypoint matching is, obviously, another im-

portant aspect of the algorithm. The classic approach (e.g.

coherent pairs method, i.e. one-to-one matching) is extremely

slow and takes as much as O(fp2), where f is the length

of keypoint descriptor vectors. This makes the classic (exact)

approach not applicable to the pre–retrieval step, and we need

to search for an approximate keypoint matching approach.

There is a variety of approximate nearest neighbour algorithms

e.g. [8], [9]. We have implemented a method which has

been experimentally found time–efficient (although we did not

compare its performances against the available alternatives).

Exemplary pre–retrieval results are shown in Fig. 3.

B. Image fragment matching (step B)

The key factor in automatic visual object formation is a

reliable detection of multiple similar fragments in a collec-

tion images (without any prior knowledge about the image

(a) Query and 1-st result (b) 2-nd result (c) 3-rd result

(d) 4-th result (e) 5-th result (f) 6-th result

(g) Query and 1-st result (h) 2-nd result (i) 3-rd result

(j) 4-th result (k) 5-th result (l) 6-th result

Fig. 3. Examples of pre–retrieval based on image topology similarity function
s(I,J ). The proposed similarity function is able to detect a presence of small
similar fragments in images with very complex and diversified backgrounds.

contents). The assumption regarding the complete lack of

prior knowledge is very important, because the system has

to explore and learn unknown environments.

Let us now formalize the similar fragments detection rou-

tine. Given a set of images I = {I1, I2, ..., In} we would

like to detect all existing similarities within the set. To

make the process more efficient, for each image Ix : x ∈
{1, ..., n}, we filter out only a subset of most similar images

{I1
x, I

2
x, ..., I

m
x } : m≪n (see Section II-A). Thus, there are

nm possible image pairs to be checked. For a single pair

of images, a reliable detection of similar fragments can be

solved by a image fragment matching method. The fragment

matching method generates a set of image fragment pairs, first

element of each pair represents a fragment on the first image,

second element of the pair represents the similar fragment on

the second image. When all similar images in the database

are matched, the resulting set (union of sets from all pairs)

contains all similarities found within the database.

Image fragment matching the most important and the most

time consuming operation of the whole approach. We use two

such methods, namely: geometric and topological keypoint

matching. We will shortly present both of them, now.

MARIUSZ PARADOWSKI, ANDRZEJ LUZEK: AUTOMATIC VISUAL CLASS FORMATION USING IMAGE FRAGMENT MATCHING 99



1) The geometrical method with triangles: The objective of

geometric image fragment matching is to reconstruct a set of

affine transformations relating similar planar surfaces present

on both input images. The transformations are reconstructed

from triangle pairs built over both images using pairs of

matched keypoints. Affine transformations are decomposed

into elementary transformations (rotations, translations and

scales). A six–dimensional histogram (affine transformations

have six degrees of freedom) of all transformations is built for

a pair of images. A 2D subspace (two elementary rotations)

of an exemplary histogram for a selected pair of images is

visualized in Fig. 4. A non–parametric approach is used to find

peaks of the histogram, which represent dominant affine trans-

formations relating both images (i.e. relating similar fragments

in the images). Sets of triangle pairs which contribute to these

peaks form the outlines (convex hulls) of similar fragments

shared by both images. Further details can be found in [10],

[11].

Fig. 4. Histogram of two rotations extracted from affine transformations [11].
Two peaks are visible, they represent two similar fragments.

2) The topological method: An alternative approach is the

topological image fragment matching. Instead of recreating

exact geometrical transformations between fragments of two

images, this method focuses only on image topology. A

topological constrain is introduced which, in general, reliably

represents shape distortions of physical objects. We assume

that neighbouring keypoints have to obey this constrain to

be considered a similar fragment. Locally similar fragments

are, therefore, extracted according to the results of topological

constrain verification. The proposed topological constrain is

the matching order of vector orientations connecting keypoints

from a selected pair to the neighbouring keypoints. The

constrain for a given keypoint pair is illustrated in Fig. 5. The

topological method is more flexible than the geometric one; it

is able to detect non-planar and deformed fragments of similar

objects. However, the detection is less accurate in terms of

generated fragment outlines (also represented as convex hulls).

Further details on the topological method can be found in [7].

Image I

1

2 3

4

5

6

7

8

Image J

7

2
3

1

54

6

8

Fig. 5. Topological image matching concept. For each pair of matched
keypoints, the largest subset of orientation-ordered neighbors is found. An
exemplary subset of size 5 is shown.

3) Performances of image fragment matching: Reliable

visual object formation is possible only if image fragment

matching is performed with a high quality. In fact, any false

positive matching error is very problematic for the future

processing based on graph analysis. Such errors result in

false connections within the graph and may result in incorrect

contents of visual objects. The proposed routines are somewhat

resistant to such errors, but this resistance is rather weak. On

the other hand, false negative fragment matching errors are

much less problematic. In case of missing graph connections,

some visual objects may not be formed correctly. To solve this

problem, it is usually enough to pre–retrieve more images or to

deliver more images which would contain the corresponding

physical objects. However, both of these solutions increase the

computational costs of the method.

TABLE I
AVERAGE RECALL AND PRECISION FOR THE TEST DATASET.

Detector HarAff HarAff HarAff SURF MSER
Descriptor SIFT GLOH Mom. SURF SIFT

Method Geometrical method

Prec. (area) 0.96 0.96 0.97 0.90 0.95
Recall (area) 0.64 0.50 0.47 0.49 0.53
F-m. (area) 0.77 0.66 0.64 0.63 0.68

Prec. (obj.) 0.97 0.97 0.97 0.98 0.94
Recall (obj.) 0.81 0.71 0.70 0.61 0.68
F-m. (obj.) 0.88 0.82 0.81 0.75 0.79

Method Topological method

Prec. (area) 0.64 0.62 0.78 0.50 0.71
Recall (area) 0.79 0.74 0.64 0.70 0.63
F-m. (area) 0.71 0.67 0.70 0.59 0.67

Prec. (obj.) 0.98 0.97 0.99 0.97 0.98
Recall (obj.) 0.92 0.88 0.86 0.79 0.78
F-m. (obj.) 0.95 0.92 0.92 0.87 0.87

The achieved matching results (the geometric and topo-

logical approaches) on the processed database are shown in

Table I. Two measurement modes are used: in the first one

(object-wise) we check if the similar fragments are matched,

in the second one (area-wise) we measure how accurately

the shapes of matched fragments are outlined. The geometric

method is more precise in terms of area measurement, due to

very strict mathematical foundations. The topological method

is less precise, but it is able to find more matching fragments.
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In Fig. 6 we show two exemplary cases of similar fragment

matching using the geometric approach.

Fig. 6. Examples of image fragment matching using geometrical method

C. Automatic formation of prototypes (step C)

Image fragment matching provides us with a set of image

fragment pairs. While image fragments within a pair are

related (similar) there is not direct visual relation between

fragments belonging to different pairs (even if detected in

the same image). We need, nevertheless, to establish such

relations because some of those fragments may represent the

same physical object; the first step is to build relations between

fragments extracted within the same image.

As shown in Fig. 1 a single image Ix : x ∈ {1, ..., n}
is matched (i.e. it shares similar fragments) with a subset of

images from the database. These fragments depicts physical

objects present in the corresponding pairs of images. If we

consider physical objects located in a single image Ix, there
might be several image fragments depicting each of these

objects (they come from different matching processes against

the same fragments of image Ix). Such fragments should be

very similar in shape, size and location (they are on the same

image and approximate the same underlying physical object).

Therefore, we assume that similar fragments represent the

same physical object of image Ix and, thus, such groups of

similar fragments are called prototypes; this is an important

concept in the proposed approach. In fact, prototypes are

intermediate structures required for form visual objects.

The process of prototypes construction is a grouping prob-

lem. To extract prototypes in a single image Ix we analyse

intersections of image fragments. The larger is the relative

size of the intersection, the higher chance that both fragments

represent the same physical object. Two fragments are merged

(to form a prototype) if: (1) both have similar sizes (areas),

(2) the intersection of fragments is relatively large, i.e.

min

(

c1

c2
,
c2

c1

)

> tR,
cI

min(c1, c2)
> tI , (4)

Fig. 7. Different image fragments (convex hulls) belonging to the same
prototype. They come from matching of a single image with other images
from the collection.

where: c1 – area of the first fragment, c2 – area of the second

fragment, cI – area of fragment intersection, tR – area ratio

threshold, tT – intersection area ratio threshold.

Prototypes are formed from multiple fragments using a

graph analysis technique. Each fragment is represented by

a single graph node. Two graph nodes are connected by an

edge if the underlying fragments satisfy the above merging

criterion (Eq. 4). At least two fragments are necessary to

form a prototype. Given the graph representation, prototype

construction can be simply solved using graph connected

component search. Various fragments of the same prototype

formed in an exemplary image are given in Fig. 7.

D. Automatic formation of visual objects (step D)

Each prototype depicts (usually) a physical object located

within a single image. Our ultimate objective is, however,

to establish relations between prototypes form all database

images, i.e. to form groups of prototypes that are referred to

as visual objects.

Fortunately, the connections between images are already es-

tablished in a form of similar fragment pairs (see Section II-B

and Fig. 1). Since similar fragments are matched using a high–

precision matching process (see Table I) the generated inter–

image connections are mostly correct (this is a fundamental

requirement for the visual object formation).

Formally, the formation of visual object is another graph–

based grouping problem. We simply build a graph representing

the above–mentioned connections between images. Each pro-

totype Oy ∈ y = {1, ..., q} is represented by a single graph

node (note that prototypes are groups of image fragments from

the same image). Each image fragment is matched with a

similar fragment in another database image. Therefore, graph

edges are created between nodes (prototypes) according to

the matches between image fragments. Each prototype has

a number multiple outgoing edges, equal to the number of

similar fragments within this prototype. However, because

the precision of similar fragment matching is still below

100%, a verification mechanism has to be put in place. The

proposed verification mechanism is based on the analysis of

graph k-edge-connectivity. A graph is k-edge-connected if it

remains connected when less than k edges are deleted from

the graph. In other words, a new prototype can be added

to an existing visual object if and only if it is connected

with at least k prototypes from the visual object. Such an

approach is effective in eliminating random matching errors,

because they usually form only a single connection to another
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Fig. 8. Visual objects are formed out of many prototypes present on different
images.

Fig. 9. Exemplary image fragments (instances of prototypes) representing
visually formed objects.

prototypes. The resulting grouping algorithm is, therefore, a

k-edge-connected subgraph search routine.

Exemplary image fragments belonging to different proto-

types (but within the same visual object), found in various

images are presented in Fig. 8.

In Fig. 9 we show a subset of visual objects automatically

formed in the analysed collection of images (due to size

limitations, each object is represented just by a single image

fragment from one of the prototypes belonging to the object).

Although no semantics is used during the object formation

process, one my find that the created visual objects represent

the actual physical objects appearing in multiple images within

the database.

III. DISCUSSION

Before presenting the experimental results we would like to

discuss the applicability of the method and note its limitations.

As stated above, the key requirement for successful object

formation is very high precision of matching. Nowadays, pre-

cision near 100% may only be reached for image (fragment)

matching problem, i.e. localization of image fragments con-

taining identical objects. State-of-the-art approaches applicable

for similarity based retrieval and grouping could not be used

for the stated object formation problem, because their precision

is still too low. Thus, the proposed method applies only for

image collections depicting the same objects. Popular image

databases such as Caltech 101/256 may not be processed

by the method, because they mostly contain similar (but not

identical) underlying physical objects. For such databases

nothing would be found.

Due to the mentioned, specific requirements, we have tested

the method on a dataset containing images depicting a set

of physically identical objects. For the reference and test

purposes, the dataset may be downloaded from a web site1.

First, we will discuss this dataset, later on we will show how

to set up method’s parameters. In the last part of this section

we will summarize the achieved results.

A. The dataset and the objective of experiments

The dataset consists of 100 diversified images, captured

both indoors and outdoors, containing a variety of objects.

Most images in the database contains more than one object of

interest, appearing in different configurations with diversified

backgrounds. Camera settings and lighting conditions also

differ between images.

Some of the physical objects repeat in several database

images and thus, they are the candidates for visual objects.

We have identified a set of physical objects present on at least

three different images. These objects are: four different books,

a notepad, a leaflet, two different medicine boxes, tissue pack,

three different bottles, tea bag, two road signs, an exit sign

and a street advertising poster. There are also other physical

objects repeating only twice in the database (we consider

them irrelevant because the assumed minimum number of

prototypes in a visual object is k = 3, see Section III-B).

Our objective is to find all those repeating objects in the

database and form visual object out of them. We expect that

there will be no errors in the created objects, i.e. each visual

object may represent only one underlying physical object. If a

single physical object is represented by more than one visual

object, we consider it a problem of lesser grade, because it is

easily solvable in the proposed framework (see Section II-B3).

Of course, the more correctly formed objects (without errors

and object duplications) the better.

B. Method parameters

The proposed method has five parameters, related to (1)

image pre–retrieval, (2) prototype formation and (3) visual

object formation. All parameters, their short description and

suggested values are listed in Table II.

The parameter m defines the size of the subset of most

similar pre–retrieved images. The larger value of the parame-

ter, the higher chance to capture important visual connections

1Image fragment matching dataset: http://www.ii.pwr.wroc.pl/∼visible
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TABLE II
DEFAULT VALUES OF THE METHOD’S MAIN PARAMETERS.

Param. Meaning Value

m Number of pre–retrieved images (% of n) 0.25n
r Size of topological neighbourhood 60

tA Minimum ratio of image fragments area size 0.75
tI Minimum ratio of image fragments intersection size 0.75

k Visual objects graph edge connectivity 3

between images from the database. However, larger values

of the parameter significantly slows down the method. The

maximum value of this parameter is n; this represents a

disabled pre–retrieval, i.e. all image pairs are matched. The

parameter r defines the size of the topological neighbourhood

(see Eq. 2). To choose the proper value of the parameter, we

need to consider two issues. The topological neighbourhood

has to be large enough to be informative and it has to be small

enough due to memory requirements (to speed up the method

all neighbourhoods are pre–computed off–line).

Another two parameters are related to prototypes. They are

used in the image fragment merging routine. As mentioned

in Section II-C, merging should happen only if two image

fragments (they are on the same image) represent the same

physical object. Both parameter values tA and tI have been

experimentally set to 0.75.
The last parameter is related to the visual object formation.

To eliminate potential error matches, we want each prototype

to be linked to at least k other prototypes (i.e. each prototype

should contain at least k image fragments). In the presented

approach, we have assumed k = 3, which is the minimum

possible value. Due to high precision of image fragment

matching, it is fully sufficient. However, if matching errors are

more frequent (lower precision of image fragment matching)

especially on larger databases, one should consider a larger

value of the parameter. As a result, it would be more difficult

to form visual objects but they would be more credible.

C. Discussion on created visual objects

The minimum requirement to form a visual object is having

a physical object correctly matched on at least three different

images (k = 3, see Section III-B). The quality of matching

(i.e. precision of matched area) is in fact the most important

element of successful object formation. To measure how

well the visual objects are formed, we use the ground truth

information as discussed in Section III-A. In fact, we want to

capture as much of underlying physical objects as possible.

Given the processed database and the proposed parameter

set up, there are no errors in the generated visual objects,

i.e. each formed visual object represents only one physical

object. In some cases, a physical object is represented by

more than one visual object, but such objects are merged

together when more data is provided (the pre-retrieval size

is increased). Also, larger amount of matching data leads

to larger number of formed objects. Given the pre–retrieval

mechanism, we can easily set up how many images will be

given to image fragment matching and subsequently how many

similar fragments may be found. Comparison of results for

different pre–retrieval scenarios are given in Tab. III. We note

that not all objects have been found (see Section III-A), non–

planar ones were the most problematic. Low number of pre–

retrieved images causes only a few objects to be created. The

more pre–retrieved images, the more formed objects and the

quality increases, but the computational cost also increases.

TABLE III
AUTOMATICALLY FORMED OBJECTS VERSUS GROUND TRUTH OBJECTS.
”+” REPRESENTS A CORRECTLY FORMED OBJECT, ”–” REPRESENTS A

MISSING OBJECT, ”±” MEANS THAT MORE THAN ONE VISUAL OBJECT

HAVE BEEN FORMED FOR THE UNDERLYING GROUND TRUTH OBJECT.

Ground truth Pre–retrieval size (m) [% of n]
defined object 3 4 5 10 15 20 50 100

Geometrical fragment matching

Book 1 ± ± + + + + + +
Book 2 – + + + + + + +
Book 3 + + + + + + + +
Book 4 + + + + + + + +
Bottle – – – – + + + +
Box – – – ± ± + + +
Exit sign – + + + + + + +
Leaflet + + + + + + + +
Medicine 1 ± + + + + + + +
Medicine 2 + + + + + + + +
Road poster + + + + + + + +
Road sign 1 + + + + + + + +
Road sign 2 – – – – + + + +
Tea bag + + + + + + + +
Tissues – – – + + + + +

Topological fragment matching

Book 1 – ± ± + + + + +
Book 2 + + + + + + + +
Book 3 + + + + + + + +
Book 4 – + + + + + + +
Bottle + + + + + + + +
Box – – – + + + + +
Exit sign – – – – – – – –
Leaflet – + + + + + + +
Medicine 1 – – – + + + + +
Medicine 2 – – – – – – – –
Road poster + + + + + + + +
Road sign 1 – – – – – – – –
Road sign 2 – – – – – – – –
Tea bag – – – – – – – –
Tissues – – – – – – – –

Having the geometrical method employed for the matching

task, we may expect very high area precision (see Tab. I). The

number of pixel–level false positive errors in generated image

fragments is minimal. But there is also a cost, non–planar ob-

jects will be only partially captured and they will most proba-

bly not constitute correct prototypes. The topological fragment

matching overcomes the problem of non–planar objects, but

has much lower precision in terms of matched area. Statistics

demonstrating the ability to recreate meaningful objects are

shown in Tab. III. Due to high precision the geometrical

method is a more suitable candidate for object formation than

the topological one. The main problem with the topological

approach is much smaller number of prototypes successfully

used in object formation. Large differences in image fragments

(the main criterion for successful prototype formation) prevent

capturing identical parts on the same image. Even though the
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number of matched fragments (mostly correct) is higher for

the topological method, the overall number of formed objects

is lower. Statistics for the numbers of created prototypes and

visual objects are given in Tab. IV.

m Matched Formed Prototypes Formed True
[%] fragments prototypes in objects objects objects

Geometrical fragment matching

3 203 106 39 11 9
4 291 131 64 12 11
5 357 138 72 11 11
10 589 162 95 14 13
15 709 174 105 16 15

20 778 176 102 15 15

50 951 188 108 15 15
100 1063 196 108 15 15

Topological fragment matching

3 218 114 13 4 4
4 307 155 33 8 7
5 378 186 45 8 7
10 617 244 63 9 9
15 752 290 67 9 9
20 840 307 72 9 9
50 1059 348 80 9 9
100 1211 382 80 9 9

TABLE IV
CREATED PROTOTYPES AND VISUAL OBJECTS FOR VARIOUS SETTINGS OF

PRE-RETRIEVAL (m).

An interesting case is present for geometrical matching,

m = 15 and m = 20. The number of prototypes successfully

used in object formation is in fact decreasing. Surprisingly,

this is a correct behaviour. Some image fragments, which

should create a single prototype, were not merged together

for m = 15. Instead, multiple different prototypes are created.

If the number of pre–retrieved images is increased to m = 20,
missing links between these prototypes are found. Image

fragments are properly merged and a single prototype is

formed. Thus, we can also see a decrease (by 1) of the number

of visual objects. In fact, similar behaviour happens quite often

(see ”±” in Tab. III), but in this case it is well captured.

We may also observe a much lower number of formed visual

objects for the topological fragment matching. It is related

to the already mentioned problem of lower area precision.

Decreasing the values area related merging thresholds (tA
and tI ) results in creating of false objects and thus is not

an acceptable approach. This confirms one of the initial

statements, that successful visual object formation requires

image fragment matching working with very high precision.

Apart of the listed features of the proposed method, there

are also weak points. In some cases one detected prototype

is a part of another prototype. Prototype formation criterion

based on fixed merging thresholds (tA and tI ) can not capture

it correctly. Such prototypes (and later on visual objects) will

not be joined, even though they represent the same underlying

physical object (or a part of it). Therefore, we should consider

building a hierarchy of prototypes and visual objects, instead

of a plain structure.

IV. SUMMARY

A method for automatic formation of visual objects has

been presented. The method is able to find meaningful image

fragments from an unlabelled set of images. Visual objects are

formed out of repeating, similar image fragments within the

dataset. The proposed method employs image fragment match-

ing techniques to extract such similar fragments of images.

Two matching techniques are used, namely: the geometric and

the topological ones. Apart from the visual object formation

solution, we have also presented a novel image pre–retrieval

method that effectively identifies images prospectively con-

taining similar fragments. The method uses a topology–based

similarity function. It is an important component of the system,

because it significantly shortens the matching process.

The proposed solution creates a set of visual objects,

without any kind of structure or hierarchy. This might be

its weak point, because some similar fragments may indeed

be structured (e.g. one object represents a visual fragment of

another object). Our further research will focus on building

such a hierarchy of visual objects.
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