
High Capacity Colored Two Dimensional Codes

Antonio Grillo∗, Alessandro Lentini∗, Marco Querini ∗ and Giuseppe F. Italiano∗
∗Department of Computer Science, Systems and Production

University of ”Tor Vergata”

Via del Politecnico 1, 00133 Rome Italy

Email: grillo;lentini;italiano@disp.uniroma2.it

Abstract—Barcodes enable automated work processes without
human intervention, and are widely deployed because they are
fast and accurate, eliminate many errors and often save time and
money. In order to increase the data capacity of barcodes, two
dimensional (2D) code were developed; the main challenges of
2D codes lie in their need to store more information and more
character types without compromising their practical efficiency.
This paper proposes the High Capacity Colored Two Dimensional
(HCC2D) code, a new 2D code which aims at increasing the
space available for data, while preserving the strong reliability
and robustness properties of QR. The use of colored modules
in HCC2D poses some new and non-trivial computer vision
challenges. We developed a prototype of HCC2D, which realizes
the entire Print&Scan process. The performance of HCC2D was
evaluated considering different operating scenarios and data
densities. HCC2D was compared to other barcodes, such as
QR and Microsoft’s HCCB; the experiment results showed that
HCC2D codes obtain data densities close to HCCB and strong
robustness similar to QR.

I. INTRODUCTION

Barcodes have become widely popular because of their

reading speed, accuracy, and functional characteristics. As

barcodes became popular and their convenience universally

recognized, the market began to call for codes capable of

storing more information, more character types, and that

could be printed in smaller space. As a result, various efforts

were made to increase the amount of information stored in

barcodes, such as increasing the number of barcode digits or

laying out multiple barcodes. However, these improvements

have some negative effects, such as enlarged barcode areas,

complicated reading operations, and increased printing costs.

Barcodes may be referred to as linear or one-dimensional (1D)

codes. However, barcodes are available also in patterns of

square, dots, hexagons and other geometric patterns within the

image; such a kind of barcodes are referred to as matrix or

bidimensional (2D) codes. Although 2D systems use symbols

other than bars, they are generally referred to as barcodes

as well. In order to increase the available data space, 2D

codes introduce the capability of storing information in two

directions. 2D codes contains information in both the vertical

and horizontal dimensions, whereas 1D codes contains data in

one dimension only. Figure 1 shows examples of 2D (a) e 1D

(b) codes.

Available 2D codes solutions span from repeating a single

1D code over multiple rows to exploiting bidimensional shapes

to represents data. Figure 2 illustrates the evolution of barcode

technology. In particular, Figure 2 (a) shows the multiple

Fig. 1. Dimension for storing data in 2D (a) e 1D (b) codes

Fig. 2. Evolution of barcodes: multiple barcode layout(a), stacked barcode
layout (b) and matrix barcode layout (c)

barcode layout: the main disadvantage related to this simple

2D layout is the need of multiple scans in order to get all the

information contained in the barcode. Figure 2 (b) illustrates

the stacked barcode layout: in this case one single scan is

enough to obtain the stored information but the scanning

equipment must be carefully aligned with the code orientation.

Finally, in Figure 2 (c), the matrix barcode layout is presented:

this layout enables to acquire information with one single scan

and does not require the accurate alignment of the scanning

equipment.

There are more than 20 types of conventional 2D codes.

Figure 3 illustrates some examples of 2D codes; the main

difference among the presented codes is in terms of the amount

of data which can be stored in a single code. For example,

Quick Response (QR)1 code is able to store more than 7,000

decimal digits, while Maxi Code is able to store only 138

decimal digits. QR Code is a type of 2D codes developed

by Denso Wave, a division of Denso Corporation at the time,

and released in 1994 with the primary aim of being easily

interpreted by scanner equipment.

The capability of storing more data in the same space taken

by a classical two dimensional code represents one of the main

challenges of the next generation barcodes. In order to increase

1QR Code is registered trademarks of Denso Wave Incorporated in Japan
and other countries.

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 709–716

ISBN 978-83-60810-27-9

ISSN 1896-7094

978-83-60810-27-9/09/$25.00 c© 2010 IEEE 709



Fig. 3. Characteristics of some types of 2D codes

Fig. 4. An example of the Microsoft High Capacity Color Barcode (HCCB)
(Viewed better in color)

data capacity, some 2D barcodes use colors to create more

symbols, resulting in larger data capacity within the same size.

Examples of such barcodes are the Color Bar Code System

of Imageid Ltd [1] and the more widely diffused Microsoft’s

High Capacity Color Barcode (HCCB) [2], [3], [4]. While

HCCB may be used for a variety of applications, its most

immediate application is for marking univoquely commercial

medias such as motion pictures, video games, broadcasts,

digital video recordings, etc... We now describe briefly the

main features of HCCB (see Figure 4). It consists of rows of

strings of symbols (triangles) of four different colors: black,

red, green and yellow, and consecutive rows are separated by

a white line. While the number of rows in a HCCB code

may vary, the number of modules in each row is always a

multiple of the number of rows. A module represents the basic

entity for storing information in a 2D code. HCCB has a black

boundary around it, further surrounded by a thick white band.

These patterns are designed to act as visual landmarks in order

to locate the barcode in an image. The black boundary at

the bottom of HCCB is thicker than the boundaries on the

other three sides: the bottom boundary acts as an orientation

landmark, as barcodes may be at an arbitrary orientation in

the image. The last 8 symbols on the last row are always in

the fixed order of black, red, green and yellow (2 symbols per

color) and can be used as a color palette during the scan. The

main limitation of the HCCB code is related to the fragility of

the detection and alignment mechanisms. Indeed, the detection

process works as follows: it starts from a point which is

supposed to be at the interior of the code and proceeds on

squares of larger sizes until it recognizes the white border

around the code; after the white border has been located, it

starts the alignment process by looking for the thick bottom

boundary. The fragility of the detection process derives from

the fact that not all the images inside a white border are

necessarily codes (thus giving rise to delayed failures, which

will be explained later), while the weakness of the alignment

process derives from the facts that different slopes in the scan

phase might result in failures to properly recognize the thick

bottom boundary [5].

The increased data density obtained with the usage of colors

comes at an additional cost. Today a Print&Scan process

is commonly used for image reproduction and distribution.

Indeed, often images are converted between printed and digital

formats. A rescanned image may look similar to the original,

but it may have been distorted during the process. Indeed,

reading 2D color codes poses significant computer vision

challenges [5], [6], [7]. This is due to several factors, and we

cite only few of them in the following. First, the color balance

may be drastically different in different code readers. Second,

the images containing codes may be taken by unexperienced

users, and thus the location of the barcode in the image,

its orientation, its slope, etc. can be mostly unconstrained.

Furthermore, possible transformations in the prospective can

distort the geometry of the barcode. Last but not least, the

light conditions under which the images are taken can vary

dramatically.

Not all the scenarios where black and white 2D codes

are currently exploited may benefit from the introduction of

colors; in many scenarios 2D codes have to be copied or

transmitted through fax, and fast color printers and color fax

machines are not yet widely diffused in today’s offices. On

the other hand, the availability of new low cost hardware

may solve some of the problems that arise in the Print&Scan

process. Since in many cases the Print operation is executed

once while the Scan operation is likely to be repeated many

times, we can consider that replacing ad-hoc hardware for

scanning 2D codes by inexpensive mobile phones equipped

with a megapixel camera may dramatically boost the adoption

of colored 2D codes.

The contribution of this work is a new 2D code technology,

named HCC2D (High Capacity Colored Two Dimensional),

which use colors to increase the code data density. The intro-

duction and recognition of colored modules in HCC2D poses

some new and non-trivial computer vision challenges, such

as handling the color distortions introduce by the hardware

equipment that realizes the Print&Scan process. The HCC2D

codes presented in this paper are able to support different

types and sizes of data input, and adapt smoothly the code

dimension to the actual input size. In order to support all

those scenarios in which the Print&Scan process imposes

the usage of only two colors (i.e., Black&White) HCC2D

710 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010



considers Black&White codes as codes with exactly two

colors. In particular, HCC2D has been designed so as to be

fully compatible with the standard QR code, which is currently

the most widespread 2D code technology (a standard QR code

represents the simplest case of our 2D colored code). The main

advantage of HCC2D over QR is that HCC2D is able to store

substantially more data than QR, while preserving the strong

reliability and robustness properties of QR.
We developed a prototype of HCC2D, which realizes the

entire Print&Scan process, tested this prototype in many

experiments considering different operating scenarios and data

densities, and compared it to QR and HCCB. In our experi-

ments, HCC2D codes obtained data densities close to HCCB

and strong robustness similar to QR. In particular, HCC2D

resulted to be very robust, and capable of resisting to dirt,

damage and distortion, and introduced little computational

overheads compared to QR.

II. STANDARD QR CODE

Standard QR codes as well as other black and white 2D

codes store data using a graphical representation; the core of

this representation is based on the arrangement of multiple

simple geometric shapes over a fixed space. A generic 2D

code is required to perform efficiently at least the following

three functions:

• the position detection function is critical; elements that

serve as position detection function give to the acquisition

process the capability of identifying the presence of a 2D

Code in the acquired image;

• the alignment function is required to synchronize the

Scan process on the right position of a 2D code. This

function exploits some alignment patterns placed by the

Print process in a well known position. Hence, the Scan

process focuses on retrieving these well known patterns

in order to position correctly the 2D code.

• the data function is required to encode the input data in a

specific graphical representation. Some additional goals

may be reached by the data function; error correction

and data masking are examples of these functions for

strengthening the 2D code.

In particular standard QR codes adopt an arrangement of

black and white squares of different sizes for all the required

functions. In the following, some of the features provided by

QR codes will be discussed.
A. High Capacity Encoding of Data

While conventional 1D codes store up to 20 decimal digits,

QR Code is able to store from several dozen to several hundred

times more information. QR Code can handle a large variety of

data, such as binary, numeric and alphabetic characters, Kanji,

Kana and Hiragana (Japanese) symbols, and control codes. If

the input is represented by decimal digits, one code can encode

up to 7,089 decimal digits (see Figure 3).
B. Small Printout Size

Since QR code carries information both horizontally and

vertically, it is capable of encoding the same amount of data

in approximately one-tenth the space of a traditional 1D code.

C. Dirt, Damage and Distortion Resistant

QR code has error correction capability. Data can be re-

stored even if the symbol is partially dirty and damaged (see

Figure 5). A maximum of 30% of the codewords can be

restored. A codeword is a unit that constructs the data area. In

the case of QR code, one codeword is equal to 8 bits. Thanks

to its alignment function, QR Code is resistant to distorted

acquisitions.

Fig. 5. Samples of QR Code dirty (a), damaged (b), distorted (c), and
rotated(d).

D. Readable from any direction in 360 degrees

QR code is capable of 360 degrees (omni-directional)

reading. This task is accomplished through position detection

patterns located at the three corners of the symbol. These po-

sition detection patterns guarantee stable high-speed reading,

circumventing the negative effects of background interference.

E. Structured Append Feature

If a single QR code is too large for the print space available,

a splitting function may be applied to obtain smaller QR codes

containing the same data. One data symbol can be divided into

up to 16 codes, which can be printed in smaller areas (see

Figure 6).

Fig. 6. Single QR Code splitted in four smaller QR Code

F. Standardization Process

QR codes have become widely used for two reasons: QR

code specifications are clearly defined and made public and

the QR codes can be freely usable. QR code is open in the

sense that the specification of QR code is disclosed and that

the patent right owned by Denso Wave is not exercised.

III. HIGH CAPACITY COLORED QR CODE

The main goals of our HCC2D code are to increase the

space available for data and to preserve strong robustness and

error correction properties similar to the original QR standard.

HCC2D increases the storage space by generating each module

ANTONIO GRILLO, ALESSANDRO LENTINI, MARCO QUERINI, GIUSEPPE F. ITALIANO: HIGH CAPACITY COLORED TWO DIMENSIONAL CODES 711



of the data area with a color selected from a color palette.

Figure 7 illustrates samples of HCC2D with 4 colors HCC2D

(Figure 7 (a)) and 16 colors (Figure 7 (b)).

Fig. 7. Samples of the High Capacity Colored Two Dimensional Code
(HCC2D) version 5 and error correction level H: 4 colors (a) and 16 colors
(b) (Viewed better in color).

In the standard QR code each module represents a single

bit following a simple rule: black squares store 1 and white

squares store 0. To ensure robustness, we have designed

similar mechanisms to those available in the standard QR

code; in particular, we have applied the Reed Solomon error

correction codes for correcting code modules that represent

more than one single bit. This way, HCC2D defines a superset

of the standard QR code set, and thus it is able to maintain

fully compatibility with QR.

Fig. 8. Structure of a generic QR Code

A standard QR Code can be represented as shown in

Figure 8; the structure is composed of some elements that

perform the various functions. The available space in each

symbol may serve as Function Patterns or as Encoding Region.

The Position Detection Patterns, the Alignment Patterns, the

Timing Patterns, and the Separators for Position Detection

Patterns support the Scan process in detecting the presence,

the right orientation and the correct slope of a QR code

into an image. The Format Information describes the error

correction level used in the code; it is possible to use four

different error correction levels in the HCC2D code: the lower

level (i.e., Level L) is able to correct about 7% of the data,

the Level M restores about 15% of the data, the Level Q

is able to fix about 25% of the data, and the higher level

(i.e., Level H) corrects approximately 30% of the data. The

Version Information contains the real size of the code; it is

possible to generate QR codes starting from Version 1 (i.e.,

21x21 modules) to Version 40 (i.e., 177x177 modules). Finally

the Data and Error Correction Codewords contains input and

error correction data.

We designed the HCC2D code preserving all the Function

Patterns, the Format Information and the Version Information

defined in the standard QR code. Saving the structure and

position of such critical information allows HCC2D code to

preserve compatibility with the standard QR code. Further-

more, the space required by all this information is small, so

we did not reduce this space to increase the data density. Any

modification to such information may led to failures in the

recognition process. The most important changes are gathered

in the Data and Error Correction Codewords area. The most

noticeable difference with a standard QR code is that the

modules may be of different colors; in a code with a palette

composed by at least 4 colors each module is able to store

more than one bit. Introducing colors in the data and error

correction area requires to address some issues, which will be

analyzed next.

A. HCC2D Code Tables

The HCC2D Code Tables contain some information such

as the total codewords count, the symbol version, the error

correction level, the Reed-Solomon block type, etc. The aim

of these tables is to support users in selecting the best code

once the size and kind of the input data and the desired error

correction level are known. In order to define the table it is

possible to refer to those published in the ISO/IEC 18004

document that contains the definition of the standard QR

code. The Bits per Module (BpM) can be defined as the

number of bits that a single module is able to store:

BpM = log
2
(number of colors)

The more colors available, the more data can be stored into

the code. In Figure 9 the data capacity for the smaller versions

of QR Code are detailed.

Fig. 9. Data capacity for smaller version of standard QR Code

When considering values for BpM greater than one, values

contained in the Data Capacity column vary. In particular,

since each module is able to store exactly BpM bits each value

712 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010



has to be multiplied by the BpM value as shown in Figure 10.

The Remainder Bits are bits used to fill empty positions of

the symbol encoding region after the final symbol character

in the standard QR codes. They follow the same simple rules:

the new value of Remainder Bits is obtained by multiplying

the old value by the BpM value.

Fig. 10. New values for data capacity for smaller version of HCC2D codes

Figure 11 illustrates the effective data capacity for version

1 and version 2 of QR and HCC2D when considering the use

of a specific error correction level. The new effective capacity

is obtained by multiplying the old values by the BpM value.

Starting from these values and choosing the data type that will

be encoded in the HCC2D code we can compute the real code

capacity.

Fig. 11. Error Correction Level for version 1 and version 2 of standard QR
codes and HCC2D codes

Figure 12 illustrates the situation for version 5 of HCC2D

with the highest error correction level (i.e., level H). The

Character Count Indicator value gives the number of elements

of a specific data type that are encoded in the code. Conversely,

the Mode Parameter expresses the specific data type contained

in the code. Since the main goal of HCC2D is to increase the

number of elements that can be encoded in a single symbol,

it is important to verify if this value fits in the space reserved

by the standard.

Note that QR code version from 1 (i.e., 21x21 modules)

to 9 (i.e., 53x53 modules) in alphanumeric mode reserves 9

bits for the Character Count Indicator, thus allowing for at

most 511 (i.e., 29 − 1) characters. However, with the increase

of data density, HCC2D codes may contain more than 511

Fig. 12. Comparison between standard QR code and HCC2D code consid-
ering version 5 and error correction level H

Fig. 13. Number of bits reserved for the Character Count Indicator for the
various standard QR Code version

elements, and thus 9 bits are no longer sufficient. Hence, the

space reserved for the Character Count Indicator in a HCC2D

code is defined according the following rules:

• 16 bit are reserved in the 8-bit Byte mode, regardless of

the HCC2D Code version;

• for the remaining modes, a simple rule that combine the

old Character Count Indicator length, Lengthold, and

the bit per module, BpM value is applied:

– Lengthold + (BpM/2) if the number of bits per module
is even

– Lengthold + ((BpM + 1)/2) if the number of bits per
module is odd

Those rules are valid if and only if the color palette is

composed by at least four colors; otherwise, the space for

the Character Count Indicator can be defined as in QR codes

(see Figure 13).

B. The Color Palette

If the Encoding Region is composed of colored modules,

the Scan process needs to know the complete color palette in

order to decode the symbol. In the standard QR code during

the Scan process only the brightness information is taken in

account. A simple solution is to consider the color palette

as an a priori shared knowledge between the Print and the

Scan processes; in such a scenario handling the distortions

introduced by the specific hardware (e.g., scanner, camera, ...)

represents a critical issue. Hence, in the HCC2D code we have

introduced an additional field (i.e., the color palette) to ensure

that the Scan process is able to know how many and which

colors are used in the scanned code. Encoding the color palette

directly in the HCC2D code helps in reducing failures in the

ANTONIO GRILLO, ALESSANDRO LENTINI, MARCO QUERINI, GIUSEPPE F. ITALIANO: HIGH CAPACITY COLORED TWO DIMENSIONAL CODES 713



acquisition process due to the color distortions related to the

specific hardware.

In image processing, it is important to define some quick

failure criteria that avoid unnecessary computations if the Scan

process delays a successful recognition. Forcing the start of a

new Scan process instead of trying to recognize low quality

images can reduce the delayed failure. Sorting the colors that

compose the color palette according to the brightness value

may represent a simple criterion to overcome the delayed

failure problem. The Scan process starts recognizing only the

color palette, if colors in the palette are not sorted as expected

the process terminate with a quick failure, otherwise the Scan

process can continue.

Furthermore, if the color palette is replicated around the

bidimensional code, the quick failure rate can be further

reduced. Each color palette that does not respect the expected

color sorting should be discarded. If a minimum number of

color palettes is successfully recognized, the Scan process can

build the color palette for decoding the code by computing the

average of the valid color palettes. In HCC2D the repeated

color palettes are placed on the right side of the code; this

single line will be adjacent to the Encoding Region for

preserving compatibility. Considering version 1 of HCC2D

code we introduce an overhead of about 4,76 %, i.e., one line

of 21 modules over 441 modules. The overhead is reduced

to 0,56% for version 40, i.e., one line of 177 modules over

31329 modules.

Analyzing the color palette extra field in the HCC2D code,

the Scan process is able to build a model for evaluating each

module in the Encoding Region. In the standard QR code the

problem of distinguishing between light and dark modules

is addressed by handling only the brightness information;

exploiting the Quiet Zone to calibrate the Scan process, an

appropriate threshold is chosen. In HCC2D a more complex

similarity function is needed for handling colored modules.

Since colors in computer graphics are usually represented

as vectors in multidimensional space (e.g., the Red Green

Blue model, the Cyan Yellow Magenta Key model, the Hue

Saturation Lightness model, etc.), we solve the identification

problem by using Euclidean distances between such vectors.

In particular, modules in the encoding region are considered

as vectors according to the specific color model used by the

scanning equipment; the color recognized is given by the color

in the palette which minimizes the vector distance.

C. Data Masking

The main purpose of data masking in the standard QR code

is to reach an appropriate balance between dark and light areas

and to avoid that patterns similar to those used for Position

Detection, Alignment and Timing appear in the Encoding

Region. The HCC2D needs a similar function for preserving

the Scan process in recognizing the Function Patterns and

increasing the code robustness. The standard QR code defines

eight different masks; each mask is generated according to

a simple rule that mimics the Function Patterns. The Print

process has to select the mask that obtains the best score

according to a scoring rule that is based on some bitwise

XOR operations. Switching the brightness of some modules

(i.e., light modules become dark modules and vice versa) is

the result of data masking.

Fig. 14. Sample application of data masking in standard QR code and
HCC2D code

Since HCC2D increases the number of bits per module

(BpM), the standard scoring rules are no longer useful and

we need to define new bitwise operations that are able to

handle more than one bit per module. As far as the mask

selection step is concerned, the HCC2D code is considered

as a binary matrix composed simply of dark (i.e., the darkest

colors) and light (i.e., the lightest colors) modules; the score

for each mask is computed as in the standard QR code without

taking in account the chromatic information of modules which

is disjoint by the brightness information. Once the best mask

is identified, each bit of the mask has to be used for switching

the color of the module in the Encoding Region. For each

module a bitwise operation between the bit in the mask and

each bit that is stored in the module has to be performed.

Figure14 shows an example of how the data masking process

works for a 3x3 modules grid with 4 colors, considering both

the standard QR code and the HCC2D code.

To preserve the balance between dark and light areas, we

need to properly organize the palette. The colors are sorted

in descending order according to the brightness information,

the lighter colors first and the darker colors last; the color

palette is then splitted in two halves and the second part is

sorted in reverse order. As shown in Figure 15, this simple

reorganization of colors in the palette results in increasing the

minimum brightness distance between switched colors from

10% up to 35%.

IV. EXPERIMENTAL RESULTS

We developed a prototype that implements the Print&Scan

process for HCC2D codes. In particular, we implemented

two different applications, the encoder and the decoder, for

generating and acquiring HCC2D codes. The HCC2D code

encoder was realized with the help of libqrencode [8], a

C library for encoding data in standard QR code symbols,

while the decoder was built with the help of zxing [9],

an opensource Java project for improving the processing

of 1D/2D barcodes. In our implementation, the decoder is

714 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010



Fig. 15. Color palette organization for data masking

able to recognize standard QR codes as well; some of the

operations executed in the acquisition process are preserved:

recognizing the position detection pattern, recognizing and

exploiting the alignment patterns, and reading the version

and format information. After all these operations have been

carried out, the decoder tries to detect the color palette. If

the color palette is succesfully detected, the decoder tries

to process a HCC2D code. Otherwise, it tries to decode a

standard QR code. The image processing phase ends by

returning a matrix representation of the scanned code; in the

standard QR code a bitmatrix is sufficient to represent the

modules whose brightness is greater (i.e., bit 0) or lower

(i.e., bit 1) than the threshold value determined by analyzing

the Quiet Zone. In HCC2D a bitmatrix is not adequate to

represent the chromatic information of the modules. The

acquisition process ends with a matrix of vectors that describe

the scanned modules according to the color model used by

the scanning equipment. In the HCC2D code design data are

unmasked using the brightness information only; each scanned

module is represented as a vector in the color model: a color

distance rule is applied, the most similar (i.e., the closest)

color in the palette is found and the associated bitstream is

updated. Once the complete bitstream is reconstructed, the

Reed-Solomon correction may be executed and the decoding

process can retrieve the original input.

We now turn to the experimental results. We executed

some performance tests using our prototype. We aimed at

measuring the increase of the space available for data and

the time computational overhead introduced by the use of

colors, and thus we measured the time needed to convert

all modules in a binary representation according to the color

palette considered. Finally we reproduced the Print&Scan

process for different code versions and different print qualities

using widely diffused and low-cost print and scan equipment.

The first issue we address is the increase of data density,

and a general comparison is illustrated in Table I. Like most

2D codes, the QR Code data-density depends on several

factors. The module size depends heavily on the printing and

scanning resolutions. Microsoft offers its HCCB in black and

TABLE I
DENSITY OF BARCODE SYMBOLOGIES AT 600 DPI. THE DATA FOR HCCB

IS TAKEN FROM [2]

Barcode Type Data Density [KB in square inch]
QR Code 0.627

HCCB 2.0
HCC2D 1.881

TABLE II
RESULTS OF THE SCAN PROCESS TIME IN MSEC FOR QR AND HCC2D

Version QR HCC2D 4 color HCC2D 16 color
1L 122 132 (7.57%) 135 (9.62%)
1M 123 136 (9.55%) 138 (10.87%)
1Q 129 133 (3.01%) 135 (4.45%)
1H 131 135 (2.97%) 136 (3.68%)
5L 143 171 (16.38%) 206 (30.59%)
5M 151 174 (13.21%) 208 (27.40%)
5Q 163 181 (9.95%) 208 (21.63%)
5H 161 182 (11.54%) 209 (22.97%)
10L 176 209 (15.79%) 246 (28.45%)
10M 188 208 (9.61%) 249 (24.49%)
10Q 189 210 (10.0%) 273 (30.77%)
10H 190 212 (10.37%) 282 (32.62%)
20L 240 349 (31.23%) 387 (37.98%)
20M 253 334 (24.25%) 398 (36.43%)
20Q 250 337 (25.81%) 389 (35.73%)
20H 257 323 (20.43%) 395 (34.93%)
30L 333 447 (25.50%) 474 (29.75%)
30M 350 430 (18.60%) 460 (23.91%)
30Q 347 437 (20.59%) 478 (27.40%)
30H 338 416 (18.75%) 506 (33.20%)
40L 430 483 (10.97%) 550 (21.81%)
40M 415 481 (13.72%) 540 (23.15%)
40Q 420 500 (16.0%) 566 (25.79%)
40H 373 485 (23.09%) 552 (32.42%)

white, with four and eight different colors. Currently Microsoft

laboratory tests have yielded using eight colors, 16,000 bits

per square inch in its highest density form using a 600dpi

business card scanner (cfr. [2]). Conversely, if a standard QR

code symbol is printed with a resolution of 600 dpi, 4-dot

printer, the module size is 0.17mm and will therefore require

a scanner resolution of less than 0.17 mm (cfr. [10]). Using

Version 19 of the standard QR code and the M correction

level (i.e. about 15%) it is possibile to store 5,016 bits per

square inch. Introducing a color palette composed of 8 colors,

a HCC2D code of Version 19 and with the M correction

level, is able to store 15,048 bits per square inch. HCC2D

data density is slightly lower than Microsoft’s HCCB data

density but while our solution preserves similar robustness in

detection, alignment, and error correction of the standard QR

code HCCB has no patterns that strongly support the detection

and alignment process. Our solution increases the data density

of standard QR code by a factor proportional to the BpM as

mentioned in Section III-A and reaches a similar capacity to

Microsoft HCCB.

Afterwards, we address the computational overhead for

processing HCC2D codes by comparing the average time

taken by the scan process. As far as standard QR codes are

concerned, the time required for the automatic recognition

of a code may be considered as a measure for the Scan

ANTONIO GRILLO, ALESSANDRO LENTINI, MARCO QUERINI, GIUSEPPE F. ITALIANO: HIGH CAPACITY COLORED TWO DIMENSIONAL CODES 715



process. Selection of a proper binarization method is critical to

the performance of barcode recognition system. Binarization

of gray scale images is the first and important step to be

carried out in pre-processing system. In binarizing an im-

age, a simple and popular method is thresholding. Sahoo et

al. [11] concluded that, among more than 20 thresholding

methods, the Otsus method [12] which chooses the threshold

that minimizes within-group variance, gives better results. A

goal-directed performance evaluation of eleven popular locally

adaptive thresholding algorithms were performed in [13] for

map images. The experimental results indicated that Niblacks

method with postprocessing step appears to be the best. Since

our solution preserves the binarization for recognizing position

detection and alignment patterns, the results mentioned in [11],

[12], [13] are still valid.

In Table II we report results of an experiment focused on

the recognition of more than 100 barcode images. To measure

the overhead introduced by colors, times were taken after the

alignment and detection phase. The experiment was run on

a machine equipped with a Linux Slackware 13.0 operating

system running on 1.73 GHz Intel dual core with 1 GB of

RAM. The results report the average time in milliseconds for

QR codes, HCC2D with 4 colors and HCC2D with 16 colors,

and the overhead (in parenthesis, percentual values) introduced

by HCC2D over QR. Our experiments show that, although the

overhead introduced by HCC2D over QR tends to increase,

as expected, with the number of colors and the code size,

it seems to remain always within reasonable values (ranging

from a minimum of about 3% for HCC2D version 1H with 4

colors to a maximum of about 38% for HCC2D version 20L

with 16 colors). In particular, the average overhead introduced

by HCC2D with 4 colors is about 15%, while the average

overhead introduced by HCC2D with 16 colors is about 25%.

The dependendence of the overhead on the error correction

levels appears to be more complicated: in HCC2D with 4

colors the overhead (for the same code size) tends to decrease

with the error correction levels for all versions except for

version 40, while our experiments did not show a very strong

correlation between the overhead of HCC2D with 16 colors

and the error correction levels. In any case, the slowdown

implied by the use of higher levels of error correction appears

always limited (within about 5% of the total time).

Finally, in order to evaluate the usability of HCC2D code

in a real setting, we realized a common Print&Scan scenario

using a widespread inkjet multifunction equipment with print

and scan capabilities. The equipment is able to print and to

scan at different resolutions; in the test scenario we decide to

fix the scan resolution while varying the print resolution. We

have considered four different print resolutions: Draft Mode

(i.e., 180 dpi), Text Mode (i.e., 360 dpi), Text and Photo

Mode (i.e., 720 dpi), Text and Photo Mode (i.e., 720 dpi)

and Photo (i.e., 1440 dpi). We experimented with a small

print size (1 square inch) for different versions of the 4-

colors HCC2D codes with the L error correction level; the

Print&Scan process is repeated for the code versions: Version

5 (i.e., 37x37 modules), Version 10 (i.e., 57x57 modules)

TABLE III
USABILITY OF DIFFERENT VERSIONS OF THE HCC2D CODE VARYING THE

PRINT RESOLUTION

Print resolution 180dpi 360dpi 720dpi 1440dpi
Version 5 No Yes Yes Yes

Version 10 No Yes Yes Yes
Version 15 No No Yes Yes

and Version 15 (i.e., 77x77 modules). Table III shows that

only codes printed at poor quality levels (i.e., Draft Mode

with a resolution of 180 dpi) fail to complete successfully the

Print&Scan process. When the print resolution increases, the

success rate depends on the HCC2D version: at 360 dpi only

Version 15 (77x77 modules) failed on print sizes of 1 square

inch.

V. CONCLUSIONS

In this paper we have proposed High Capacity Colored QR

codes, a new 2D code which aims at increasing the space

available for data, while preserving similar robustness, error

correction and without loosing compatibility with the original

QR standard. Our results show that HCC2D leads to larger data

density compared to QR at the price of a small computational

overhead. Though the data density is slightly lower than in

HCCB, HCC2D does not suffer from the problems in detection

and alignment of the 2D code.

REFERENCES

[1] E. Sali and D. M. Lax, “Color bar code system,” US Patent 7210631,
February 2006.

[2] “High capacity color barcodes,” http://research.microsoft.com/en-
us/projects/hccb/, Microsoft Research, May 2010.

[3] T. Bishop, “Software notebook: Color is key to Microsoft’s next-
generation bar code,” http://www.seattlepi.com/business, April 2007.

[4] I. Fried, “Microsoft gives bar codes a splash of color,”
http://news.cnet.com, April 2007.

[5] D. Parikh and G. Jancke, “Localization and segmentation of a 2d high
capacity color barcode,” in Proceedings of the 2008 IEEE Workshop

on Applications of Computer Vision. IEEE Computer Society, January
2008, pp. 1–6.

[6] O. Bulan, V. Monga, and G. Sharma, “High capacity color barcodes
using dot orientation and color separability,” in Proceedings of Media

Forensics and Security. SPIE, January 2009.
[7] K. O. Siong, D. Chai, and K. T. Tan, “The use of border in colour 2d

barcode,” in 2008 International Symposium on Parallel and Distributed

Processing with Applications (ISPA’2008), December 2008, pp. 999–
1005.

[8] K. Fukuchi, “Libqrencode, a c library for encoding data in a qr code
symbol,” http://megaui.net/fukuchi/works/qrencode/, October 2010.

[9] “Zxing, multi-format 1d/2d barcode image processing library,”
http://code.google.com/p/zxing/, Google Inc., May 2010.

[10] “Quick response code - printer head density and module size,”
http://www.denso-wave.com/qrcode/qrgene3-e.html, Denso Wave, May
2010.

[11] P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. Chen, “A survey
of thresholding techniques,” Computer Vision, Graphics, and Image

Processing, vol. 41, pp. 233–260, February 1988.
[12] I. J. Kim, “Multi-window binarization of camera image for document

recognition,” in Proceedings of the 9th International Workshop on

Frontiers in Handwriting Recognition. IEEE Computer Society, October
2004, pp. 323–327.

[13] O. D. Trier and A. K. Jain, “Goal-directed evaluation of binarization
methods,” in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 17. IEEE Computer Society, December 1995, pp.
1191–1201.

716 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010


