
Managing Large Datasets with

iRODS—a Performance Analysis

Denis Hünich, Ralph Müller-Pfefferkorn

Center for Information Services and High Performance Computing (ZIH)

Technische Universität, Dresden

Abstract—The integrated Rule Orientated Data System
(iRODS)[3] is a Grid data management system that organizes
distributed data and their metadata. A Rule Engine allows a
flexible definition of data storage, data access and data processing.
This paper presents scenarios implemented in a benchmark tool
to measure the performance of an iRODS environment as well
as results of measurements with large datasets. The scenarios
concentrate on data transfers, metadata transfers and stress tests.
The user has the possibility to influence the scenarios to adapt
them to his own use case. The results show the possibility to find
bottlenecks and potential to optimize the settings of an iRODS
environment.

I. INTRODUCTION

TODAY and even more in future scientific research gen-

erates and will generate enormous amounts of data. To

handle these data they are often stored in distributed locations

within a Grid data management systems like the integrated

Rule Orientated Data System (iRODS)[3]. iRODS allows a

fast and easy access on files and their provenance. As it is used

more and more in production environments and with rapidly

increasing data sets it is of importance to be able to analyze

and optimize the performance of an iRODS installation.

This paper describes a tool and scenarios which enable

the measurement of the performance of data and metadata

transfers as well as internal parameters of an iRODS system.

First measurement with millions of files stored in iRODS

show already the potential to optimize the performance. It

is based on the benchmark tool BenchIT[1]. The aim of

the development was to allow the users to easily optimize

an iRODS environment. This paper is structured as follows:

section 2 presents related work, section 3 gives an overview

of iRODS and BenchIT, section 4 describes the investigated

scenarios, section 5 shows the results of measurements and

section 6 concludes this paper.

II. RELATED WORK

There exist a variety of tools that define benchmarks and

provide performance tests of I/O, e.g. IOZone [5] or IOR [4].

But these focus primarily on POSIX files systems. iRODS is

not a POSIX accessible system but provides its own clients to

access the storage.

iRODS is a relatively new product (version 1 released

in 2008) and there are only a few performance evaluation

results published, most of them focus on simple tests. Iida[7]

measured the performance of transfers between two iRODS

systems. Furthermore, he performed scaling tests for iCAT,

concurrent tests for iCAT and a comparison of iRODS and

SRB. Baquero[8] tested the performance of iRODS and

Hadoop[9] and compared the results. On the iRODS website

results of an ”Ingestion Test”[10] and a ”General Query Stress

Test”[11] are shown. This are stress tests of the iCAT server.

But a systematic performance analysis of iRODS was not

done yet nor exist scenarios or a tool for users. Thus, the

scenarios and the tool presented in this paper gives the user

the possibility to test an iRODS environment and compare it

with others.

III. OVERVIEW

A. iRODS

iRODS, developed by the Data Intensive Cyber Environ-

ment (DICE) group, organizes distributed data up to a range

of petabytes. It is released with an Open-Source-Licence.

iRODS stores data on heterogeneous storage systems (so-

called ”iRODS server”) and the related metadata in a database

on a special iRODS server named ”iCAT enabled server”

(figure 1). Metadata are for example information on stored

data, their locations or user defined information. A set of

metadata is created and stored automatically by iRODS for

every stored data - e.g. file, location or user. Additional

information can be stored as user defined metadata.

An iRODS server has a Rule Engine which interprets rules.

A Rule contains Micro-Services, arranged in a workflow,

which process special tasks like replicating data or calculat-

ing check sums. Microservices can be provided by anyone.

Additionally, a rule defines conditions to execute the Micro-

Services and has a backup strategy if an error occurs. The

definition of rules allows the users to configure the iRODS

environment according to their requirements and is also one

reason why performance testing is so important for iRODS.

iRODS provides a number of clients - e.g. command line

clients (the iCommands) or the iRODS explorer - as well as

programming interfaces to transfer files to and from an iRODS

server for example.

B. BenchIT

BenchIT[1] is a benchmark tool to analyze and optimize

computer systems. It was developed at the Center for In-

formation Services and High Performance Computing (ZIH)

of the Technische Universität Dresden. BenchIT provides a

set of small algorithms (kernels) to measure the performance

of a system. The execution of a measurement or a set of

Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 647–654

ISBN 978-83-60810-27-9

ISSN 1896-7094

978-83-60810-27-9/09/$25.00 c© 2010 IEEE 647

Fig. 1. Schematic representation of an iRODS environment

measurements is driven by a graphical utility providing an

interface to the kernels. The interface allows the user to adjust

the measurement. Relevant information on the measurement

are saved together with the results in a file. The results are

evaluated and diagrams of the measurement are generated.

Additionally, the result file can be uploaded to a central

server via a web interface [2] and can be compared with the

measurements of other users.

The scenarios described in this paper were realized as

kernels in BenchIT. The advantage of this approach is the use

of the existing BenchIT environment with its graphical user

interface and the functions to present and analyze the data.

IV. SCENARIOS

In the following a number of scenarios are defined that

describe typical usage profiles when managing large datasets

with iRODS. The scenarios are divided into four categories:

data transfers with iCommands or Micro-Services, transfer of

metadata, stress tests and a scenario to measure the perfor-

mance of given Micro-Services. They use the client tools of

iRODS such as the iCommands iput1, iget2, and imeta3. To

characterize the performance the time for an event in a scenario

is measured. Either the time or the derived data transfer rates

are used. To avoid outliers in the results, the measurements

were repeated several times and the average of the measured

time were calculated.

A. Data transfer

1) Different stages of data transfer: The aim of this

scenario is the measurement of different stages of a data

transfer. A data transfer with iput or iget sets up the transfer

environment at first. Then the connection to the iRODS server

1iput - transfers files from the client to the iRODS server
2iget - transfers files from the iRODS server to the client
3imeta - writes metadata to the iCAT server

can be established. After the successful connection the client

will be authenticated. If the client has the required rights

the transfer starts. Usually, iRODS chooses automatically the

number of parallel threads it uses for the transfer if more than

one file are to be read or written. This scenario also allows a

manual selection.

For the measurement a data transfer is divided in the

following stages:

1) Set up of the transfer environment (Environment)

2) Establishing connection (Connection)

3) Authentication and authorization (Login)

4) Data transfer (including metadata writing) (Put File)

For these 4 stages the times are measured. Furthermore, the

total time will be determined to set the single stages in relation

to it. Thus, the user has the opportunity to see where the main

fraction of time is used for the transfer and how it might

change e.g. when increasing the number of simultaneously

started data transfers. It is also possible to get an idea of how

much time is used to write/read the metadata by transferring a

one byte sized file because then the runtime for the last stage

is mainly used for reading/writing metadata.
2) Parallel transfer of many files: This scenario transfers

a defined number of files simultaneously and measures the

runtime for the whole transfer process. The number of files

transfered at once can be varied. In contrast to the scenario

above the user gets no information about a single data transfer.

The aim is to find the number of files/parallel transfers for

which the iRODS environment works most efficient. The result

also depends on the file size and the usable bandwidth.
3) Transfer of directories: The iCommands iput and iget

provide the possibility to transfer the content of a whole direc-

tory at once. The difference between transferring a directory

and transferring a number of single files is that in the first

case the iRODS server only has to handle one request for the

transfer and he can use all resources for this request. This

648 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

scenario measures the time for such a transfer with a varying

number of files in the directory. The time mainly depends

on the bandwidth and the time used to write metadata. The

larger the files and the smaller the number of it, the more the

runtime depends on the bandwidth. In the opposite case the

time is mainly used to write the metadata.

4) Data transfer for varying file sizes: This scenario mea-

sures the performance of a transfer for varying file sizes. The

workload for the iRODS server is small because only one file

will be transfered and the iRODS server can use all resources

for it. With small files the user can measure the latency and

with large files the bandwidth. Furthermore the user can check

the preferences set for parallel data transfers of the iRODS

server for different files sizes. Therefore, it is possible to vary

the number of threads for a file transfer and to compare the

performance results with the results of the automatic settings.

B. Transfer of user defined metadata

To store user defined metadata on the iCAT server iRODS

offers two ways. In the parallel case the metadata will be

transfered with simultaneously started imeta requests each

writing one element. For the performance evaluation the time

to transfer all metadata is measured. In the sequential case

the metadata are written in a file. The file is transfered to the

iRODS server with one request, but then the metadata sets are

written one by one sequentially.

The user can vary the number of metadata entries, compare

the results and decide which kind of transfer is to prefer.

Especially when writing large amounts of metadata these two

ways can produce quite different performance results (see

section V-D).

C. Stress tests

In the stress tests the iCAT server is analyzed in cases when

it is flooded with requests or the number of files to store in

iRODS (and thus needs to be managed by the iCAT server)

increases dramatically.

1) Requests to the iCAT server: This stress test starts a

defined number of parallel imeta requests to the iRODS server.

The number of requests is varied to find the number of

operations per second the iRODS environment can manage.

Additionally, it is possible to get the number of requests the

iCAT server refuse. This occurs when the maximum number

of requests the database on the iCAT server can handle is

exceeded.

2) Management of large metadata sets on the iCAT server:

In this test the number of metadata sets the iCAT server

has to manage is increased. For that, a directory with a

(large) number of files is transfered successively to the iRODS

environment. The time for every transfer is measured. With

every file arriving in the iRODS environment the iCAT server

needs to handle a larger number of metadata. This usually

results in an additional time penalty when transferring the next

data.

D. Time measurement of Micro-Services

Micro-Services allow the execution of small tasks directly

on the iRODS server. They should not put to much workload

on the server because this influences its data management

capabilities. This scenario was created to measure the runtime

of Micro-Services in any user defined rule. It allows developers

as well as iRODS administrators to see how the performance of

a Micro-Service behaves in different workflows. The scenario

introduces three Micro-Services that measure the time before,

between or after Micro-Services of a Rule. The results are

collected at the iRODS server and moved to the BenchIT

environment for analyses.

V. RESULTS

This chapter presents measurement results of the scenarios

described above. These were performed to optimize an iRODS

installation to be used in production. After some generic

measurements and stress tests a real use case from genetics

(the future major user of the installation) was simulated.

A. The test system

The measurements were done on an iRODS installation at

ZIH. The combined iRODS/iCAT server with 8 Dual Core

AMD Opteron 885 (2.6 GHz) CPUs and with a memory of

32 GByte provides the storage resources and the database for

the metadata over a 4 GBit/s SAN network. The client ran

on a cluster with Intel Xeon Quad Core X5472 (3.00 GHz)

CPUs and a 10GBits/s Ethernet network. iRODS version 2.1

was used with a PostgreSQL database for metadata storage.

B. Handling large sets of data

Figures 2 and 3 show the measurements for the single stages

(see IV-A1) when 150 files are transfered simultaneously, each

of them 1 Byte large. In figure 2 the iRODS environment con-

tained no files (fresh install). Thus, the management overhead

of the iCAT server is very small. Most time is used for the

connection and for the file transfer including the writing of

metadata. The results in figure 3 look quite different. Here,

the iRODS environment already contained 13 million files and

their metadata. The transfer time increased almost by a factor

of 8. The reason is the increased effort to write metadata if the

database is already large. This has also an effect on connection

and login time. The iRODS server was not able to work off the

requests as fast as before. This delay deferred the connection

establishing and the login. In average the total time for the

transfer increased by a factor of twenty.

C. Comparing the reading and writing of data

This test compares transfers done with iput and iget for three

different states of the iRODS environment (empty, 7 million

files and 13 million files stored in iRODS). A directory with

a varying number of files (each with a size of 1 Byte) was

written and read. Figure 4 shows the results. In the empty state

reading needed 4 times longer than writing for 150 files. This

means that finding the requested metadata and files needed

much longer than writing both.

DENIS HÜNICH, RALPH MÜLLER-PFEFFERKORN: MANAGING LARGE DATASETS WITH IRODS 649

Detailed view of simultaneous iput transfers [iRODS with no files]

Environment Connection Login Put File

<iput> (Total Time[Filesize: 1 Byte])

File ID

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

ti
m

e
 i

n
 s

0

0.025

0.05

0.075

0.1

0.125

0.15

Fig. 2. Simultaneous data transfer of 1 Byte large files with iput. The iRODS environment contains no files. Shown is the time needed for every stage and
the overall transfer time (stages, see IV-A1).

Detailed view of simultaneous iput transfers [iRODS with 13 million files]

Environment Connection Login Put File

<iput> (Total Time[Filesize: 1 Byte])

File ID

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

ti
m

e
 i

n
 s

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

Fig. 3. Simultaneous data transfer of 1 Byte large files with iput. The iRODS environment contains 13 million files. Shown is the time needed for every
stage and the overall transfer time (stages, see IV-A1).

650 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

In the next state (7 million files) the behavior changes.

The time for writing data increased significantly compared

to reading, where the increase is small. Nevertheless, the

performance of writing was still better than of reading. The

time difference between iput and iget decreased by a factor of

1.5 for 150 files written or read.

As expected, in the last case of the filled iRODS environ-

ment the performance decreased both for reading and writing.

The increase of time iget needed is small compared to iput,

which is 7 times slower than in the empty state. Now writing

data is slower than reading files.

Summarizing one can say that the results of this test show

that writing the standard metadata is an important performance

factor and that the number of metadata stored on the iCAT

server has more influence on writing than on reading files.

D. Writing user defined metadata

This test wrote the same amount of metadata to iRODS

using the two transfer methods described in section IV-B. Fur-

thermore, the measurements were performed with the iRODS

environment in two states: empty and filled with 13 million

files. Figure 5 shows the results.

In the case of the empty iRODS environment the difference

between the performance of simultaneously and sequentially

written metadata is small. This changed when the iRODS

environment was filled with 13 million files. While the time

of simultaneously written metadata increased already signifi-

cantly (e.g. for a number of 150 metadata elements by a factor

of 5), the performance of the sequential method got even worse

(e.g. 24 times longer for 150 elements). The reason for the

latter is the accumulation of the additional time (originating

from the slowdown due to the filled iCAT server) needed

for the sequential writing of the metadata (see description in

IV-B).

E. Stress tests

On the iCAT server it is possible to configure the maximum

number of requests allowed to the database. With scenario

IV-C1 it is possible to measure the actual number of requests

an iCAT server can handle. Measurements were done for three

states - setting the maximum number of simultaneous requests

to 200, 700 and 1000, respectively (the default value is 100).

Additionally, the shared memory of the database was increased

to 2000 MByte - otherwise the database had refused requests.

The test varied the number of simultaneously started processes.

Each process starts 10 imeta requests. Figure 6 shows the

results for the three stages. Up to 100 processes iRODS can

handle more than 35 operations per second. Between 100

and 500 processes iRODS finished the requests with about

34 op/sec. This value decreases faster, down to 27 Op/sec.

The second test (see IV-C2) continuously transfers 1000

files at once (each file with a size of 100 Byte) to the iRODS

server. With every run the number of metadata to be managed

increases. In the empty iRODS environment the transfer time

is about 7 seconds and up to 150 files can be written per

second (figure 7). With 13 million files already stored on the

iRODS server, the time increases to 38 seconds and only 25

files can be transfered per second. The performance decrease is

a factor of about 6. The major cause is the metadata handling

in the database. The shift of the transfer time between 7 million

and 10 million files was probably caused by a process on the

iRODS server. Because the overall time of the measurement

needed more than one day it was not possible to identify the

exact reason for the shift when the measurement was finished.

F. Using the scenarios to simulate a real use case

In the following it is described how the benchmark tool and

the scenarios were used to simulate a real use case. In genetics

automatic microscopes take a large number of pictures of

gene screening processes. For a gene screen ten thousands of

pictures needs to be analyzed. The management of the pictures

and their metadata is done with iRODS.

To find optimal usage parameters for this use case it was

simulated using 10,000 files each with a size of 10 MByte.

The transfer was done with one iput request. Figure 8 shows

the time of the transfer as function of the different number

of threads (parallel transfers) used and for different conditions

of the iRODS environment (empty, 7 million files in iRODS

and 13 million files in iRODS). The condition of the iRODS

environment had more influence on the performance than the

used number of threads. For such a large number of files

to transfer the performance variation between the thread The

difference of the writing time between an empty database and

a database filled with metadata for 13 million files is about

20%.

Figure 9 shows how time and bandwidth will change

if the files are stored in several directories and these are

simultaneously transfered to the iRODS environment. The use

of 5 directories instead of one reduces the time by more than

the half and when using 10 directories the runtime is about

a third. The reason is the better utilization of the bandwidth.

That means in this case it is useful to divide the files on more

than one directory by using subdirectories. The subdirectories

can be transfered simultaneously and reduce the total transfer

time to optimize the use of the bandwidth.

VI. CONCLUSION

In this paper scenarios for iRODS performance measure-

ments were presented, which are integrated in the tool Ben-

chIT. This allows administrators or users of iRODS to measure

the performance of an iRODS installation easily and to adopt

the usage patterns to an optimal performance. The scenarios

provide performance measurements of data transfers, user

defined metadata transfers, stress tests of the iCAT server

and the runtime of Micro-Services. Furthermore, performance

tests done on an existing iRODS environment and simulating

a real use case were presented. Among other things the results

show that the performance of data transfers decreases when

the number of metadata the iCAT server has to manage grows

significantly. But the measurement described in section (V-F)

also shows that it is possible to optimize the performance by

efficiently using the iRODS capabilities.

DENIS HÜNICH, RALPH MÜLLER-PFEFFERKORN: MANAGING LARGE DATASETS WITH IRODS 651

Comparison of iput and iget [Files contained in a Directory]

iget [empty] iget [7 million] iget [13 million] iput [empty] iput [7 million]

iput [13 million]

Number of Files [File Size: 1 Byte]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

ti
m

e
 i
n

 s

0

1

2

3

4

5

6

7

Fig. 4. Comparison of writing (iput) and reading (iget) a varying number of files (each with a size of 1 Byte) transfered at once in a directory. The figure
shows the time needed for the transfers with iput and iget for three different states of the iRODS environment (no [empty], 7 million files and 13 million
files already stored in iRODS).

Writing metadata

All metadata written with one request (all metadata in file) [empty]

All metadata written with one request (all metadata in file) [13 million]

Metadata simultaneously written to iRODS [empty]

Metadata simultaneously written to iRODS [13 million]

Number of Metadata

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

ti
m

e
 i
n

 s

0

5

10

15

20

25

30

35

40

Fig. 5. Comparison of simultaneously (parallel imeta requests) and sequentially (in one file) written metadata. Shown is the time needed for writing a varying
number of metadata for two states of the iRODS environment (empty and filled with 13 million files).

652 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

Number of Requests iRODS can handle

First State Second State Third State First State [op/sec]

Second State [op/sec] Third State [op/sec]

Number of Processes

0 100 200 300 400 500 600 700 800 900 1,000

ti
m

e
 i

n
 s

0

50

100

150

200

250

300

350

o
p

e
ra

tio
n

s
 p

e
r s

e
c

5

10

15

20

25

30

35

40

Fig. 6. Number of metadata requests: A varying number of processes were simultaneously started. A process starts sequentially 10 imeta requests. Shown
are the time needed to process all requests and the resulting operations per second (op/sec). The three states correspond to the setting of the maximum number
of requests allowed on the iCAT server (200, 700 and 1000).

Stress test iCAT Server

<iput> [Filesize: 100 Byte] <iput> [Filesize: 100 Byte] [files/sec]

Total Number of Files

0 2,500,000 5,000,000 7,500,000 10,000,000 12,500,000

ti
m

e
 i
n

 s

0

5

10

15

20

25

30

35

40

45

file
s
 c

o
p

ie
d

 p
e
r s

e
c

0

25

50

75

100

125

150

175

Fig. 7. Stress test: 13 million files (each 100 Byte) are transfered with iput. With each run 1000 files are transfered. Shown are the time for each run and
the number of file transfers per second.

DENIS HÜNICH, RALPH MÜLLER-PFEFFERKORN: MANAGING LARGE DATASETS WITH IRODS 653

 1800

 1900

 2000

 2100

 2200

 2300

 0 2 4 6 8 10 12 14 16

tim
e

[s
]

Number of Threads

Transfer of 10000 files with a size of 10 MByte

empty
7 million files in iRODS

13 million files in iRODS

Fig. 8. Use case: 10,000 files (each 10 MByte) were written as part of one directory to the iRODS environment. Shown is the time needed for the transfer
as a function of the threads/parallel transfers used. The thread number -1 means automatic thread choice by iRODS and 0 means no threading.

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 5 10 15 20
 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

tim
e

[s
]

tra
ns

fe
r r

at
e

[M
By

te
/s

]

Number of Directories

Transfer of 10000 files with a size of 10 MByte stored in several directories

iput (time)
iput (transfer rate)

Fig. 9. Use case: 10,000 files are stored in several directories and are then written in parallel. Shown is the time needed for the transfer of the directories
containing the 10000 files.

REFERENCES

[1] Guido Juckeland and Stefan Börner and Michael Kluge and Sebastian
Kölling and Wolfgang E. Nagel and Stefan Pflüger and Heike Röding
and Stephan Seidl and Thomas William and Robert Wloch: BenchIT -
Performance Measurement and Comparison for Scientific Applications.
Parallel Computing: Software Technology, Algorithms, Architectures and
Aplications, Elsevire Science, The Netherlands, pp 501-508, 2004

[2] http://www.benchit.org/
[3] Reagan Moore and Arcot Rajasekar: IRODS: Integrated Rule-Oriented

Data System. White Paper: IRODS: Integrated Rule-Oriented Data Sys-
tem (2008)

[4] H. Shan and J. Shalf: Using IOR to analyze the I/O performance of HPC
platforms Cray Users Group Meeting (CUG) 2007, Seattle, Washington,
May 7-10, 2007

[5] Ben Martin: IOzone for filesystem performance benchmarking

Linux.com, http://www.linux.com/archive/feature/139744, Retrieved
2009-10-15.

[6] Denis Hünich: Grid-Datenmanagement mit iRODS - Entwicklung von
Komponenten zur Performance-Analyse. Diploma thesis, 2009

[7] Yoshimi Iida: iRODS perfomance and KEK, UK e-Science workshop
”Building data grids with iRODS”, NeSC Edinburgh, 27 May - 30 May
2008.

[8] Cesar Augusto Sanchez Baquero: Performance comparison between
iRODS and Hadoop Distributed File Systems, Universidad Nacional de
Colombia, 15.June 2009

[9] HADOOP Website: The Hadoop Distributed File System (HDFS)
http://hadoop.apache.org/common/docs/current/hdfs design.html

[10] iRODS Website: Ingestion Testing,
https://www.irods.org/index.php/iCATStressTest at SDSC

[11] iRODS Website: General Query Stress Testing,
https://www.irods.org/index.php/icatGenQueryStressTest at UMIACS

654 PROCEEDINGS OF THE IMCSIT. VOLUME 5, 2010

