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Abstract—In this paper the development of a prototypic mobile
voice control for navigating autonomous robots within a multi
robot system is described. As basis for the voice control a
hidden markov model based speech recognizer with a very low
vocabulary of 30 words is utilized. It is investigated how many

training samples for a markov model are required for a normal
operation of speaker-dependent speech recognition. Therefore,
hidden markov models were developed successively in parallel
with an own training data corpus containing finally 2290 utter-
ances from 12 speakers. Within the successive development of
acoustical models and training corpus, the work revealed details
about how many speakers are necessary to achieve an acceptable
degree of speaker independence. We focused on an evaluation
of the speech recognizer in adverse outdoor environments. The
evaluation ranges from almost calm conditions of about 39 dB
up to very adverse noise conditions of 120 dB. It is investigated
whether a small vocabulary attenuates the noise vulnerability and
in how far an increase of speaking volume can compensate noises
of different intensity. The voice control was tested in outdoor
environments and aspects of its usage are described.

I. INTRODUCTION

I
N HUMAN-MACHINE scenarios, e.g., where the user does

not have his hands free to type in commands, or where the

user is handicapped, the ability to control a system by voice

can be considered. For those purposes usually small vocab-

ularies are sufficient. In calm acoustical environments, e.g.,

in flats, low vocabulary speech recognition performs almost

perfectly. Unfortunately in outside-scenarios or in in-vehicle-

scenarios the acoustical environment can be very adverse.

It is not clear in how far a small vocabulary can compensate

such bad acoustical conditions in order to maintain an accept-

able word recognition rate (WRR) of 95%. Furthermore, it is

an open question in which noise scenarios an increase of the

speaking volume can maintain this recognition rate.

To this end, a low vocabulary speech recognizer was de-

veloped and evaluated under several adverse conditions. The

evaluation ranged from almost calm conditions of about 39

dB up to very adverse noise conditions of 120 dB. For the

training of models we constructed an acoustic corpus contain-

ing 2290 hand labeled German utterances from 12 people with

different accents and relevant issues in corpus construction are

described. For the unit of speech that has to be acoustically

modeled by hidden markov models (HMMs), the word was

chosen. Suitable numbers of gaussian mixture components

were specified for speaker-dependent and speaker-independent

training. The successive development of the acoustic models

revealed insights in how many training samples are required

per model and how many speakers are needed for speaker

independent speech recognition. The core speech recognizer

was connected to the software framework of the robots by

means of suitable software libraries as will be explained in

Section II. Finally, the speech recognizer was integrated into

a voice control application for navigating robots within a multi

robot system and issues in operating the voice control in

outside environments are described.

A. Related work and Goals

In various studies experimental speech communication with

robots has already been developed and successfully used (see,

e.g., [1], [2]). However, in these works no studies were con-

ducted regarding the performance of speech recognition when

used in different noise scenarios. Therefore, we developed the

voice control application with the aim to give answers to the

following questions:

1) How strong is the effect of street noise, crowd noise, and

in-vehicle noise of different degrees on the performance

of speech recognition? Can an increase of speaking

volume improve recognition rate and can a vocabulary

with less than 50 words compensate such noise?

2) How many speakers are necessary to achieve an accept-

able level of small-vocabulary speaker independence?

3) Does direct voice input suit to perform spatial navigation

tasks?

The rest of the paper is structured as follows. Next, Section

II describes groundwork and conceptual considerations for the

voice control. The successive development of the application is

illustrated in Section III. The speech recognizers performance

is evaluated in Section IV and Section V concludes with a

discussion.

II. CONCEPTION

This section describes basic conditions and conceptual con-

siderations on which basis the voice control was developed.
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Fig. 1. Specifying target coordinates in a robot-centered 2-dimensional area

A. Navigation by the use of voice

The goal was to enable a navigation of robots onto a

two-dimensional arbitrary ground, i.e., to move the robots

backwards and forwards, and to rotate and stop. To allow for

such a control, one single command was defined to consist

of the specification of a direction and a distance. The values

of distance and direction are given in meters1 and o’clock.

For instance, if the user commands robot 1 to go five meters

forwards, the command to be uttered is formed as "robot 1:

5 meters, 12 o’clock". If robot 1 should drive five meters to

the right, the command is "robot 1: 5 meters, 3 o’clock". The

values for the parameters distance and direction are always

specified relative to the robot (see also Figure 1).

B. Reused tools, software and platforms

In the following, toolkits and robot platforms utilized for the

implementation of the voice control application are described.

Robots software and hardware: For the operation of the

voice control we used robots of ATRV series from Real

World Interface2. An ATRV-robot is a four-wheeled mobile

platform equipped with sonar sensors and wireless ethernet

communications. The ATRV-robots employ the software robot

framework RoSe [3], [4], which serves as framework for con-

trol and communication among roboters. A C++ application

is embedded in this framework and is called a RoSe service.

The framework provides methods that allow RoSe services

to communicate with each other via wireless link. A relevant

service for the voice control is the collision avoidance service

[5]. To this service a target coordinate in a two-dimensional

robot-centered coordinate system can be passed. The service

computes a path to the target coordinate which prevents to

collide with obstacles. In order to put the robot in motion the

1All commands have to be uttered in German. But for better readability
they are written in English throughout the paper.

2formerly RWI, now iRobot, http://www.irobot.com
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Fig. 2. Several software components arranged into an overall system for
development, evaluation, and tests in outdoor environments

collision avoidance service instructs a further RoSe service

which is responsible for control of the robot’s motor.

Toolkits for speech recognition: For development of acous-

tic models and evaluation under noise, the hidden markov

Toolkit (HTK, [6]) was used. For embedding the developed

acoustic models into a C++-application of the robots frame-

work the Application Toolkit for HTK (ATK, [7]) was used.

ATK is designed to create experimental applications based on

HTK. It consists of a C++ layer which directly accesses the

HTK library modules. ATK enables acoustic models that have

been developed by HTK to be reused and integrate them into

arbitrary C++-applications wrapped by ATK.

Composition of the voice control application: A combina-

tion of the software tools and hardware platforms described

above composed the voice control application as follows.

Acoustic models were trained with a development system

based on HTK. These models were loaded into ATK. A RoSe

service was written which utilizes the ATK libraries and, in

particular, markov recognition algorithms and thus represents

a RoSe service for voice control. Since the voice control

appears as RoSe service, it is able to send messages with target

coordinates to the collision avoidance service (see Figure 2).

C. Determining the speech recognizers application scope

This section describes the determination of adequate param-

eters for defining the speech recognizers application scope.

Vocabulary size: A small vocabulary of around 30 words

was chosen to cover the required words for navigating the

robot like, e.g., “robot”, “meter”, “o’clock” and several num-

bers ranging from “one” to “twelve”.

Degree of speaker independence: Investigations deal-

ing with speaker independence indicate different numbers of

speakers required to achieve an acceptable degree of speaker

independence [8], [9], [10]. According to Lee [9], at least 100

male speakers are in the training set as a minimum requirement

for speaker independence. Furthermore, Kubala [10] shows

that with 12 carefully selected speakers the same degree of

speaker independence as a reference system can be obtained

which was trained with 100 speakers. Thus, in this work

utterances of 12 speakers of our research group were used

as data basis. According to the statement of Kubala [10], it
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is assumed that even with this little number of speakers an

approximately similar degree of speaker independence can be

achieved as with a system that is trained with great speaker

numbers.

D. Conception of Acoustic Modeling

The parameters that define the structure of the hidden

markov models and the feature extraction are as follows.

Unit of speech: As unit of speech that has to be modeled

by hidden markov models the word was chosen.

Number of states: The number of states per word-model

was chosen dependent from words number of phonems but

an extra state was added for the closure phase of plosives to

model their non-stationarity more adequately. The number of

states of the HMM was chosen to be linear to the number of

phonemes in the corresponding word. This was intended to

ensure that the phonetic structure of words is identical with

the states of the HMMs. Furthermore, Bakis models [11] were

used in which each of the next state may be skipped. This was

intended, to take care of articulatory phenomena like vowel

reduction.

Number of gaussian mixture densities: In literature there

is no way known how to calculate the correct number of

gaussian mixture densities. Accordingly, the number of gaus-

sian mixture densities was kept variable. In development of

acoustic models various numbers of gaussian mixture densities

were tested in order to determine a suitable value.

Feature extraction: Mel Frequency Cepstral Coefficients

(MFCC) were used to simulate a frequency sensitivity that is

similar to that of the human ear.

E. Conception of the Acoustic Corpus

The overall speech corpus was recorded with a Sennheiser

PC 30 microphone.

Utterances to be spoken: It was determined to use speech

samples out of continuously spoken utterances. Phenomena

of coarticulation as they will occur in the operation of the

speech are aimed to be included into the models. For instance,

a sentence that had to be recorded looked like the following.

robot one drive ten meters twelve o’clock

Amount of utterances to be spoken: As requirement for

HMM training for each model that should be trained at least

10, but better 50 or 100 samples should be available [8]. With

a vocabulary of about 30 words, it should be sufficient to

take 60 training utterances as basis to achieve a set of 20

references per word. Thus, in this work 60 training utterances

were specified as minimum.

Manual annotation of utterances: Training procedures for

hidden markov models require model specific pre-annotated

audio data. For good results, at least an initial annotation for

the models should be provided [12], [8]. For that reason parts

of the corpus were manually segmented on word level. For

the utterances for which no segmentation has taken place, a

complete orthographic annotation was required instead.

two

one

three

one

drive

thirty

meterstwenty

twelve

one

o’clockrobot six

Fig. 3. Grammar network to cover navigation commands

III. DEVELOPMENT AND IMPLEMENTATION

In this section the development of the speech recognizer, its

connection to the robots framework, and its integration onto a

Tablet PC is described.

A. Realization of the Grammar

To allow for the requested operation the following grammar

has been constructed. A command basically consists of a

citation of the robot which is to execute a command, e.g.,

"robot two", and the actual statement, e.g., "drive ten meters

towards twelve o’clock". Figure 3 depicts the grammar where

silence models are omitted for better clarity.

B. Development of the Acoustic Corpus

In order to create the corpus, speaker utterances for training

and for testing were recorded, afterwords post-processed, and

finally partly annotated on word level with Praat [13].

Recording: The recordings have taken place in a carpeted

large room with curtains. In total 220 training and 50 test

utterances were recorded from the author. From each of the

12 speakers, 72 training and 50 test utterances were recorded.

The whole corpus consists of 2290 utterances which includes

the training part of 1850 utterances and the test part of 440

utterances. Issues related to the recording procedure were as

follows. In order to maintain an adequate recording level and

to avoid overmodulation, the distance to the mouth was re-

adjusted for each speaker. For very loud or very soft voices

the recording volume of the sound device had to be adjusted.

Increasing the recording volume had to be done carefully in

order to avoid too much inclusion of ambient noise into the

signal. Sometimes it was difficult to maintain the same mean

energy due to a movement of the microphone or a change of

speaking volume. To ensure a flawless corpus, it was necessary

to review the recorded utterances and, if some utterances were

faulty, to capture those again.

Post-processing: The recorded utterances had needed to be

post-processed such that only those audio data was included

in the speech signals that were specified by our orthographic

annotation. Thus, the utterances were freed from previous

and following silence with standard sound-editing software.

Random reviewing of temporal and spectral variation has taken

place at approximately one third of the statements. Attention

in inspecting the utterances was paid to modulation issues like

insufficient modulation or overmodulation.

Manual annotation: All 240 utterances of the author were

entirely manually annotated considering to use them for

speaker-depended training. 10 of the 70 utterances of remain-

ing speakers have been annotated manually aiming to use them

for speaker-independent training. An automatic conversion
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TABLE I
NUMBER OF UTTERANCES FOR TRAINING AND EVALUATION

Subject Sex Accent Training Segmented Test

AK male Franconian 72 10 50

AT male Russian 72 10 10

BB male High German 72 10 50

DS male High German 72 10 50

FH male High German 72 10 50

FS male High German 0 0 10

HLW male High German 72 10 50

HM male Arabic 0 0 10

HN male High German 72 10 50

MS male High German 0 0 10

RC male High German 220 220 50

SR male High German 72 10 50

TB male High German 72 10 50

TR male High German 72 10 50

1850 320 440

of annotations from the Praat format into HTK format has

been realized with linux scripts. Naturally appearing speaking

sounds like those of smacking and exhalation were separately

annotated intending to train particular models for them later

on. When smacking sounds merged with subsequent verbal

sounds those were included into the annotation boundaries of

the whole word. Small pauses between words were handled

such that the word boundary was set in the middle of the

pause. Regarding the annotation of silence, it had to be ensured

that the duration of the intervals was consistently the same.

Therefore, we chose an interval of 110 to 130 ms for silence

annotations.

C. Development of acoustic models

In literature there was no precise information found about

how much data is necessary for training of acoustic models.

For this reason, the development of acoustic models was

keeping pace with the creation of the acoustic body. In each

development step, a model version was created. Below the

structure and development of acoustic models is described.

Creating the HMM structure: The number of model states

Ns was initially selected for each model by Ns = N · (P +3)
with the word’s number of phonemes P , and a weight factor

N . A small number of 3 states were provided for the word’s

beginning and the word’s end. After the results for N > 1
were significantly worse, N was set to 1. In determining the

number of phonemes of a word an extra state was provided

for closure phases of plosives. For instance, for the German

word ’roboter’ 11 states were provided where two states are

considered to model the closure phases of /b/ and /t/.

Training of HMMs: The training of models was carried

out in two main steps. First, a speaker-dependent model was

developed and optimized for high detection rates. Second,

the speaker-dependent model was gradually extended to other

speakers to achieve a high degree of speaker independence.

To keep the development cycle as small as possible, the

TABLE II
MODEL VERSIONS FOR SPEAKER-DEPENDENT TRAINING

Mixtures References per model WRR

4 ≥ 5 97.56

4 ≥ 10 98.00

4 ≥ 21 94.17

4 ≥ 21 99.04

4 ≥ 23 100.00

TABLE III
MODEL VERSIONS FOR SPEAKER-INDEPENDENT SPEECH RECOGNITION

Mixtures Training Speakers Test Speakers WRR

4 RC SR 75.00

4 RC,SR HN,DS 65.00

4 RC,SR,HN,DS BB,TR,FS,MS,HLW 76.00

2 RC,SR,HN,DS,HLW BB,TR,FS,MS 52.00

3 RC,SR,HN,DS,HLW BB,TR,FS,MS 90.00

3 RC,SR,HN,DS,HLW,TB BB,TR,FS,MS 90.00

3 RC,SR,HN,DS,HLW,TB,FH BB,TR,FS,MS,HM,AT 93.34

entire exercise was automated with linux scripts for which

HMM parameters could be specified. The varied parameters

of the training were number of gaussian mixture compo-

nents and number of training reestimations. Tables II and III

show the development of the speaker-dependent and speaker-

independent models. As expected, it was observed that the

degree of speaker independence increased for each additional

speaker in the training set.

D. Creating the link to the robot framework

After development of the acoustic models was finished, a

RoSe service has been written in C++ in which ATK connects

the acoustic models with the RoSe-framework (see Fig. 2).

ATK provides methods for starting the speech recognition

process and returns the word chain that is assumed to be

uttered. From the recognized word chain values for distance

and direction are extracted by regular expressions. If the

distance r in meters and the angle α is given in clock the

target coordinate (x, y) was determined by x = r · sin(α·π
6
)

and y = r · cos(α·π
6
). The target coordinate is then sent via

a RoSe-message to the RoSe service for collision avoidance

which is responsible for further activation of the robot’s motor.

E. Integration onto a Tablet PC and outdoor tests

In the integration and test of the speech recognizer on

a Tablet PC, it was observed that the sensitivity of the

microphone had to be adjusted such that less ambient noise

was included in the signal. If the recording level was set too

high, the detection rate fell off dramatically. This was noted

especially for operation in a outdoor environments when the

microphone was adjusted too sensitive because even little noise

was included in the signal.

IV. EVALUATION

The overall development of the voice control described

above has already revealed some details about the degree of
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TABLE IV
RESULTS OF THE LEAVE-ONE-OUT-TEST FOR MEASURING THE DEGREE

OF SPEAKER-INDEPENDENCE, 1 MIXTURE, REESTIMATIONS 1-10

Training data Test data WRR

HN,HLW,AK,BB,FH,TB,SR,AT,DS,TR RA 98%

HLW,AK,BB,FH,TB,SR,AT,DS,TR,RA HN 100%

AK,BB,FH,TB,SR,AT,DS,TR,RA,HN HLW 100%

BB,FH,TB,SR,AT,DS,TR,RA,HN,HLW AK 84%

FH,TB,SR,AT,DS,TR,RA,HN,HLW,AK BB 100%

TB,SR,AT,DS,TR,RA,HN,HLW,AK,BB FH 98%

SR,AT,DS,TR,RA,HN,HLW,AK,BB,FH TB 98%

AT,DS,TR,RA,HN,HLW,AK,BB,FH,TB SR 96%

DS,TR,RA,HN,HLW,AK,BB,FH,TB,SR AT 100%

RA,HN,HLW,AK,BB,FH,TB,SR,AT,DS,TR FS 90%

RA,HN,HLW,AK,BB,FH,TB,SR,AT,DS,TR HM 100%

RA,HN,HLW,AK,BB,FH,TB,SR,AT,DS,TR MS 100%

Mean 97%

speaker independence and vulnerability to noise. In this section

these features are examined in more detail.

A. Speaker independent recognition

The speaker-independent training has shown that the de-

gree of speaker independence increased with the number of

speakers in the training set. For evaluation of the degree of

speaker independence, only those speakers had to be used who

were not in the training set of acoustic models. By repeatedly

leaving out a speaker in the respective training set and testing

only this specific speaker, i.e., performing a leave-one-out test,

one measurement of the degree of speaker independence for

this specific speaker could be achieved. Since a total number

of 11 speakers were available, the exhaust test was repeated

several times for each available speaker. Depending on the

mean value of the results, the general degree of speaker

independence was estimated. The test results are shown in

Table IV.

B. Recognition in noise

In the following the speech recognizers evaluation under

noise adversity of low and high degrees is described.

Acquisition of noise: For the environmental conditions

calm outdoor environment and busy street, the noise was

recorded with the same microphone used for creating the

acoustic corpus. The adjustment of the recording volume was

done manually such that it was initially set to zero and

continuously increased up to a good modulation of amplitudes

between values of 0.5 and -0.5. For every recording, the sound

pressure level was measured in dB with a sound level meter.

Noise of the high adversity environments babble and track

vehicles was taken from the corpus Noisex [14].

Overlaying procedure: Both the speaker-dependent and

speaker-independent models were evaluated. For speaker-

dependent evaluation in noise, test utterances of speaker RC

were used. For speaker-independent evaluation in noise, test

utterances of all speakers were used. Furthermore, noise ad-

versity was simulated by artificially superimposing the clear

TABLE V
AVERAGE SOUND LEVELS OF MALE SPEAKERS IN 1 M DISTANCE OF

SPEAKERS MOUTH FOR SPECIFIED SPEAKING STYLES; P = PRIVATE FIELD,
FROM LAZARUS [16], SUPPLEMENTED WITH SPECIFICATIONS AT

SPEAKERS MOUTH

Speaking style 1 m distance 3,125 cm distance

whispering 36 dB 66 dB

softly speaking 42 dB 72 dB

relaxed speaking (p) 48 dB 78 dB

relaxed, normal (p) speaking 54 dB 84 dB

normal, raised (p) speaking 60 dB 90 dB

raised speaking 66 dB 96 dB

speaking loudly 72 dB 102 dB

speaking very loudly 78 dB 108 dB

screaming 84 dB 114 dB

screaming maximally 90 dB 120 dB

screaming maximally (single cases) 96 dB 126 dB

commands from the test corpus with the software tool FaNT

(Filtering and Noise Adding Tool, see [15]). The operation of

FaNT requires SNR values to be specified which represents

the intensity with which the noise superimposes the speech

signal. The ratio of signal to noise depends on the sound level

of speech and on the sound level of the noise. Sound levels

of noise were measured in case of recording and are specified

by Noisex [14] in case of noise corpus usage. Sound levels

of speaking styles are taken from Lazarus et al. [16]. They

provide average sound levels of different speaking styles, i.e.,

whispering, speaking softly, and relaxed speaking. Therefore,

men produce by whispering at a distance of one meter a sound

pressure level of 36 dB. By screaming, up to 96 dB can be

achieved in some cases. For a summary of the data collected

see Table V. Thus, utterances were superimposed at several

SNRs in the range of small SNRs where the noise was barely

noticeable up to large SNRs where the speech was hardly

intelligible. In particular, superimposition ranged from -5 dB to

50 dB SNRs in 1dB steps. For the various noise scenarios, the

test corpus was superimposed several times and new modified

testing corpuses were created. The speech recognizer was then

scheduled on the created corpora and word recognition rates

were logged. This overlaying procedure has been used for

noise evaluation of speech recognition in several works, e.g.,

[17], [18].

Overlaying Results: The sounds of a calm outdoor environ-

ment were obtained by recording at an average sound pressure

of 39 dB. It can be seen that in a quite acoustic environment

with a noise level of 40 dB, it is sufficient to speak softly

to achieve very good recognition rates of at least 95% (see

Figures 4 and 5). The sounds of a busy street were obtained

by recording in a distance of 5 meters at an average sound

pressure of 61 dB. The experiment showed that no good word

recognition rates were possible when speaking relaxed. But

by increasing the speaking volume good detection rates above

90% were achieved (see Figures 6 and 7). The babble sounds

came from a large hall in which 100 people spoke to each

other producing an average sound level of 88 dB. Hence, by
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Fig. 4. Speaker-dependent recognition in 40 dB noise of a calm outdoor
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Fig. 5. Speaker-independent recognition in 40 dB noise of a calm outdoor
environment

speaking very loud with 108 dB effecting an SNR of 20 dB, it

could still be possible to achieve acceptable word recognition

rates of around 90% (see Figures 8 and 9). The in-vehicle

sounds came from track vehicle 1 driving at a speed of 30

km/h producing an in-vehicle sound level of 100 dB. Good

detection rates were virtually not able to be achieved. With

a maximum achievable speaking volume of 120 dB, it would

be theoretically possible even to achieve 80% recognition rate

(see Figures 10 and 11). The in-vehicle sounds came from

track vehicle 2 driving at a speed of 70 km/h. The sound

power level was specified with 114 dB. The results of the

experiment may be taken from Figures 12 and 13. For those

background noises virtually no satisfactory recognition rates

were achieved.

V. DISCUSSION AND CONCLUSIONS

This section describes finally which conclusions were made

and how this work can be used as a basis for further develop-

ments.
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Fig. 6. Speaker-dependent recognition in 61 dB noise of a busy street in 5
meters distance
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Fig. 7. Speaker-independent recognition in 61 dB noise of a busy street in
5 meters distance
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Fig. 8. Speaker-dependent recognition 88 dB noise of a crowd of 100 people
in a large room
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Fig. 9. Speaker-independent recognition 88 dB noise of a crowd of 100
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Fig. 10. Speaker-dependent recognition in 100 dB noise from within a track
vehicle driving with 30km/h
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Fig. 11. Speaker-independent recognition in 100 dB noise from within a
track vehicle driving with 30km/h
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Fig. 12. Speaker-dependent recognition in 114 dB noise from within a track
vehicle driving with 70km/h
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Fig. 13. Speaker-independent recognition in 114 dB noise from within a
track vehicle driving with 70km/h

A. Acoustic modeling and degree of speaker independence

The training of acoustic models in Section III-C proved, that

a number of around 20 samples per hidden markov model can

be sufficient for normal operation of a HMM based speech

recognizer. In the evaluation of speaker independence, it was

shown that in a speech recognizer with a small vocabulary

and a small number of speakers of around 10, a relatively

high degree of speaker independence can be achieved.

B. Noise vulnerability

The evaluation had shown that when using a speech rec-

ognizer with vocabulary of solely 30 words in adverse envi-

ronments of around 60 dB noise can be tackled by speaking

with a raised voice in order to achieve a recognition rate of

about 95%. In environments with extreme noise conditions

from 80 dB up to 150 dB, the speech recognizer can no longer

be used satisfactorily due to detection rates of around 80%.

Here, a method for compensation of noise should be taken

into account in conception of the speech recognizer. It could
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be summarized that keeping a speech recognizers vocabulary

small does not compensate adverse noise of high sound levels

above 100 dB.

However, it should be noted that when speaking louder, not

only SNR increases but also the vocal tract changes its shape

and produces frequencies for which the acoustic models were

not trained. The results obtained here are subject to some inac-

curacy since the identified speech sound levels were calculated

directly at the mouth and thus only represent an estimate.

Furthermore, many microphones feature polar patterns so that

the noise received on the side of the microphone is attenuated

more than those which enter head-on. It can be concluded

that slightly higher SNRs and better recognition rates could be

achieved. The comparison of the speaker-specific and speaker-

independent results suggests that models that were trained by

much more data and therefore having a greater generality, do

not necessarily offer worse results than models that were only

trained by a speaker and are much more specific.

Regarding possible further developments noise sensitivity

can be reduced based on several methods. Besides conven-

tional signal filtering methods human strategies for speech

understanding in noise can be employed. A recent survey about

findings of human strategies for noise compensation can be

found in Loizou [17].

C. Voice as input mode for navigation tasks

The usage of speech as an input mode for the control

of robots must be carefully planned. In this work, speech

which represents a verbal mean is used to perform a spatial

continuous operation task. The objective called to enable a dis-

crete navigation of the robots on an arbitrary two-dimensional

ground. In considering how this task could be completed by

means of speech, the continuous task was transformed into

a discrete task by instructing the user to specify a target

coordinate in a two-dimensional system that the user must

consider first. The spatial thinking user has to transform his

intention to move first into a verbal command which causes

an additional cognitive load and costs time.

Regarding possible further developments, a holistic de-

signed interface could take the requirements of the operation

task and the expectations of the operator into account. The

development should take place through an iterative design-

implementation approach and the human-robot interface in

field evaluation should be kept at pace with development. The

result should be an effective human-robot interface that allows

the user, even under extreme conditions like stress and noise,

for a consistent, effective, and fast control of the robot. For

control by voice discrete operating activities are suitable. It

would be conceivable to raise the navigation commands for

navigation to a higher level of abstraction. For example, the

user could navigate the robots as follows:

• "Drive back to command center", or

• "Drive to robot group A, drive to robot group B"

Furthermore, semi-autonomous functions of the robot could

be controlled. Examples of such instructions are:

• "Follow robot A",
• "Explore area, radius 50 m", or

• "Search for intruders".
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