

Abstract1—Composing different features in a software

system may lead to conflicting situations. The presence of

one feature may interfere with the correct functionality of

another feature, resulting in an incorrect behavior of the

system. In this work we present an approach to manage

feature interactions. A formal model, using Finite State

Machines (FSM) and Aspect-Oriented (AO) technology, is

used to specify, detect and resolve features interactions. In

fact aspects can resolve interactions by intercepting the

events which causes troubleshoot. Also a Domain-Specific

Language (DSL) was developed to handle Finite State

Machines using a pattern matching technique.

I. INTRODUCTION

N important problem in modeling and programming

languages is handling Feature Interactions. When

composing different features in a software system, these

may interact with each other. This can lead to a conflicting

situation, where the presence of one feature may interfere

the correct functionality of another feature, resulting in an

incorrect behavior of the system. Various techniques have

been explored to overcome this problem. Among them,

formal approaches have received much attention as a means

for detecting feature interactions in communication service

specifications.

In Software Product-Line (SPL) engineering [1], [2], the

designer decomposes a software system into functional

features by creating a feature model [1], [3]. But a feature

model can only define a set of features and known

interactions between them. Feature models do not help,

when the designer overlooks a feature interaction –

especially at the implementation level.

Aspect-Oriented Programming (AOP) [4] uses a special

kind of modules called aspects that supports localization of

code from crosscutting features. AOP has been extended

with special language concepts for controlling aspect

interactions [5], [6], but AOP does not support controlling

* This work was partially supported by: the EMERGENT project

(01IC10S01N), Federal Ministry of Education and Research (BMBF),

Germany, and the DAAD (German Academic Exchange Service) program.

feature interactions with modules that are not aspects in

particular objects.

To address the above problems, in this work we propose a

formal approach which uses an extension to finite state

machines as the formalism for behavioral specification. The

central idea behind using finite state machines as

specification models is to have a strong mean to envision

feature interactions. The formalism defines a process, which

consists of the following steps: First, the developer gives a

formal specification of each feature that extends the

system’s core feature, even partial specifications are

allowed. Second, using the FSM’s synchronized cross-

product [7], the developer makes a parallel composition of

the selected feature specifications and analyzes this

composition. Third, the developer can identify conflicting

states by analyzing the composed specification of the global

system. Forth, to resolve feature interactions, the approach

uses aspect-oriented state machines to intercept, prevent,

and manipulate events that cause conflicts. We suggest a

new formalism for aspect oriented state machines (AO-

FSM) where pointcuts and advices are used to adopt

Domain-Specific Language (DSL) [8] state machine

artifacts. The advice defines a state and transition pattern

that it applies at the selected points, i.e. it may insert new

states and transitions as well as it may delete existing ones.

II. PROBLEM DOMAIN: TELECOMMUNICATION SYSTEMS

A. Plain Old Telephone Service (POTS)

Features in Telecommunication systems are packages

providing services to subscribers. The Plain Old Telephone

System (POTS) is considered as a feature providing basic

means to set up a conversation between subscribers. In the

following we provide the design and the specification of the

basic service of a telephone system (POTS). We assume that

a phone is identified by a unique number, and it can be

either calling or being called.

In this specification, there are three objects that constitute

the telephone system: the "user", the "agent" and the "call"

as shown in Figure1. According to our semantics, the

A

Using Aspect-Oriented State Machines for

Resolving Feature Interactions*

Tom Dinkelaker
Software Technology Group

Technische Universität Darmstadt, Darmstadt, Germany

Email: dinkelaker@cs.tu-darmstadt.de

Mohammed Erradi
Networking & Distributed Systems Research Group, TIES, SIME Lab,

ENSIAS, Mohamed V-Souissi University, Rabat, Morocco

Email: erradi@ensias.ma

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 809–816

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 809

instantiation of these objects provides three objects running

in parallel. The communication between objects is based on

operation calls using a rendezvous mechanism. Note that the

behavior part of these objects is specified using a finite state

machine model.

This system works as follows (Fig. 1): Once the caller

(user-1) picks up (offhook) his phone (Agent-1), the

network (designated by the object "call") responds by

sending a tone. This user is then ready to dial the telephone

number of the called party (using the operation "dial") using

a standard telephone interface. Then the network sends

back a signal (operation "Ring") which causes a ring on the

called phone (Agent-2). An Echo_ring is then sent to the

caller (operation Echo_ring). We assume that the called user

is always ready to answer a call. When the called user picks

up (offhook) his phone, the ring is then interrupted and the

two users engage in a conversation.

Fig. 1 Partial automata specifying the three objects

B. Features available for User Selection (User Services)

According to the definition provided by Pamela Zave [9]:

“in a software system, a feature is an increment of

functionality, usually with a coherent purpose. If a system

description is organized by features, then it probably takes

the form B + F1 + F2 + F3 . . ., where B is a base

description, each Fi is a feature module, and + denotes

some feature-composition operation”. Therefore,

telecommunication software systems have been designed in

terms of features. So different customers can subscribe to

the features they need. Many features can be enabled or

disabled dynamically by their subscribers. Among the

telecommunications features provided by a telephone system

we found: Call Waiting, Three Way Calling, Call

Forwarding, and Originating Call Screening.

1) Call Waiting (CW)

A Call Waiting feature (CW) is a service added to the

basic service POTS described earlier. It allows a subscriber

A (having the service CW) already engaged in a

communication with a user B to be informed if another user

C tries to reach him. A can either ignore the call of C, or

press a flash_hook button to get connected to C. In other

words, if C makes a call to A, while A is in communication

with B, then C receives an Echo_ring, as if A was available,

and A receives an “on hold” signal. Then A could switch

between B and C by pressing the flash_hook button. If B or

C hangs up, then A will be in communication with the user

still on line. The basic service POTS to which is added the

Call Waiting feature is symbolically designated by POTS +

CW.

A partial formal specification of POTS+CW is an FSM

FCW shown in Figure 2. The states Qi, for i=1 to 5, have the

following semantics:

- Q1 : A and B are connected and start communicating.

- Q2 : A and B are communicating, then a call from C occurs

on the switch of A.

- Q3 : A and B are communicating, and A receives the signal

call-waiting indicating that someone is calling.

- Q4 : B is waiting, A and C are communicating.

- Q5 : C is waiting, A and B are communicating.

The events Ei, for i=1 to 4, have the following semantics.

- E1 : a call from C arrived on the switch of A.

- E2 : A receives the signal call-waiting indicating that

someone else is calling.

- E3 : A pushes the flash_hook button.

2) Three Way Calling (TWC2)

The Three Way Calling is a service which extends the

basic service POTS. It allows three users A, B and C to

communicate in the following way: Consider a subscriber A

(having the TWC feature) who is communicating with B. A

can then add C in the conversation. To reach this goal, A put

first B on hold by pressing a button flash hook button. Then,

establish a communication with C. And finally, press the

flash hook button again, to get, A, B and C connected. A can

remove C from the conversation by pressing the flash hook

button. If A hangs up, B and C remain in communication.

The basic service POTS to which is added the Three Way

Calling feature is symbolically designated by POTS + TWC.

A partial formal specification of POTS+TWC is the FSM

FTWC shown in Figure 3. The states Ri, for i=1to 4, have the

following semantics:

- R1 : A and B are communicating.

- R2 : B is waiting.

- R3 : B is waiting, A and C are communicating.

- R4 : A, B and C are communicating.

The events Ei, for i=3 and 4, have already been defined for

the specification POTS+CW.

The event E5 has as its semantics :

- E5 : A is communicating with C.

Note that the states “in bold” Q1 and R1 represent nested

FSM. For instance this means that the state Q1 corresponds

to an FSM which is a portion of the global specification,

nested in this state Q1.

2 The abbreviation TWC for Three Way Calling should not be confused

with trust-worthy computing.

810 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

3) Call Forwarding on Busy (CFB)

Call forwarding on busy is a feature on some telephone

networks that allows an incoming call to a called party,

which would be otherwise unavailable, to be redirected to

another telephone number where the desired called party is

situated.

4) Originating Call Screening (OCS)

The OCS Feature allows a user to define a list of

subscribers hoping to screen outgoing calls made to any

number in this screening list. A user A (with the OCS

feature) who registered user B on the list will no

longer make a call to B, but B could call A.

C. Feature Interactions

Feature interactions could be considered as all

interactions that interfere with the desired operation of a

feature and that may occur between a feature and its

environment, including other features. Therefore, a feature

interaction may refer to situations where a combination of

different services behaves differently than expected.

Fig. 2: Specification FCW of POTS+CW Fig. 3: Specification FTWC de POTS+TWC

For instance, pressing a “tap” button can mean different

things depending on which feature is anticipated. This is the

case of a flash-hook signal (generated by pressing such

button) issued by a busy party could mean adding a third

party to an established call (Three Way Calling) or to accept

a connection attempt from a new caller while putting the

current conversation on hold (Call Waiting). Should the

flash hook be considered the response of Call Waiting, or an

initiation signal for Three-Way Calling?

Another feature interaction may occur if we consider a

situation where a user A has subscribed to the Originating

Call Screening (OCS) feature and screens calls to user C.

Suppose that a user B has activated the service Call

Forwarding (CF) to user C. In this situation, if A calls B, the

intention of OCS not to be connected to C will be violated

since the call will be established to C by way of B.

Usually, the causes of interactions may be due to the

violation of assumptions related to the feature functionality,

to the lack of a technical support from the network, or to

problems related to the distributed implementation of a

feature. Despite the lack of a formal definition of a feature

interaction due to the diversity of the interactions types, the

reader will find a detailed taxonomy of the features

interactions [10].

Our approach to process the feature interaction problem

consists in two methods based on formal techniques. The

first method is used to detect the interactions while the

second resolves them. In the context of formal techniques,

interactions are considered as "conflicting statements". This

may be a deadlock, a non-determinism, or constraints

violation which may result from states incompatibility

between two interacting features. The incompatibility

between states can be detected using a “Model-Checking”

technique.

III. PROBLEM STATEMENT

Feature interaction is considered a major obstacle to the

introduction of new features and the provision of reliable

services. In practical service development, however, the

analysis of interactions has often been conducted in an ad

hoc manner.

However, the feature interactions problem is not limited

to the telecommunications domain. The phenomenon of

undesirable interactions between components of a system

can occur in any software system that is subject to changes.

This is certainly the case for service-oriented architectures.

First, we can observe that interaction is at the very basis of

the web services concept. Web services need to interact, and

useful web services will emerge from the interaction of more

specialized services. Second, as the number of web services

increases, their interactions will become more complex.

Many of these interactions will be desirable, but others may

be unexpected and undesirable, and we need to prevent their

consequences from occurring.

Aspect-oriented programming (AOP) enables developers

to modularize such non-functional concerns in OO

languages. Important AOP concepts are pointcut, join point

model, and advice. Pointcuts are predicates over program

execution actions called join points. That is, a pointcut

TOM DINKELAKER, MOHAMMED ERRADI: USING ASPECT-ORIENTED STATE MACHINES FOR RESOLVING FEATURE INTERACTIONS 811

defines a set of join points related by some property; a

pointcut is said to be triggered or to match at a join point, if

the join point is in that set. It is also common to speak about

join points intercepted by a pointcut. Such a join-point

model (JPM) characterizes the kinds of execution actions

and the information about them exposed to pointcuts (e.g. a

method call). An Advice is a piece of code associated with a

pointcut, it is executed whenever the pointcut is triggered,

thus implementing crosscutting functionality. There are

three types of advice, before, after, and around;

relating the execution of advice to that of the action that

triggered the pointcut the advice is associated with. The

code of an around advice may trigger the execution of the

intercepted action by calling the special method proceed.

However, there is a lack of a general approach to weave

on code fragments of DSLs. The problem is that current

AOP tools support only one JPM at a time, which is for

most aspect-oriented (AO) languages one JPM for the events

in the execution of an OO language [4]. Only for some

DSLs, there is a domain-specific aspect language with a

domain-specific JPM [13] (e.g. encompassing join points

like a state transition in a state machine). Still, current AOP

tools do not provide support for special quantifications for

weaving aspects into programs written in several languages

that have different kinds of join-point models.

For example, consider implementing a logging feature as

an aspect that needs to be woven into the code of several

languages for debugging, such as it need to be woven into

code in Java with an Aspect-like JPM, code in SDL3 that

defines a JPM for FSMs, and code in LOTOS4 that defines a

JPM on top of protocols as communicating processes.

IV. BEHAVIORAL MODELING OF FEATURES

This paper proposes to model software using models that

defines details of the behavior of a system and each of its

features. As elaborated in the following, the proposed

formalism is based on finite state machines (Section IV.A).

It defines the basic system in a behavioral model (Section

IV.B) and it defines the behavior of features using aspects

(Section IV.V).

A. Finite State Machines (FSMs)

An automaton with a set of states, and its “control” moves

from state to state in response to external “inputs” is called a

Finite State Machine (FSM). A Finite State Machine,

provides the simplest model of a computing device. It has a

central processor of finite capacity and it is based on the

concept of state. It can also be given a formal mathematical

definition. Finite State Machines are used for pattern

matching in text editors, for compiler lexical analysis, for

communication protocols specifications [16]. Another useful

3 SDL: Specification and Definition Language:

http://www.sdl-forum.org/SDL/index.htm
4 LOTOS: Language Of Temporal Ordering Specification:

http://language-of-temporal-ordering-specification.co.tv/

notion is the notion of the non-deterministic automaton. We

can prove that deterministic finite State Machine, DFSM,

recognize the same class of languages as Non-Deterministic

Finite State Machine (NDFSM), i.e. they are equivalent

formalisms.

Definition 1: A non-deterministic Finite State Machine is

defined by a quadruplet Q, Σ, δ, q0 where Q is a set of

states, Σ is an alphabet, δ is the transition function, and q0 is

the initial state. The transition function is δ: Q× Σ → 2Q

where 2Q is the set of subsets of Q.

An event σ ∈ Σ is accepted out from a state q ∈ Q if the

occurrence of σ is possible from the state q, i.e. if δ(q,σ) is

not empty, we denote this by δ(q,σ)!

When δ(q,σ) is empty, we write δ(q,σ)¬!. We consider a

blocking state q (deadlock) if no transition is possible from

this state. Formally: q is blocking ⇐⇒ ∀σ ∈ Σ, δ(q σ)¬!.

Definition 2: A deterministic finite state machine is defined

by a quadruplet Q, Σ, δ, q0and corresponds to a particular

case of the non-deterministic finite state machine where for

any q and for any event σ, δ(q,σ) is either the empty set or a

singleton. When δ(q,σ) is not empty, δ(q,σ) = {r} will be

simply noted δ(q, σ) = r.

For all FSM A, the set of accepted traces will be

designated by LA.

Definition 3: Consider 2 FSMs A=QA, ΣA, δA, qA0 and

B=QB, ΣB, δB, qB0 respectively accepting regular languages

LA and LB, the sum of A and B is designated A⊕B

accepting the regular language LA∪LB. Moreover, if A and

B are deterministic then A⊕B is also deterministic.

Intuitively if A and B specifies 2 processes, then A⊕B is the

global specification of the two processes operating in an

exclusive manner.

Definition 4: Consider 2 FSMs A=QA, ΣA, δA, qA0 and

B=QB, ΣB, δB, qB0. Let Ω be a subset of ΣA and ΣB, in other

words Ω ⊆	ΣA∩ΣB. The Synchronized Product of A and B,

according to Ω, is an FSM represented by A∗B[Ω] = Q, Σ,

δ, q0 defined formally as follows:

 Q ⊆ QA×QB , Σ = ΣA∪ΣB , q0 = (qA0,qB0) ∀q=qA,qB∈Q, ∀σ∈Ω:

(δ(q,σ)!) ⇐⇒ (δA(qA,σA)! ר	δB(qB,σB)!)

(δ(q,σ)!) ⇒ (δ(q,σ)) = (δA(qA,σ) × δB(qB,σ))
 ∀q =qA, qB∈ Q, ∀σΩ:

(δ(q,σ)!) ⇐⇒ (δA(qA,σA)! ש δB (qB,σB)!)

(δ(q,σ)!) ⇒ (δ(q,σ) = (δA(qA,σ)×qB) ∪ (qA×δB(qB,σ)

When Ω is empty, two processes are said to be independent

and their product is denoted A∗B[]. When Ω = ΣA∩ΣB , their

product is denoted A∗B. Intuitively, if A and B specifies 2

812 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

processes, then A∗B[Ω] is the global specification of the 2

processes composed in parallel and have to synchronize on

Ω’s actions.

Note that AB[] is the product of the automaton A and B

obtained by removing the blocking state from the

Synchronized Product A∗B[Ω].

Definition 5: (Sum of two FSMs, the Extension relationship)

Consider two FSMs A=QA,A,A,qA0and B=QB,B,B,qB0
which accept respectively the regular languages LA and

LB. The sum of A and B noted AB accepts the regular

language LALB. In addition, if A and B are deterministic

then AB is deterministic.

Intuitively, if A and B specify two processes, then AB is

the global specification of the two processes behaving

exclusively.

B. Essential Behavioral Model (EBM)

The principle of our method for managing feature

interactions, consists in three phases: the global behavior

specification, the interactions detection and the interactions

resolution. Interactions can be presented by states called

conflicting states. This can be a deadlock (blocking)

situation, a non-determinism or a constraints violation that is

presented as an incompatibility between two states of

features in interaction.

B.1. Global Behavior Specification: this phase consists in

two steps:

Step 1: Specify formally each feature (involved in the

interaction) with the basic system service (i.e. POTS in the

case of a telecommunication system). This specification can

possibly be partial.

Step 2: Make a parallel composition of the features,

leading to a global behavior called an Essential Behavioral

Model (EBM), to be analyzed. This implies making a

synchronized automaton product (as shown in definition 4)

of the behaviors of the composed features. The

synchronization alphabet could be possibly empty.

B.2. Interactions Detection:

Identify conflicting states by analyzing the EBM

automaton produced in Step 2. Such states could be either a

state where a given transition can lead to two distinct states

(this is the case of non-determinism which is defined in

definition 1), to a deadlock state (where one can execute no

transition) or to a state constraints violation (i.e. a state

belonging to the product of two features specifications), and

that results from two incompatible states). Formally, this

violation means that two incompatible states allocate

different “logical” values to the same variable.

The method of interaction resolution consists in three

strategies. Recall that these strategies need to be applied

during the specification phase. One among these strategies

could be chosen and used depending on the type of

interaction.

B.3. Interactions Resolution:

Strategy 1: Make a composition using an exclusive

choice of the two features specifications involved in an

interaction. The designer could use existing merge

algorithms [17] for LTS (Labeled Transition Systems) based

specifications. Such algorithm produces a specification

where its behavior extends the merged ones. The definition

of the “extension” relation was given in Definition 5.

Strategy 2: Solve the interaction by making a precedence

order upon the occurrence of certain events of the features in

interaction. This allows a feature to hide some events from

the other feature.

Strategy 3: Establish a protocol between features

involved in an interaction. This protocol consists in

exchanging the necessary information to avoid the

interaction. This approach is more adapted in the case where

the features are dedicated to be implemented on distant sites.
 In the following we explain the suggested method in the

case where an interaction occurs between the call waiting

(CW) feature and the Three Way Calling (TWC) Feature

specified in Section II.

Using simultaneously both services (Call waiting and

Three Way Calling) is formally represented by FCW||TWC

which is the product (Definition 4) of two FSMs FCW and

FTWC. In other words, FCW||TWC=FCW*FTWC[] (Definition 4). is empty since here we consider the case (event E3) where

pushing the flash_hook button by A is considered by one

among the provided features and not by both of them

simultaneously. The states of FCW||TWC will be designated by Qi, Rjwhere Qi and Rj are respectively the states of FCW

and FTWC.

The interaction (ambiguity) is detected by the presence of

a non-determinism on the states Qi, Rjof FCW||TWC where

i=2,3,4,5 and j=1,3,4. Intuitively, when he pushed the

flash_hook the subscriber A could not know if the signal is

interpreted (executed) by the feature CW or by the TWC.

TOM DINKELAKER, MOHAMMED ERRADI: USING ASPECT-ORIENTED STATE MACHINES FOR RESOLVING FEATURE INTERACTIONS 813

V. Aspect-Oriented Finite State Machines (AO-FSMs)

In this paper, we propose a new formalism for aspect-

oriented state machines (AO-FSM) which is based on finite-

state machines and the Essential Behavioral Model. An AO-

FSM defines a set of states and transitions like an FSM, but

states and transitions do not need to be completely specified.

Developers can selectively omit states, transitions, and

labels, and therefore constitutes a partial FSM in which parts

are missing so that it can be used as a pattern for matching

against other FSMs and for manipulating them.

In an AO-FSM aspect, there are two parts: a pointcut and

advice – like in other aspect-oriented languages for GPLs,

but our pointcut and advice adapt DSL state machine

artifacts. An AO-FSM pointcut defines a state and transition

pattern that selects all FSMs that the advice adapts. The

advice defines a state and transition pattern that it applies at

the selected points, i.e. it may insert new states and

transitions as well as it may delete existing ones.

Fig. 2 shows visual models of all types of AO-FSMs. The

upper row enumerates all pointcut types (alphabetic indices),

in which only the shown parts define the pattern and omitted

parts match like wildcards. The lower row enumerates all

advice types (roman indices), in which only the bold parts

adapt the corresponding parts of a FSM. When constructing

an AO-FSM aspect, the different types of pointcut and

advice types can be composed.

Fig. 2: Types of aspect-oriented finite state machines

There are 6 different kinds of pointcuts: a) matches a

labeled state, b) matches any state, c) matches a state that

meets a certain preposition, d) matches a state with an

incoming transition, e) matches a state with an outgoing

transition, and f) matches a sequence of two states with a

transition.

The are 6 different kinds of advice: i) inserts a new

transition for event Es, ii) inserts a new state St, iii) adds a

new proposition to a state, iv) defines a dependency

constraint c2 between two states or two transitions, v) deletes

the transition for event Eu, vi) deletes the state Sv, vii)

deletes the property p3, and finally, viii) defines a conflicting

composition that results in an error message.

To weave an aspect, we match all pointcuts and apply all

advice for all FSMs. For a single FSM, the pointcut matches

at every point in the FSM and applies the advice at each of

these points. The adapted FSMs are then used for execution.

VI. RESOLVING FEATURE INTERACTIONS WITH AO-FSMS

To control feature interactions, developers uses aspects to

analyze and manipulate the behavior of a system that they

compose from a set of modular feature specifications. In a

nutshell, when they compose specifications into an Essential

Behavioral Model consisting of nested state machines, they

uses AO-FSM aspects to detect interactions that manifest in

singularities in the composed specification. There are three

possible singularities: 1) the composed EBM is non-

deterministic, 2) the composed EBM has contradicting

prepositions, or 3) the composed EBM has blocking states.

The main advantage of our approach is that feature

interactions can be directly identified from the model.

Finally, the developer can resolve feature interactions by

eliminating singularities using AO-FSM aspect.

For example, there is a feature interaction when we

compose the two feature specifications: Call Waiting (CW)

and Three Way Calling (TWC). For instance, when A is in

communication with B and A gets an incoming call from C,

will the CW feature or the TWC feature be invoked?

To identify interactions, the system composes all models

using the FSM synchronized cross-product operator of

Definition 4, which corresponds to the parallel composition

of the state machines of such specifications. It composes

feature specifications with the core feature and the aspects.

m)

ExEx

o)

pz py

py pz

p)

Si

(Si,)!

Fig. 3: Three detection aspects checking for composition singularities

When composing the aspects, a set of so-called detection

aspects check the composition for possible conflicts. A

detection aspect detects a singularity using a pointcut and its

advice always declares a conflict, which makes the

composition fail as long as the singularity is not corrected.

Fig. 3 shows three analysis aspects that detect the three

aforementioned singularities: m) matches any state if there

are more than one transition with the same event Ex, o)

matches any state with contradicting prepositions py and pz,

and p) matches every blocking state Si for which there is no

outgoing transition. When necessary, developers can define

their own detection aspects. Whenever one of the detection

aspects’ pointcuts matches in a composed system, its advice

will report a conflict.

i) ii) iii) v) vi) vii)

Sp p1

St

Es

p2 p4

a) b) c) d) e) f)

Eo Eq Er

Eu

Sv

iv) viii)

c2

814 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Detection aspects are in particular useful when composing

many models and aspects that manipulate those models.

Detecting composition singularities prevents any further

incorrect processing of the system in a potentially undefined

state. The above three detection aspects help automatically

detecting the most important composition singularities.

Therefore, the developer does no longer have to worry about

them. Similar to related work on aspects interaction [5],

[16], automatic feature interaction detection is enabled.

However, automatic feature conflict resolution is not

possible [5].

To resolve the conflict, the developer need to specific a

set of resolution aspects. Each aspect intercepts the

reception of events, and removes a singularity (e.g. non-

determinism) from the composed specification. Depending

on corresponding context (e.g. the current state and the

received events), the aspect can make a choice which of the

conflicting features should be active and which not.

A resolution aspect defines a pointcut and advice for the

corresponding conflict resolution, which may have been

detected using a detection aspect. Its pointcut matches the

conflict situation. Further, its advice declares what states and

transitions to remove from the composition such that it

becomes deterministic.

For example, consider the feature interaction between

CW and TWC. First, the detection aspect in Fig. 3 at index

m identifies this non-determinism singularity. Second, the

developer specifies the resolution aspect in Fig. 4. That

resolution aspect resolves the interaction of the CW and

TWC features by defining a precedence between those

features that depends on the sequence of previous events.

Intuitively, if a call of C arrives on agent A (event E1) before

A presses the flash_back button (event E3), the CW feature

will be active. In this case, the left pointcut in Fig. 4 will

match and temporarily remove the transition TWC.E3.

Conversely, if E3 takes place before E1, then the TWC

feature will be active. In this case, the right pointcut in Fig.

4 will match and temporarily remove the transition CW.E3.

TWC.E3

E3

CW.E3TWC.E3

E1

preceeds
CW.E3 preceeds

Fig. 4: A resolution aspect that resolves the CW TWC interaction

from Section IV.B

VII. DISCUSSION

To validate the approach, we have implemented a

prototype of AO-FMS in the Groovy language [18] using

the POPART framework [17] that allows embedding DSLs

and developing aspect-oriented extensions for those DSLs in

form of plug-ins. Further, we have implemented the

examples presented in [7] and which were used as a running

example in this paper as a case study. As a proof of concept,

the AO-FSM prototype automatically detects the interaction

from Section IV.B, and we have developed a resolution

aspect to revolve this interaction. We could achieve

objectives stated in the introduction, namely the support for

separation of concerns (in particular crosscutting features),

the formalization of behavior, and dealing with interactions.

With the current prototype, conflicts can successfully be

detected and resolved. However, correct results depend on

whether the developer completely specifies the model and

correctly implements aspects with the AO-FSM tool.

Furthermore, at the current stage, we cannot draw

universally valid conclusions from the case study. A larger

case would be more convincing. At the end, only a

formalization proof of the formalism in a proof assistant

(like Isabelle or Coq) would give absolute guarantees.

Our prototype implementation only covers feature

detection and resolution at design time. For save feature

implementation, our approach could easily integrate with a

code generator from state machines to C or Java code.

Various practicable limitations need to be addressed by

future work, the expressiveness of model is confined by

state machines and therefore systems whose behavior can be

formalized as a regular language. The approach could be

extended for models with richer semantics, which

consequently would make it more complicated. Because we

build the synchronized product of FSMs, the approach

suffers from the well-known state explosion problem when

using FSMs for modeling. Therefore, the prototype can only

be used to analyze small models. In future work, we want to

reduce synchronized products by finding equivalent states.

Another limitation is that it currently does not nicely

integrate with standard modeling notations, such as UML. In

future work, we would like to support for importing UML

state charts and let the developer enhance them to EBMs.

VIII. RELATED WORK

Most similar is the work in the field of FOP, AO

modeling, and model driven development.

FOP [11] provides language support for implementing

modular features that encapsulate basic functionality.

Similar to FOP, our EBM and AO-FSM allow modular

specification of features. While FOP uses so called lifters for

inheriting features into a composition, we build on the sum

for inheriting FSMs and the synchronized product for

composing them. While FOP is for implementation, we

focus on the specification of features. FOP allows defining

known interactions. In contrast, EBM and AO-FSM allow

automatic detecting of interactions that the developer is not

aware of.

Aspect-oriented modeling has come up with various

modeling notations into which aspects are woven. There are

AO state machines [13] and other AO models available.

TOM DINKELAKER, MOHAMMED ERRADI: USING ASPECT-ORIENTED STATE MACHINES FOR RESOLVING FEATURE INTERACTIONS 815

However, they have been little explored in the context of

detecting feature interactions in behavioral models. They

can only detect conflicts involving aspects, but they cannot

detect interactions between base features as we do.

Model-driven development proposes various kinds of

models – not only FSMs. Life-Sequence Charts [19] are

similar to AO-FSM. Such models are often used for code

generation. While standard model notations do not

adequately consider interactions, there are a few special

models that allow expressions such constraints for a

restricted set of domains, such as telecommunications for

which special DSLs are available. Currently, developers are

lefts alone to encode constraints on the modeled feature

using constraint languages for which often there is no

complete support for code generation. In contrast to this,

possible domains for EBM and AO-FSM are not limited.

IX. CONCLUSION

In this paper, we suggested a formal approach to detect

and resolve feature interactions within a distributed software

system. The approach is based on a new formalism for

aspect-oriented state machines (AO-FSM) based on finite-

state machines and an Essential Behavioral Model (EBM).

The EBM defines states and transitions as an FSM, but

states and transitions do not need to be completely specified.

A specific mechanism for interactions detection and a

strategy for feature interaction resolution were presented.

The implementation of this mechanism and its associated

strategy were made using the AO-FSM formalism.

Therefore, the pointcut defines a state and transition pattern

that selects all FSMs that the advice adapts, while the advice

defines a state and transition pattern that it applies at the

selected points. In fact, the approach uses aspect-oriented

state machines to intercept, prevent, and manipulate events

that cause conflicts.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their valuable comments. The authors would also like to

thank Yassine Essadraoui who has contributed to the

implementation of the prototype of AO-FSM and the

telephone case study as part of his Master’s thesis.

REFERENCES

[1] Clements, P. and Northrop, L., “Software product lines”, Addison-

Wesley, 2001.

[2] Pohl, K. and Böckle, G. and Van Der Linden, F., “Software product

line engineering: foundations, principles, and techniques”, Springer-

Verlag New York Inc, 2005.

[3] K. Czarnecki and A. Wasowski. “Feature diagrams and logics: There

and back again” in Proc. 11th Int. Software Product Line Conference

(SPLC 2007), Washington, DC, USA, 2007, pp. 23–34.

[4] Kiczales, G. and Lamping, J. and Mendhekar, A. and Maeda, C. and

Lopes, C. and Loingtier, J.M. and Irwin, J.: “Aspect-oriented

programming” in Proc. Europ. Conf. on Object-Oriented

Programming, Springer, 1997, pp. 220–242.

[5] G. Kniesel, “Detection and Resolution of Weaving Interactions.

TAOSD: Dependencies and Interactions with Aspects”, In

Transactions on Aspect-Oriented Software Development V, pp. 135–

186, LNCS, vol. 5490, Springer Berlin / Heidelberg, 2009.

[6] Tanter, E., “Aspects of composition in the Reflex AOP kernel”,

Software Composition, Springer, 2006, pp. 98–113.

[7] M. Erradi and A. Khoumsi, “Une approche pour le traitement des

interactions de fonctionalités des systèmes téléphoniques”, in Proc.

Colloque Francophone International sur l'Ingénierie des Protocoles

(CFIP'95), Rennes, France, 1995.

[8] M. Mernik, J. Heering, and A.M. Sloane, “When and how to develop

Domain-Specific Languages” ACM Computing Surveys (CSUR), vol.

37, no. 4, 2005, pp. 316–344.

[9] Pamela Zave, “Feature Interaction”,

 http://www2.research.att.com/~pamela/fi.html

[10] E.J. Cameron, N.D. Griffeth, Y.-J. Lin, M. Nilson, W.K. Schnure, et

H. Vlethuijsen. “A feature Interaction Benchmark for IN and beyond”,

Feature Interactions in Telecommunications Systems, Eds. L.G.

Bouma and H. Velthuijsen, IOS Press, Amsterdam, 1994.

[11] Prehofer, C.: “Feature-oriented programming: A fresh look at objects”

in Proc. ECOOP, Springer, 1997, pp.419–443.

[12] Parnas, D.L., “On the criteria to be used in decomposing systems into

modules”, Communications of the ACM, vol. 15, no. 12, 1972, pp.

1053–1058.

[13] M. Mahoney, T. Elrad, “A Pattern Story for Aspect-Oriented State

Machines”, LNCS, Vol. 5770, 2009.

[14] G. v. Bochmann, “Finite State Description of Communication

Protocols”, Computer Networks, Vol. 2 (1978), pp. 361-372.

[15] F. Khendek and G. v. Bochmann, “Merging Behavior specifications”,

Proc. FORTE'1993, Boston, USA.

[16] W. Havinga, I. Nagy, L. Bergmans, M. Aksit, "A graph-based

approach to modeling and detecting composition conflicts related to

introductions". In Proc. International Conference on Aspect-Oriented

Software Development, ACM, 2007.

[17] T. Dinkelaker, M. Eichberg, and M. Mezini, „An Architecture for

Composing Embedded Domain-Specific Languages”. In Proc. Aspect-

Oriented Software Development ACM New York, 2010.

[18] D. König, A. Glover, “Groovy in Action”. Manning, 2007.

[19] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence

Charts. Formal Methods in System Design, vol. 19, no. 1, pp. 45–80,

2001.

816 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

