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Abstract—The paper proposes a new method for interactive 

visual exploration of the chains of financial transactions, 

assisting an analyst in the detection of money laundering 

operations. The method mainly concerns searching, displaying 

and annotating selected groups of transactions from a database. 

We show how one can programmatically and interactively 

reduce the volume of the chains surveyed and limit the analysis 

to the most suspicious transactions. In order to improve 

readability of the transaction graph, an evolution-based 

algorithm has been designed to optimize its visual 

representation. The system is verified on the real-life database 

of financial transactions. The experiments conducted have 

shown that allowing visual exploration, one can accelerate the 

search process and enrich the data analysis. 

I. INTRODUCTION 

ONEY laundering denotes the financial operations 

aimed at putting into circulation  money from illegal 

sources, mainly from criminal activities. Detection of the 

transactions involved in the process of money laundering is 

extremely difficult and complex. This follows on the one 

side from the large amount of data that must be examined 

and, on the other from the difficulty of distinguishing the 

ordinary transactions from suspicious ones. Many systems of 

recording and monitoring transactions, type AML (Anti-

Money Laundering), use predetermined rules to detect 

suspicious transactions [1]; [6]; [10]; [11]. However, despite 

the commitment of huge resources, the effectiveness of 

current solutions is very low. In general, the percentage of 

verified transactions as indicated by the system of suspicious 

transactions, measured by the index of TPR (True Positive 

Rate), is very small. For example, one of the largest financial 

institutions in the Balkans, after the purchase and 

implementation of software - some of the newest and most 

expensive software against money laundering -  scored TPR 

equal to 0.02%. This result may seem daunting, but, as 

practice shows, the majority of institutions start with this 

level of accuracy and, after years of fine-tuning the system 
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and finding new patterns, TPR may reach about 5% [4] 

Government bodies involved in the issuance of regulations 

recommend to developers that the system should reach TPR 

ranged from 4% to 7% [4]; [6].  

In this paper, we propose an interactive method for visual 

data mining, assisting an analyst in the detection of illegal 

transactions. Support consists mainly of visualization and 

annotation of some of the operations in a graph showing the 

money flow chains between accounts. 

In real-world applications, the number of accounts and 

transactions is huge; therefore even a partial graph 

visualization poses problems of feasibility, readability and 

interpretation of financial operations. In order to assist the 

analyst to interactive  interrogation of the database, we have 

introduced the functionality of defining SQL queries and 

graphical operations on the graph of transactions resulting in 

a significant reduction in the search space. We have also 

provided a number of editing and graph visualization 

features, including heuristics to visualize sequences of  

transactions, graphical aggregation of transactions 

corresponding to the same account, and the transaction graph 

optimization by evolutionary algorithm. 

The fundamental characteristic which determines the ease 

of interpretation and pattern matching operations is the 

representation of the transactions. Typically in financial 

information systems, transactions are represented in a tabular 

form as shown in fig. 1, a report of  program cash flow 

chains between accounts taken from the SART system 

(System for Analysis and Registration of Transactions, 

developed by TETA SA company) [12]. We see that the 

presentation of a large number of transactions is barely 

legible. The report contains information on only a few dozen 

transactions and yet these are difficult to display on a 

computer screen. An additional difficulty in visualizing the 

chain of transactions using the tables and data sheets is 

heterogeneity. For example, an account can have several 

incoming and dozens or even hundreds of outbound 

transactions. In such cases the transactions recorded in the 

traditional table are hardly legible and are cumbersome to 

handle because the analyst must often "scroll" the report. 

The paper is organized as follows. The next section will 

show how one can interactively reduce the volume of the 
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analyzed chains, namely how one can view in place of all the 

data only the most important transactions. 

 

 
 

Fig. 1. Tabular representation of chains of transactions 

  
Then we show a simple, intuitive way in which one can 

find more detailed information. We will present a solution 

that optimizes the visual representation of  transaction chains 

enabling easier analysis of graphic schemes, accelerating the 

search process, and enriching the functionality of the system. 

For example, by marking the selected transactions as 

suspicious, one can try to learn the system to recognize 

patterns of money laundering operations. 

More details about the database structures in AML 

systems may be found in [7], [8], [9]. 

II. REPRESENTATION OF TRANSACTION CHAINS 

The main concern while designing a visualization 

algorithm of sequential operations is the complexity of the 

resulting graph. In the project, the main measure of 

assessment of the graph readability was the number of 

intersections of edges connecting vertices of the graph: the 

fewer the edges, the better the resulting graph. If the graph 

contains n accounts there could occur approximately n
2
/2 

edges between them [13]. Let us note that in practice some 

of the edges can be repeated. It follows that the complexity 

of such a graph is O(n
2
) [2], [3]. Fig.2 presents an example 

of a graphical representation of the transaction chains. The 

bold edges indicate that there are many transactions between 

linked accounts. Red color means that the edge, or at least 

one of multiple edges, represents a suspicious transaction.  
To effectively minimize the number of cuts generated in 

the initial graph, the whole transformation process was 

divided into two stages. In the first the simple heuristics have 

been applied such as the aggregation of multiple edges, the 

clustering of accounts by type, the linking accounts with the 

same neighbor in the graph, and the displacement at the 

bottom of the graph the accounts that are related to 

transactions with one another account. The graph thus 

prepared leads to the second stage of the optimization 

process, which aims to reduce the number of edge 

intersections and thus improves the readability of the graph. 

 

 
 

Fig. 2 Graph of transaction chains obtained by application 

 

Let us now proceed to describe the evolutionary algorithm 

that minimizes the number of intersections of edges in the 

graph. The task of the algorithm is to find such repartition of 

vertices on the plane that the number of intersections of 

edges of the graph is as small as possible (see the 

specification of Algorithm 1). 
 

Algorithm 1. Minimization of the number of edge intersections 

 
C = 5000;  // number of iterations without changes to    
             stop evolution 
MutSrcPr = 0.45; // probability of source account mutation 
MutInterPr = 0.1;  // probability of intermediate account mutation 
MutDstPr = 0.45; // probability of target account mutation 
Fmin = infinity;  // minimal number of intersections 
F = infinity;    // minimal number of intersections of individual in 
           one trial 
FTemp = infinity;  // number of intersections in currently mutated  
             individuals 
IBest = NULL;  // the best individual 
ITemp = NULL;  // temporary individual, similar for all trials 
I = NULL;    // evolved individual in the trial 
Imut = NULL;   // mutated individual in a given iteration  
N = 3;     // number of tested individuals 
M = 3;     // number of mutations of a given individual 
FOR i = 1 TO N DO  // number of tested individuals 
 
BEGIN 
  ITemp = initiated new graph of transactions(); 
  FOR j = 1 TO M DO  // number of mutation of an individual 
    I = ITemp; 
    DO 
 Imut = I; 
      IF RAND() < MutSrcPr THEN Perform Imut mutation of source  
         accounts; 
      IF RAND() < MutInterPr THEN Perform Imut mutation of   
         interm. accounts; 
      IF RAND() < MutDstPr THEN Perform Imut mutation of target    
         accounts; 
      FTemp = compute a number of intersections in Imut; 
 IF FTemp > F THEN 
 BEGIN 
   F = FTemp; 
   I = Imut; 
 END 
    WHILE (F doesn’t change in C last iterations) 
    IF F < Fmin THEN 
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     BEGIN 
      Fmin = F; 
      IBest = I; 
     END 
  END 
END 

 
To explain the algorithm let us start by describing the 

process of evolution. The outer loop FOR algorithm 

indicates how many individuals will be considered in the 

initial population. Since the algorithm does not use crossover 

operator, the evolution of population is equivalent to the 

evolution of each of the individuals separately. The inner 

loop FOR controls the number of mutation attempts on the 

same individual. The algorithm may fall into a local 

minimum of the objective function, therefore repeating the 

evolution several times from the same starting point greatly 

reduces these cases. 

The main part of the evolutionary algorithm is the most 

nested DO-WHILE loop. Mutations are performed until the 

number of iterations reaches C or the solution is not 

improving. We have proposed three types of mutation: 

displacement of source, intermediate and target nodes. 

Displacement of the source nodes changes the headings of 

two randomly selected groups of vertices (there may be a 

group containing one vertex). Here we use the heuristics that 

when the order of accounts in the group does not change, it 

is therefore permissible to move only the entire group. A 

similar mutation relates to the target accounts. Mutation of 

intermediate nodes is drawing the new position in the 

permitted area between the source and target accounts. 

The second important feature concerns the user interaction 

related to the definition of the scope of data investigation. 

This is done in two ways. The first solution is the ability to 

filter transactions that are selected from a database by SQL 

query. The second way is a direct manipulation on the 

displayed graph of chains of transactions. For large 

databases, sequential viewing and analysis of all transactions 

would be very time-consuming or even impossible. To 

partially overcome these difficulties, the two phase commit 

was implemented, namely a display of the transactions 

characteristics that meet the search criteria; and acceptance 

by the analyst to draw the graph.  
In the example in fig.3 the analyst launched a simple 

query searching for the transactions with the amount of more 

than 190 thousand zł. From the computing, Characteristics, 

we see that there are 809 such transactions involving 401 

source, intermediate, and target accounts, and the area 

calculated  for visualization is 4004 x 4004 pixels. This form 

lets the analyst select whether to view the graph, or modify 

the query to reduce or extend the set of transactions. The 

graph is displayed after optimization using an evolutionary 

algorithm 
 

 
 

Fig. 3 Two-phase commit - the appearance of the window after query 

execution 

 
In some cases the analyst may optionally re-arrange the 

graph manually. An example of the moving operation of the 

account ID 5169 is shown in fig.4. 

 
 

Fig.4. Moving a node: A - selection, B - dragging, C - a new position 

 
Another operation is to remove vertices of the graph. This 

may happen when, after SQL filtering, the graph contains 

either too many accounts or accounts which have proved 

during the analysis to be uninteresting. To obtain a more 

readable graph, the analyst may then remove them manually. 

Let us note that the accounts are not removed physically 

from the database, but only from the currently displayed 

diagram. The steps of account deletion are shown in fig. 5.  
An important operation is the interactive marking of 

transactions as suspicious. With this functionality, an analyst 

or pattern recognition program may mark the transaction as 

suspicious [cf. TABLE I]. Information about the suspicious 

transaction is stored in a database and can be used in 

subsequent studies. 

In the system many other useful features have been 

designed, such as memorizing a query filtering transactions, 

zooming graph, Undo and Redo functions, and saving a trace 
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Fig.5. Remove a node: A - the initial situation, B – selection from the 

menu, Delete, C - after removal of the top figure 

 

operations log. A detailed description of these functions 

along with examples is given in [9].  

III. DESCRIPTION OF EXPERIMENTS 

This section contains descriptions of two experiments, 

namely: 1) advanced retrieval of database transactions, and 

2) optimization of the graph using an evolutionary algorithm. 

In the experiments, the real-life data obtained from one of 

the Polish banks are stored in a relational database 

PostgreSQL 8.3. 

The experimental database consists of three tables: 

Transaction, Query and Trace. The first one contains the 

input data in the form of transaction descriptions (TABLE I). 

TransId column is a unique key serving to identify 

unambiguously the transaction. The next two columns 

contain information about the accounts involved in the 

transaction: SrcAcctId is the identifier of the account from 

which money is transferred, and DstAccId indicates a debited 

account. In this example, identifiers are represented by small 

integers, but in real applications, the account identifier may 

be the IBAN or NRB. The Date and Amount columns 

contain the date of execution and the transfer amount, 

expressed in PLN. The Suspected column indicates whether 

the transaction is suspicious in terms of money laundering, 

and may be modified by the system. 

 

TABLE I. EXAMPLE OF TRANSACTION DESCRIPTIONS 

TransId SrcAccId 

DstAccI

d Date Amount 

Sus-

pected 

677 21561 22924 01-02         73 095,67     

678 21561 22924 01-02         88 142,15     

2888 24756 16579 01-02         67 684,03     

730 558 22971 01-02         66 495,43     

1821 19202 23934 01-02         57 669,16     

1823 18677 22839 01-02         80 000,00     

1933 2135 24037 01-02       180 000,00     

1925 21561 24032 01-02         74 657,08     

1926 21561 24033 01-02         76 910,61     

1927 21561 24033 01-02       109 671,77     

1928 21561 24032 01-02       134 746,56     

 

Other tables are Query and Trace. The first of these 

tables holds query requests through which data about the 

transactions are loaded. The second, the Trace table, stores 

the user actions on the displayed graph of chains of 

transactions. Data for application can be obtained from any 

bank's financial system which offers the functionality of 

transaction registration and thus at least partially satisfies the 

requirements of the legislature. If the data have a different 

structure than that shown in TABLE I, any tool of the class 

ETL (Extract, Transform, Load) can be used for importing 

data. 
The system runs on PC computers, currently on the two 

leading operating systems, Windows and UNIX, using the 

popular database management system Postgres. To meet the 

requirement to run on different systems, the system was 

implemented using Java environment and a library Eclipse 

RCP GEF for graphics editing. Eclipse RCP (called the 

Eclipse Rich Client Platform) is a library which gives rise to 

the creation of rich graphical interfaces. To implement the 

system a so-called fat client architecture (called thick client) 

has been used. The program is executed directly on the user's 

computer called the client, and the data is stored on the 

server side.  

Experiment 1. Advanced database retrieval – queries  

 In this experiment, we assume the role of the banking 

analyst who analyzes the context of transactions to detect 

money laundering operations. 

 Suppose that an analyst is interested in transactions 

having the most frequent accounts, that is, accounts which 

participate in the largest number of transactions during a 

specified period. For example, assume that the concerns are 

related to transactions in January 2011, involving a top 10 

the most frequent accounts in the database. This task can be 

written in the form of the following SQL query: 

 
SELECT * 
FROM "Transaction" 

      WHERE ("Date" BETWEEN '2011-01-01' AND '2011-01-31')    
                       AND ("SrcAccId" IN 

( 
 SELECT "AccountId" 
 FROM  
 ( 

SELECT "SrcAccId" AS "AccountId" FROM "Transaction" 
  UNION ALL 
  SELECT "DstAccId" AS "AccountId" FROM "Transaction" 
 ) 
 GROUP BY "AccountId" 
 ORDER BY COUNT(*) DESC 
 LIMIT 10 
  ) 
  OR "DstAccId" IN 
  ( 
 SELECT "AccId" 
 FROM 
 ( 
  SELECT "SrcAccId" AS "AccountId" FROM "Transaction" 
  UNION ALL 
  SELECT "DstAccId" AS "AccountId" FROM "Transaction" 
 ) 
 GROUP BY "AccountId" 
 ORDER BY COUNT(*) DESC 
 LIMIT 10 
  )) 

Following the query definition, the system shows the 

characteristics of the resulting graph (Fig. 6), where the 

number of accounts in the graph is 140 and the number of 
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transactions 306. The analyst can visualize the transactions 

chains because the volume seems feasible to display. This 

experiment also illustrates an advantage over traditional 

reports. Data having 140 accounts and 306 transactions 

could be displayed on one page. However, this visualization 

does not show all relevant data, such as account numbers, 

amounts and dates of transactions; but the analyst can easily 

identify the main streams of cash flow. If necessary, by using 

the graph zooming, or by clicking on particular objects, he 

can very quickly get more information. The resulting graph 

is the subject of further research. 

 
Fig.6. Graph showing the selected transactions by the query  

 

This experiment shows how the analyst can apply his 

previous experience in searching money laundering 

transactions and the possibilities of visual exploration of 

cash flow chains. The program interface is in fact very 

simple, but just to define a SQL query may require some 

skills and experience in using this language. The solution to 

this question could be collaboration of the analyst with an 

SQL programmer who may predefine the specified queries or 

templates allowing the formulation of queries by QBE. 

However, the great advantage is the richness of language 

features that allow us to define any transaction filtering 

operation. 

 
Experiment 2. Genetic optimization of graph of transactions  

In this experiment, we are going to assess the quality of 

an evolutionary algorithm used to plot the graph [5]. The 

goal is to answer the question whether the parameters - the 

population size and number of mutations (N and M) -  

significantly affect the result obtained. In other words, we 

are interested whether with limited computing power it is 

more profitable to run a lot more shorter evolutions or fewer 

but longer ones. 

Computing of the number of intersections in the graph 

has the complexity O(m
2
), where m is the number of edges 

in the graph [3], [13]. Thus, the computational complexity of 

the algorithm is O(m
2
 * N * M * C’), where the parameter 

C' is dependent on the parameter C. From the definition of 

the parameter C, the estimation of C' is very difficult, since it 

is not known how many times one can carry out the 

innermost loop of the algorithm.  

The algorithm has been tested on the previous database 

with 140 accounts and 306 transactions. In the experiment, 

the parameter C = 100, mutation probability of the source 

and destination nodes are 50%, and 90% of intermediate 

vertices. TABLE II shows the number of intersections 

obtained in each of the nine trials. 
 

TABLE II. RESULTS OF GRAPH OPTIMIZATION 

 

 

 

The best result is the 229 intersections, and this is less 

than half the size of the worst. The standard deviation of the 

results is 87.0. The experimental data showed that the 

number of iterations (C) and population size (N) affected the 

value of the evaluation function. Fig. 7 shows the decreasing 

value of the objective function for individual evolution. After 

conducting many experiments we can conclude that it is 

better to run several times short mutations of many 

individuals rather than focus on a few individuals and 

increase the number of iterations. 

 
Fig.7. Curves of evaluation functions 

Number of 

individuals 

Number of 

mutation trials 

Number of 

intersections 

1 1 277 

2 426 

3 258 

2 1 229 

2 304 

3 373 

3 1 506 

2 353 

3 334 
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IV. CONCLUSIONS 

This study presents the visual exploration of cash flow 

chains, which has not previously been  addressed in existing 

systems. The greatest difficulty in designing and 

implementing the system was to find a way to reduce the size 

of the transaction chains graph. This process has been 

divided into two stages. First, the heuristics have been 

applied to deploy accounts by type, then grouping accounts 

with the same neighbor in the graph, and placing at the 

bottom of the graph accounts that are related with only one 

other account. In order to reduce the visual complexity of the 

multiple edges, the edges were aggregated into a single edge 

(displayed in bold).  

The graph visualization was optimized by an evolutionary 

algorithm whose task was to find an organization of vertices 

and edges with minimal number of intersections. 

Experiments have shown that the number of intersections in 

the graph has been reduced significantly, which improved its 

readability. 

It is noteworthy that the system offers other interesting 

features such as logging user operations performed on the 

graph. The register of user actions can be used to work 

further on machine learning that would try to imitate the 

work of the analyst. 

The proposed solution can be easily adapted into existing 

systems of transactions analysis and contribute to the 

development of new methods for exploration of complex 

data structures. 
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