

�

Abstract—The paper proposes a new method for interactive

visual exploration of the chains of financial transactions,

assisting an analyst in the detection of money laundering

operations. The method mainly concerns searching, displaying

and annotating selected groups of transactions from a database.

We show how one can programmatically and interactively

reduce the volume of the chains surveyed and limit the analysis

to the most suspicious transactions. In order to improve

readability of the transaction graph, an evolution-based

algorithm has been designed to optimize its visual

representation. The system is verified on the real-life database

of financial transactions. The experiments conducted have

shown that allowing visual exploration, one can accelerate the

search process and enrich the data analysis.

I. INTRODUCTION

ONEY laundering denotes the financial operations

aimed at putting into circulation money from illegal

sources, mainly from criminal activities. Detection of the

transactions involved in the process of money laundering is

extremely difficult and complex. This follows on the one

side from the large amount of data that must be examined

and, on the other from the difficulty of distinguishing the

ordinary transactions from suspicious ones. Many systems of

recording and monitoring transactions, type AML (Anti-

Money Laundering), use predetermined rules to detect

suspicious transactions [1]; [6]; [10]; [11]. However, despite

the commitment of huge resources, the effectiveness of

current solutions is very low. In general, the percentage of

verified transactions as indicated by the system of suspicious

transactions, measured by the index of TPR (True Positive

Rate), is very small. For example, one of the largest financial

institutions in the Balkans, after the purchase and

implementation of software - some of the newest and most

expensive software against money laundering - scored TPR

equal to 0.02%. This result may seem daunting, but, as

practice shows, the majority of institutions start with this

level of accuracy and, after years of fine-tuning the system

This work has been performed in the framework of a research project

on methods of mining anti-money laundering data, conducted by the Center

for Intelligent Information Technology in Management of Wrocław

University of Economics, Poland.

and finding new patterns, TPR may reach about 5% [4]

Government bodies involved in the issuance of regulations

recommend to developers that the system should reach TPR

ranged from 4% to 7% [4]; [6].

In this paper, we propose an interactive method for visual

data mining, assisting an analyst in the detection of illegal

transactions. Support consists mainly of visualization and

annotation of some of the operations in a graph showing the

money flow chains between accounts.

In real-world applications, the number of accounts and

transactions is huge; therefore even a partial graph

visualization poses problems of feasibility, readability and

interpretation of financial operations. In order to assist the

analyst to interactive interrogation of the database, we have

introduced the functionality of defining SQL queries and

graphical operations on the graph of transactions resulting in

a significant reduction in the search space. We have also

provided a number of editing and graph visualization

features, including heuristics to visualize sequences of

transactions, graphical aggregation of transactions

corresponding to the same account, and the transaction graph

optimization by evolutionary algorithm.

The fundamental characteristic which determines the ease

of interpretation and pattern matching operations is the

representation of the transactions. Typically in financial

information systems, transactions are represented in a tabular

form as shown in fig. 1, a report of program cash flow

chains between accounts taken from the SART system

(System for Analysis and Registration of Transactions,

developed by TETA SA company) [12]. We see that the

presentation of a large number of transactions is barely

legible. The report contains information on only a few dozen

transactions and yet these are difficult to display on a

computer screen. An additional difficulty in visualizing the

chain of transactions using the tables and data sheets is

heterogeneity. For example, an account can have several

incoming and dozens or even hundreds of outbound

transactions. In such cases the transactions recorded in the

traditional table are hardly legible and are cumbersome to

handle because the analyst must often "scroll" the report.

The paper is organized as follows. The next section will

show how one can interactively reduce the volume of the

M

Visual Exploration of Cash Flow Chains

 Jerzy Korczak, Walter Łuszczyk
Uniwersytet Ekonomiczny

ul. Komandorska 118/120

53-345 Wrocław, Poland

Email: jerzy.korczak@ue.wroc.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 41–46

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 41

analyzed chains, namely how one can view in place of all the

data only the most important transactions.

Fig. 1. Tabular representation of chains of transactions

Then we show a simple, intuitive way in which one can

find more detailed information. We will present a solution

that optimizes the visual representation of transaction chains

enabling easier analysis of graphic schemes, accelerating the

search process, and enriching the functionality of the system.

For example, by marking the selected transactions as

suspicious, one can try to learn the system to recognize

patterns of money laundering operations.

More details about the database structures in AML

systems may be found in [7], [8], [9].

II. REPRESENTATION OF TRANSACTION CHAINS

The main concern while designing a visualization

algorithm of sequential operations is the complexity of the

resulting graph. In the project, the main measure of

assessment of the graph readability was the number of

intersections of edges connecting vertices of the graph: the

fewer the edges, the better the resulting graph. If the graph

contains n accounts there could occur approximately n
2
/2

edges between them [13]. Let us note that in practice some

of the edges can be repeated. It follows that the complexity

of such a graph is O(n
2
) [2], [3]. Fig.2 presents an example

of a graphical representation of the transaction chains. The

bold edges indicate that there are many transactions between

linked accounts. Red color means that the edge, or at least

one of multiple edges, represents a suspicious transaction.
To effectively minimize the number of cuts generated in

the initial graph, the whole transformation process was

divided into two stages. In the first the simple heuristics have

been applied such as the aggregation of multiple edges, the

clustering of accounts by type, the linking accounts with the

same neighbor in the graph, and the displacement at the

bottom of the graph the accounts that are related to

transactions with one another account. The graph thus

prepared leads to the second stage of the optimization

process, which aims to reduce the number of edge

intersections and thus improves the readability of the graph.

Fig. 2 Graph of transaction chains obtained by application

Let us now proceed to describe the evolutionary algorithm

that minimizes the number of intersections of edges in the

graph. The task of the algorithm is to find such repartition of

vertices on the plane that the number of intersections of

edges of the graph is as small as possible (see the

specification of Algorithm 1).

Algorithm 1. Minimization of the number of edge intersections

C = 5000; // number of iterations without changes to
 stop evolution
MutSrcPr = 0.45; // probability of source account mutation
MutInterPr = 0.1; // probability of intermediate account mutation
MutDstPr = 0.45; // probability of target account mutation
Fmin = infinity; // minimal number of intersections
F = infinity; // minimal number of intersections of individual in
 one trial
FTemp = infinity; // number of intersections in currently mutated
 individuals
IBest = NULL; // the best individual
ITemp = NULL; // temporary individual, similar for all trials
I = NULL; // evolved individual in the trial
Imut = NULL; // mutated individual in a given iteration
N = 3; // number of tested individuals
M = 3; // number of mutations of a given individual
FOR i = 1 TO N DO // number of tested individuals

BEGIN
 ITemp = initiated new graph of transactions();
 FOR j = 1 TO M DO // number of mutation of an individual
 I = ITemp;
 DO
 Imut = I;
 IF RAND() < MutSrcPr THEN Perform Imut mutation of source
 accounts;
 IF RAND() < MutInterPr THEN Perform Imut mutation of
 interm. accounts;
 IF RAND() < MutDstPr THEN Perform Imut mutation of target
 accounts;
 FTemp = compute a number of intersections in Imut;
 IF FTemp > F THEN
 BEGIN
 F = FTemp;
 I = Imut;
 END
 WHILE (F doesn’t change in C last iterations)
 IF F < Fmin THEN

42 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

 BEGIN
 Fmin = F;
 IBest = I;
 END
 END
END

To explain the algorithm let us start by describing the

process of evolution. The outer loop FOR algorithm

indicates how many individuals will be considered in the

initial population. Since the algorithm does not use crossover

operator, the evolution of population is equivalent to the

evolution of each of the individuals separately. The inner

loop FOR controls the number of mutation attempts on the

same individual. The algorithm may fall into a local

minimum of the objective function, therefore repeating the

evolution several times from the same starting point greatly

reduces these cases.

The main part of the evolutionary algorithm is the most

nested DO-WHILE loop. Mutations are performed until the

number of iterations reaches C or the solution is not

improving. We have proposed three types of mutation:

displacement of source, intermediate and target nodes.

Displacement of the source nodes changes the headings of

two randomly selected groups of vertices (there may be a

group containing one vertex). Here we use the heuristics that

when the order of accounts in the group does not change, it

is therefore permissible to move only the entire group. A

similar mutation relates to the target accounts. Mutation of

intermediate nodes is drawing the new position in the

permitted area between the source and target accounts.

The second important feature concerns the user interaction

related to the definition of the scope of data investigation.

This is done in two ways. The first solution is the ability to

filter transactions that are selected from a database by SQL

query. The second way is a direct manipulation on the

displayed graph of chains of transactions. For large

databases, sequential viewing and analysis of all transactions

would be very time-consuming or even impossible. To

partially overcome these difficulties, the two phase commit

was implemented, namely a display of the transactions

characteristics that meet the search criteria; and acceptance

by the analyst to draw the graph.
In the example in fig.3 the analyst launched a simple

query searching for the transactions with the amount of more

than 190 thousand zł. From the computing, Characteristics,

we see that there are 809 such transactions involving 401

source, intermediate, and target accounts, and the area

calculated for visualization is 4004 x 4004 pixels. This form

lets the analyst select whether to view the graph, or modify

the query to reduce or extend the set of transactions. The

graph is displayed after optimization using an evolutionary

algorithm

Fig. 3 Two-phase commit - the appearance of the window after query

execution

In some cases the analyst may optionally re-arrange the

graph manually. An example of the moving operation of the

account ID 5169 is shown in fig.4.

Fig.4. Moving a node: A - selection, B - dragging, C - a new position

Another operation is to remove vertices of the graph. This

may happen when, after SQL filtering, the graph contains

either too many accounts or accounts which have proved

during the analysis to be uninteresting. To obtain a more

readable graph, the analyst may then remove them manually.

Let us note that the accounts are not removed physically

from the database, but only from the currently displayed

diagram. The steps of account deletion are shown in fig. 5.
An important operation is the interactive marking of

transactions as suspicious. With this functionality, an analyst

or pattern recognition program may mark the transaction as

suspicious [cf. TABLE I]. Information about the suspicious

transaction is stored in a database and can be used in

subsequent studies.

In the system many other useful features have been

designed, such as memorizing a query filtering transactions,

zooming graph, Undo and Redo functions, and saving a trace

JERZY KORCZAK, WALTER LUSZCZYK: VISUAL EXPLORATION OF CASH FLOW CHAINS 43

Fig.5. Remove a node: A - the initial situation, B – selection from the

menu, Delete, C - after removal of the top figure

operations log. A detailed description of these functions

along with examples is given in [9].

III. DESCRIPTION OF EXPERIMENTS

This section contains descriptions of two experiments,

namely: 1) advanced retrieval of database transactions, and

2) optimization of the graph using an evolutionary algorithm.

In the experiments, the real-life data obtained from one of

the Polish banks are stored in a relational database

PostgreSQL 8.3.

The experimental database consists of three tables:

Transaction, Query and Trace. The first one contains the

input data in the form of transaction descriptions (TABLE I).

TransId column is a unique key serving to identify

unambiguously the transaction. The next two columns

contain information about the accounts involved in the

transaction: SrcAcctId is the identifier of the account from

which money is transferred, and DstAccId indicates a debited

account. In this example, identifiers are represented by small

integers, but in real applications, the account identifier may

be the IBAN or NRB. The Date and Amount columns

contain the date of execution and the transfer amount,

expressed in PLN. The Suspected column indicates whether

the transaction is suspicious in terms of money laundering,

and may be modified by the system.

TABLE I. EXAMPLE OF TRANSACTION DESCRIPTIONS

TransId SrcAccId

DstAccI

d Date Amount

Sus-

pected

677 21561 22924 01-02 73 095,67

678 21561 22924 01-02 88 142,15

2888 24756 16579 01-02 67 684,03

730 558 22971 01-02 66 495,43

1821 19202 23934 01-02 57 669,16

1823 18677 22839 01-02 80 000,00

1933 2135 24037 01-02 180 000,00

1925 21561 24032 01-02 74 657,08

1926 21561 24033 01-02 76 910,61

1927 21561 24033 01-02 109 671,77

1928 21561 24032 01-02 134 746,56

Other tables are Query and Trace. The first of these

tables holds query requests through which data about the

transactions are loaded. The second, the Trace table, stores

the user actions on the displayed graph of chains of

transactions. Data for application can be obtained from any

bank's financial system which offers the functionality of

transaction registration and thus at least partially satisfies the

requirements of the legislature. If the data have a different

structure than that shown in TABLE I, any tool of the class

ETL (Extract, Transform, Load) can be used for importing

data.
The system runs on PC computers, currently on the two

leading operating systems, Windows and UNIX, using the

popular database management system Postgres. To meet the

requirement to run on different systems, the system was

implemented using Java environment and a library Eclipse

RCP GEF for graphics editing. Eclipse RCP (called the

Eclipse Rich Client Platform) is a library which gives rise to

the creation of rich graphical interfaces. To implement the

system a so-called fat client architecture (called thick client)

has been used. The program is executed directly on the user's

computer called the client, and the data is stored on the

server side.

Experiment 1. Advanced database retrieval – queries

 In this experiment, we assume the role of the banking

analyst who analyzes the context of transactions to detect

money laundering operations.

 Suppose that an analyst is interested in transactions

having the most frequent accounts, that is, accounts which

participate in the largest number of transactions during a

specified period. For example, assume that the concerns are

related to transactions in January 2011, involving a top 10

the most frequent accounts in the database. This task can be

written in the form of the following SQL query:

SELECT *
FROM "Transaction"

 WHERE ("Date" BETWEEN '2011-01-01' AND '2011-01-31')
 AND ("SrcAccId" IN

(
 SELECT "AccountId"
 FROM
 (

SELECT "SrcAccId" AS "AccountId" FROM "Transaction"
 UNION ALL
 SELECT "DstAccId" AS "AccountId" FROM "Transaction"
)
 GROUP BY "AccountId"
 ORDER BY COUNT(*) DESC
 LIMIT 10
)
 OR "DstAccId" IN
 (
 SELECT "AccId"
 FROM
 (
 SELECT "SrcAccId" AS "AccountId" FROM "Transaction"
 UNION ALL
 SELECT "DstAccId" AS "AccountId" FROM "Transaction"
)
 GROUP BY "AccountId"
 ORDER BY COUNT(*) DESC
 LIMIT 10
))

Following the query definition, the system shows the

characteristics of the resulting graph (Fig. 6), where the

number of accounts in the graph is 140 and the number of

44 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

transactions 306. The analyst can visualize the transactions

chains because the volume seems feasible to display. This

experiment also illustrates an advantage over traditional

reports. Data having 140 accounts and 306 transactions

could be displayed on one page. However, this visualization

does not show all relevant data, such as account numbers,

amounts and dates of transactions; but the analyst can easily

identify the main streams of cash flow. If necessary, by using

the graph zooming, or by clicking on particular objects, he

can very quickly get more information. The resulting graph

is the subject of further research.

Fig.6. Graph showing the selected transactions by the query

This experiment shows how the analyst can apply his

previous experience in searching money laundering

transactions and the possibilities of visual exploration of

cash flow chains. The program interface is in fact very

simple, but just to define a SQL query may require some

skills and experience in using this language. The solution to

this question could be collaboration of the analyst with an

SQL programmer who may predefine the specified queries or

templates allowing the formulation of queries by QBE.

However, the great advantage is the richness of language

features that allow us to define any transaction filtering

operation.

Experiment 2. Genetic optimization of graph of transactions

In this experiment, we are going to assess the quality of

an evolutionary algorithm used to plot the graph [5]. The

goal is to answer the question whether the parameters - the

population size and number of mutations (N and M) -

significantly affect the result obtained. In other words, we

are interested whether with limited computing power it is

more profitable to run a lot more shorter evolutions or fewer

but longer ones.

Computing of the number of intersections in the graph

has the complexity O(m
2
), where m is the number of edges

in the graph [3], [13]. Thus, the computational complexity of

the algorithm is O(m
2
 * N * M * C’), where the parameter

C' is dependent on the parameter C. From the definition of

the parameter C, the estimation of C' is very difficult, since it

is not known how many times one can carry out the

innermost loop of the algorithm.

The algorithm has been tested on the previous database

with 140 accounts and 306 transactions. In the experiment,

the parameter C = 100, mutation probability of the source

and destination nodes are 50%, and 90% of intermediate

vertices. TABLE II shows the number of intersections

obtained in each of the nine trials.

TABLE II. RESULTS OF GRAPH OPTIMIZATION

The best result is the 229 intersections, and this is less

than half the size of the worst. The standard deviation of the

results is 87.0. The experimental data showed that the

number of iterations (C) and population size (N) affected the

value of the evaluation function. Fig. 7 shows the decreasing

value of the objective function for individual evolution. After

conducting many experiments we can conclude that it is

better to run several times short mutations of many

individuals rather than focus on a few individuals and

increase the number of iterations.

Fig.7. Curves of evaluation functions

Number of

individuals

Number of

mutation trials

Number of

intersections

1 1 277

2 426

3 258

2 1 229

2 304

3 373

3 1 506

2 353

3 334

JERZY KORCZAK, WALTER LUSZCZYK: VISUAL EXPLORATION OF CASH FLOW CHAINS 45

IV. CONCLUSIONS

This study presents the visual exploration of cash flow

chains, which has not previously been addressed in existing

systems. The greatest difficulty in designing and

implementing the system was to find a way to reduce the size

of the transaction chains graph. This process has been

divided into two stages. First, the heuristics have been

applied to deploy accounts by type, then grouping accounts

with the same neighbor in the graph, and placing at the

bottom of the graph accounts that are related with only one

other account. In order to reduce the visual complexity of the

multiple edges, the edges were aggregated into a single edge

(displayed in bold).

The graph visualization was optimized by an evolutionary

algorithm whose task was to find an organization of vertices

and edges with minimal number of intersections.

Experiments have shown that the number of intersections in

the graph has been reduced significantly, which improved its

readability.

It is noteworthy that the system offers other interesting

features such as logging user operations performed on the

graph. The register of user actions can be used to work

further on machine learning that would try to imitate the

work of the analyst.

The proposed solution can be easily adapted into existing

systems of transactions analysis and contribute to the

development of new methods for exploration of complex

data structures.

REFERENCES

[1] Actimize, http://www.actimize.com, date of access:

2010-08-23.

[2] V. Bryant, “Aspects of combinatorics. A Wide-ranging

Introduction”, Cambridge Univ. Press, 1993.]

[3] T.H. Cormen, C.E. Leiserson, R. Rivest, C. Stein,

“Introduction to Algorithms”, MIT Press, 2009.

[4] D. S. Demetis, Artificial non-intelligence and anti-

money lundering, London School of Economics,

London, 2009.

[5] D. E. Goldberg, “Genetic Algorithms in Serach,

Optimization, and Machine Learning”, Addison-

Wesley, 1989.

[6] E. Iwonin, City Handlowy, Implementation of AML

directive into Polish legal system - City Handlowy

experience, in Advanced Information Technologies for

Management AITM 2009 Wrocław University of

Economics, Research Papers no. 85, Wrocław 2009.

[7] J. Korczak, W. Marchelski, B. Oleszkiewicz, A New

Technogical Approach to Money Laundering Discovery

using Analytical SQL server, in Advanced Information

Technologies for Management – AITM 2008, J.

Korczak, H. Dudycz and M. Dyczkowski (eds.)

Research Papers no 35, Wroclaw University of

Economics, 2008, pp. 80-104.

[8] J. Korczak, B. Oleszkiewicz, Modelling of Data

Warehouse Dimensions for AML Systems, in Advanced

Information Technologies for Management – AITM

2009,.J. Korczak, H. Dudycz and M. Dyczkowski (eds.)

Research Papers no 85, Wroclaw University of

Economics, 2009, pp. 146-159.

[9] W. Łuszczyk, Wizualna eksploracja ła�cuchów

transakcji bankowych, Praca magisterska (MSc thesis),

Uniwersytet Ekonomiczny, Wrocław, 2010.

[10] Norkom, http://www.norkom.com, date of access:

2010-08-23

[11] Ocean Technology,http://www.oceantechnology.com.vn

/front/?page= solution&sid=27, date of access: 2010-08-

23

[12] TETA S.A., http://www.teta.com.pl/71578.php, date of

access: 2010-08-23.

[13] R.J. Wilson, „Introduction to Graph Theory”, Addison-

Wesley, 1996.

46 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

