
Tuning Computer Gaming Agents using Q-Learning

Purvag G. Patel
Department of Computer Science

Southern Illinois University Carbondale

Carbondale, IL 62901

Email: purvag@siu.edu

Norman Carver
Department of Computer Science

Southern Illinois University Carbondale

Carbondale, IL 62901

Email: carver@cs.siu.edu

Shahram Rahimi
Department of Computer Science

Southern Illinois University Carbondale

Carbondale, IL 62901

Email: rahimi@cs.siu.edu

Abstract—The aim of intelligent techniques, termed game AI,
used in computer video games is to provide an interesting
and challenging game play to a game player. Being highly
sophisticated, these games present game developers with similar
kind of requirements and challenges as faced by academic AI
community. The game companies claim to use sophisticated
game AI to model artificial characters such as computer game
bots, intelligent realistic AI agents. However, these bots work
via simple routines pre-programmed to suit the game map,
game rules, game type, and other parameters unique to each
game. Mostly, illusive intelligent behaviors are programmed
using simple conditional statements and are hard-coded in
the bots’ logic. Moreover, a game programmer has to spend
considerable time configuring crisp inputs for these conditional
statements. Therefore, we realize a need for machine learning
techniques to dynamically improve bots’ behavior and save
precious computer programmers’ man-hours. We selected Q-
learning, a reinforcement learning technique, to evolve dynamic
intelligent bots, as it is a simple, efficient, and online learning
algorithm. Machine learning techniques such as reinforcement
learning are known to be intractable if they use a detailed model
of the world, and also require tuning of various parameters to
give satisfactory performance. Therefore, this paper examine Q-
learning for evolving a few basic behaviors viz. learning to fight,
and planting the bomb for computer game bots. Furthermore,
we experimented on how bots would use knowledge learned from
abstract models to evolve its behavior in more detailed model of
the world.

I. INTRODUCTION

S
INCE the advent of game development, game developers

have always used game AI for developing the game char-

acters that could appear intelligent. All the games incorporate

some form of game AI. It can be in the form of ghosts

in the classic game of PAC man or sophisticated bots in

first-person shooter(FPS) games such as Counter-Strike and

Half-life[1]. Human players while playing against or with

computer players, which are used to replace humans, have

a few expectations such as predictability and unpredictability,

support, surprise, winning, losing and losing well[2].

The goal of agents in game AI is similar to the machine

used in the Turing test, which humans cannot identify whom

they are answering to. [3] organized a game bot programming

competition, the BotPrize, in order to find answers to the

simple questions such as, can artificial intelligence techniques

design bots to credibly simulate a human player?, or simple

tweaks and tricks are effective? Competitors submit a bot in

order to pass a “Turing Test for Bots”. It is relatively easy to

identify bots in the system. Some general characteristics used

to identify bots were [3]:

• Lack of planning

• Lack of consistency - ‘forgets’ opponents behavior

• Getting ‘stuck’

• Static movement

• Extremely accurate shooting

• Stubbornness

Primary reason for exhibiting such behavior is that these

bots are usually modeled using finite-state machines(FSM) and

programmed using simple conditional statements, resulting

in a very predictable bot to an experienced game player[4].

These bots play fixed strategies, rather than improving as a

result of the game play. Moreover, designing such bots is time

consuming because game developers need to configure many

crisp values in their hard-coded logic. Resultant, bots lose their

credibility as a human being.

Believability plays a major role for the characters in books

and movies, even if it is fiction. Similarly, believability and

credibility also plays a major role in video games especially

with the artificial characters. However, it is more challenging

to design an artificial character for a video game compared to

the characters in the books and movies. Characters in video

game need to constantly interact with the humans, and adapt

their game play without any guidance. There are wide varieties

of situation to cope with, and present variety of challenges

such as real time, incomplete knowledge, limited resources,

and planning[5]. Therefore, the ability to learn will have

advantage in increasing the believability of the characters, and

should be considered as an important feature[6].

Methods of machine learning could be used effectively in

games to address the limitations of current approaches to

building bots. The advantages of using a machine learning

technique to improve computer games bots’ behaviors are:

• it would eliminate/reduce the efforts of game developers

in configuring each crisp parameter and hence save costly

man-hours in game development, and

• it would allow bots to dynamically evolve their game

play as a result of interacting with human players, making

games more interesting and unpredictable to human game

players.

This paper investigates the use of Q-learning, a type of

reinforcement learning technique(RL), to improve the behavior

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 581–588

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 581

of game bots. Q-learning is relatively simple and efficient

algorithm, and it can be applied to dynamic online learning.

We developed our own game platform for experimentation, a

highly simplified simulation of FPS games like Counter-Strike.

Bots, which uses learning algorithm, in all our experiments

are modeled as terrorist agents. Goals of these agents include

killing counter-terrorists, planting the bomb on critical loca-

tions, or surviving till the end of the game play.
While machine learning techniques can be easy to apply,

they can become intractable if they use detailed models of

the world, but simplified, abstract models may not result

in acceptable learned performance. Furthermore, like most

machine learning techniques, RL has a number of parameters

that can greatly affect how well the technique works, but there

is only limited guidance available for setting these parameters.

This paper set out to answer some basic questions about

how well reinforcement learning might be able to work for

FPS game bots. We focused on the following three sets of

experiments:

• learning to fight: testing if and how well bots could use

RL to learn to fight, and how the resulting performance

would compare to human programmed opponent bots,

• learning to plant the bomb: instead of rewarding bots for

fighting, what would happen to bots’ behavior if they

were rewarded for accomplishing the goal of planting

bombs, and

• learning for deployment: if bots initially learn using

abstract states models (as might be done by the game

designers), how does initializing their knowledge from

the abstract models help in learning with more detailed

models.

The ultimate goal of these experiments is to evolve sophis-

ticated and unpredictable bots which can be used by game

developers and provide unprecedented fun to game players.
The rest of the paper is organized as following. Section II

provides a background on the FPS game of Counter-Strike

and the model of the bots use in such games. Related work

in presented in section III. Details of the simulation and

methodology are described in section IV. In Section V results

of experiments are presented. Conclusion and future work are

discussed in section VI.

II. COUNTER-STRIKE AND BOTS

A. Counter-strike

Counter-Strike is a team-based FPS which runs on the

Half-life game engine. Counter-Strike is one of the most

popular open source computer games available in the market,

and is played by thousands of players simultaneously on the

Internet. Our initial attempt was to conduct the experiments

on a modification of the actual game, but due to improper

documentation and complexity of the available source code we

developed a scale down simulation of the game. Nevertheless,

most of the discussions and the experiments conducted in the

paper are inspired from this game.
One of the typical game playing scenarios in Counter-Strike

is bomb-planting scenario. There are two teams in the game,

Fig. 1. GAME MAP

namely terrorist and counter-terrorist. The terrorist aims to

plant the bomb while counter-terrorist aims to stop them from

planting the bomb. In the processes, sub-goal of each team

is to eliminate all the opponents by killing them. Figure 1

shows a standard map of Counter-strike called DE DUST.

On the map, two sites labeled A, and B are bomb sites

where a terrorist plant the bomb. On the contrary, a counter-

terrorist defend these bomb sites and if a bomb gets planted

by the terrorists, then counter-terrorists attempt to defuse the

bomb before it explodes. In the beginning of each round,

both the teams are located at designated locations on map.

For example, the position labeled CC in figure 1 is counter-

terrorist camp, which is the location of counter-terrorists at

the beginning of each round. Similarly, the position marked by

label TC in figure 1 is the terrorist camp for terrorists. Once

the round begins, they start advancing to different location in

map, simultaneously, fighting with each other on encounters

and thereby trying to achieve their respective goals.

We simulated very similar game environment, as presented

in this section, with an exception of game map; our game map

is relatively simple

B. Bots in computer games

Counter-Strike uses the bots, also called Non-player Char-

acters(NPCs), to simulate human players in the teams to give

the ‘illusion’ of playing against actual game players. Bots play

as a part of the team and achieve goals similar to humans.

Currently, bots used in Counter-Strike are programmed to find

path, attack opponent players, or run away from the site if

they have heavy retaliation, providing an illusion that they are

intelligent. Similar species of bots are used in many other FPS

games, such as Half-Life, Quake and Unreal-Tournament, with

similar methods of programming. Usually, bots in computer

games are modeled using a FSM, as shown in figure 2,

where rectangles represent possible states and leading edges

show transitions between states. This is just a simplified

representation of actual bots, where many more such states

exist with more complicated transitions. A FSM for bots is

quite self explanatory. First the bot starts by making initial

decisions viz. game strategies, buying weapons, etc. and then

starts searching for enemies/opponent. After the opponent is

spotted, it makes a transition to attack state in which he fires

582 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 2. A PROTOTYPICAL FSM FOR A BOTS

the bullets at the opponent. A Bot may kill an opponent. In that

case, it will again start searching for other opponents. Also, a

bot could be in any of the above mentioned states and might

get killed by the opponent.

There are inherent flaws in using classic FSM model for

bots. All transitions/rules needs to be hardcoded in bots

logic, and programmers have to spend time configuring these

parameters. For example, a rule for agent’s attacking behavior

based on agent’s speed and energy is shown in algorithm 1.

Parameters such as energy, distance of enemy, etc., needs to

be configured, for which programmers run a large number

of time-consuming simulations. Moreover, the use crisp value

Algorithm 1 Hardcoded rules

1: if agent.speed ≥ 4% & agent.range ≥ 4% then
2: attack()
3: else
4: flee()
5: end if

in decision making makes these bots predicable. As a result,

it makes a game less interesting and less believable to an

experienced game player and eventually may lose interest in

the game.

III. RELATED WORK

There are several recent attempts for using machine learning

techniques, especially reinforcement learning, for developing

a learning bot. Reinforcement Learning (RL) is a machine

learning technique where an agent learns to solve problems

while interacting with the environment[7].

[8] suggested a learning algorithm to investigate the extent

to which RL could be used to learn basic FPS bots behaviors.

Their team discovered that using RL over rule-based systems

rendered a number of advantages such as: (a) game program-

mers used minimal code for this particular algorithm, and (b)

there was a significant decrease in the time spent for tuning

up the parameters. Also, the applied algorithm was used to

successfully learn the bots behaviors of navigation and combat,

and the results showed that by changing its planning sets of

parameters, different bots personality types could be produced.

Thus, the paper suggested how an agent can learn to be a bot

with the help of RL in shooter games[8].

[9] demonstrates several interesting results using RL algo-

rithm, Sarsa, for training the bots, yet again signifying the

effectiveness of such learning techniques. They designed a

testbed 2D environment with walls creating partitions on the

map. Preliminary experiments were conducted for the bots

to learn the Navigation task. Based on the rewards, the bots

learn to minimize collisions, maximize distance travel, and

maximize number of items collected. After certain number

of iterations the bots started receiving greater number of

rewards signifying that the bots have learned a positive desired

behavior. On manipulating the values of the rewards, the

bots learn different behavior. For example, increasing the

penalty for collision the bots would learn to remain away

from wall, simultaneously ignoring collectible items near the

wall. Although, the bots did not met the industry standard

their experiment demonstrated that with right parameters the

behavior of the bots can be controlled. They also demonstrated

the bots learning Combat behavior. Results were similar to

navigation task, whereby the rewards for the bots increased

after certain number of iterations proving that bots are learning

fruitful behavior. Nevertheless, these experiments demonstrate

successful use of reinforcement learning to a simple FPS game

[9].

Primary reason for using testbest instead of actual game

in this this paper and in [8][9] was to reduce c.p.u. cycle

and difficulty in dealing with complexities involving in coding

for actual game. Nevertheless, several efforts include the use

of reinforcement learning in actual video game [10][11]. [10]

designed a bot, RL-DOT, for a Unreal Tournament domination

game. In RL-DOT, the commander NPC makes team decision,

and sends orders to other NPC soldiers. RL-DOT uses Q-

learning for making policy decision[10]. There are efforts

to develop a NPC that would learn to overtake in racing

game like The Open Racing Car Simulator (TORCS). It is

suggested that, using Q-learning sophisticated behaviors, such

as overtaking on straight stretch or tight bend, can be learned

in a dynamically changing game situation[11].

N. Cole et. al. argues that to save computation and program-

mer’s time, the game AI uses many hard-coded parameters

for bot’s logic, which results in usage of enormous amount of

time for setting these parameters [4]. Therefore, N. Cole et. al.

proposed the use of genetic algorithm for the task of tuning

these parameters and showed that these methods resulted in

bots which are competitive with bots tuned by a human with

expert knowledge of the game. Related work was done by S.

Zanetti et. al. who used the bot from the FPS game Quake 3,

and demonstrated the use of Feed Forward Multi-Layer Neural

Network trained by a Genetic Algorithm to tune the parameters

tuned by N. Cole at. al.[12].

Widely used AI techniques include RL, neural networks, ge-

netic algorithm, decision tree, Bayesian networks, and flocking

[13][14].

PURVAG PATEL, NORMAN CARVER, SHAHRAM RAHIMI: TUNING COMPUTER GAMING AGENTS USING Q-LEARNING 583

Fig. 3. MAP DIVIDED INTO AREAS

IV. APPROACH

A. Simulation Environment

We developed a scaled down abstraction of Counter-Strike

in Java, and simulated the bots in this environment. The

miniature version of a Counter-Strike 2D map is shown in

figure 3. Herein, bricks are visible which form the boundary

of the map and act as obstacles for the agents. There are

two kinds of agents, blue and green, which navigate through

the map formed by the bricks. Each of the blue and green

agents imitates the behavior of terrorists and counter-terrorists

respectively from Counter-Strike. Moreover, there are two sites

labeled BCA and BCB in figure 3 which are similar to the

bomb sites in Counter-Strike. In figure 3, sites labeled TC

and CTC are green and blue base camps respectively. Before

the start of a game, we specify the number of each type of

agents. The green agents’ goal is to plant the bomb in one

of the sites (either BCA or BCB) or kill all blue agents. Blue

agents defend these sites and kill all green agents. This provide

us with an environment similar to a classic FPS game, where

two autonomous sets of agents fight with each other.

B. Methodology

We investigate the Q-learning algorithm for improving the

behavior of the green agents, while keeping the blue agents’

behavior static.

The static Blue agents run a simple algorithm (Algorithm

2), in which if they spots a green agent they shoots a new

missile, else they continue moving on map according to plan.

A plan is a sequence of locations such as TC, BCB, etc. Each

agent navigates on the map in the order specified in the plan.

Agents randomly choose from six such manually configured

plans.

Algorithm 2 Static Blue Agents

1: if s.hasTerror() then
2: attack()
3: else
4: move according to plan
5: end if

An agent using Q-learning learns a mapping for which

action he should take when he is in one of the states of the

environment. This mapping can be viewed as a table, called a

Q-table - Q(s,a), with rows as states of the agent and columns

as all the actions an agent can perform in its environment.

Values of each cell in a Q-table signify how favorable an action

is given that an agent is in a particular state. Therefore, an

agent selects the best known action, depending on his current

state: argmax
a
Q(s, a).

Every action taken by an agent affects the environment,

which may result in a change of the current state for the agent.

Based on his action, the agent gets a reward (a real or natural

number) or punishment(a negative reward). These rewards are

used by the agent to learn. The goal of an agent is to maximize

the total reward which he achieves, by learning the actions

which are optimal for each state. Hence, the function which

calculates quality of state-action combination is given by :

Q : S ×A→ R

Initially, random values are set in the Q-table. Thereafter,

each time an agent takes an action; a reward is given to agent,

which in turn is used to update the values in Q-table. The

formula for updating the Q-table is given by:

Q(st, at)←
Q(st, at) +αt × [rt+1 + γ argmax

a
Q(st+1, at)−Q(st, at)],

where rt is reward at any given time t, αt is the learning

rate and γ is discount factor.

It is necessary to formulate the problem in terms of states

and actions for applying q-learning algorithm. Hereby, figure

3 shows experimentation in which we have divided the map

into 8 areas. For simplicity we plan on starting with eight

areas with which will form the state: set A = {A,B, ...,H}
for the agents. The agents will select randomly one of the

six manually configured plan. Agents’ second state is plans:

set P = {0, 1, ..., 5} of size six. In addition, the agents

use enemy present of size two as state: set E = {0, 1},
which signifies whether opponents are present in the individual

agents’ range(0) or not(1).

Hence, we have state space of 96 states (A× P ×E). An

agent will be in one of these states at any period in time, will

perform one of the following actions: Attack(0) or Ignore(1).

The game being highly dynamic, it is infeasible to predict

the agents’ future state and determining whether an action

currently executed is fruitful or not (rewards) in order to

recalculate utilities. Therefore, the an agent’s reward is known

in a future state. Hence, utilities of a state st is updated when

an agent is in a state st+1. In state st+1 we can determine an

agent’s rewards for the action attempted in the state st and st+1

is treated as the future state for updating the utilities for state

st. Similarly, if suppose an agent fired a missile then we cannot

determine the rewards until state st+x, where x > 1, is the

state when missile actually hits a blue agent or explode without

hitting anyone. In such a scenario, we ignore the intermediate

states between state st+x and st, and directly update values

of state st based on values of state st+x.

We used an ‘exploration rate(ǫ)’ as probability for choosing

584 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

the best action. Suppose, if the exploration rate of agent is

0.2, then an agent will choose action with greater utility value

with probability of 0.8 and any other actions with probability

of 0.2. Usually, low exploration rates, between 0.0 to 0.3, are

used. Therefore, an agent selects an action with greater utility

most of the time and ǫ determines the probability of exploring

other actions.

Algorithm 3 Dynamic Green Agents

1: currentState = getCurrentState()
2: prevState = getPreviousSate()
3: action = selectAction(currentState)
4: if action = 0 then

5: attack()
6: else

7: ignore()
8: end if

9: updateQtable(prevState, currentState, rewards)
10: setPreviousState(currentState)

Algorithms 3 summarize the algorithms used by green agent

wherein it is learning the best action i.e. attack or ignore(0 or

1). In algorithm 3, during the first two steps agent retrieves

its current state and previous states. Then the agent selects

an action based on its current state. Next, if the action is

0(mnemonics for attack action), then agent shoots a missile,

else it just continues according to its plan. Finally, the agent

updates its Q-table based on current and previous state, and

stores the current state as previous state to use for the next

iteration.

V. EXPERIMENT

We examine designing agents using Q-learning which can

learn different behaviors based on the rewards they are getting.

Key issues with any learning techniques is setting various

parameters, which in case of Q-learning are learning rate(α),

discount factor(γ), and exploration rate(ǫ). Therefore, our

preliminary experiments are to determine the right combina-

tion of parameters.

Provided a flexible simulation environment, inspired from

environment in the Counter-strike game, varieties of exper-

iments are possible. Albeit, bots in Counter-strike, as with

most other FPS games, need to learn basic behaviors such as

combat and planting the bomb. Therefore, we experimented

with rewards function in order for bots to learn these basic

behaviors i.e. learning to fight and plant the bomb. Apart from

this, a model of a actual game will have a large number of

states. Moreover, as the number of states grows in Q-learning

the size of the Q-table grows; simultaneously slowing down

the speed of learning. Hence, we propose to train the bots

with a small number of abstract states which are a superset

of the more detailed states used by actual game. Finally, these

learned utility values are distributed among large number of

detailed states in the actual game and an agent continue online

learning thereafter.

Fig. 4. LEARNING CURVES FOR LEARNING TO FIGHT: (A) α = 0.10, γ =
0.90 AND, ǫ = 0.1, (B) α = 0.30, γ = 0.95 AND, ǫ = 0.1, AND (C) α = 0.56,
γ = 0.99 AND, ǫ = 0.1

Evaluation of these agents is based on the maximum fitness

green agents would reach against static blue agents. In all

the experiments, fitness of agents is measured by the ratio of

number of rounds won by green agents against the number

of round won by blue agents. By round, we mean a single

game cycle where one team wins and another loses. Green

agents won by killing all the blue agents or planting the bomb.

Blue agents won the round by killing all the green agents. For

each experiment we modified reward function so that agents

can learn differently. The remaining section provide detailed

experimental setup and results.

A. Learning to fight

For the first experiment, we wanted to train the agents to

learn combat behavior. The agents had only two actions to

choose from: Attack or Ignore opponents. In the attack action,

the agents shoot a missile, while in the ignore action agents

just ignore the presence of a nearby enemy and continue their

current plan.

In order for the agents to learn that shooting a missile is

costly, if it is not going to be effective, we gave small negative

reward of -0.1 if agent shoots a missile. If the agent gets hit

by an enemy missile, the agent gets a small negative reward

of -0.2. Agents were given a large positive reward of +10 if

they kill an enemy agent. All the values of Q-table were set

to zero before training.

Figure 4 shows the learning curve for three different com-

bination of α , γ , and, ǫ . Similar curves are also observed

for remaining combination of parameter. Unexpectedly, the

combination with α = 0.56, γ = 0.99 and, ǫ = 0.1 produced

agents with maximum fitness. A high value of γ signifies that

future states are playing an important role in determining the

selection of current actions. Reinforcement learning technique

tend to produce curves with high fluctuations if learning rate

is high. But, in our experiment we observed a very steady

learning curve, as seen in figure 4. Exploration rate of 0.1

is normal for this type of experiments. Notice that the curve

crosses the fitness level of 1.0 around 3000 rounds and then

curve becomes steady showing very little improvement and

reaching an asymptote of 1.0620. Fitness value greater than 1

here means that agents are outperforming static agents.

Hence, with this experiment we were able to evolve agents

which successfully learned a combat behavior.

PURVAG PATEL, NORMAN CARVER, SHAHRAM RAHIMI: TUNING COMPUTER GAMING AGENTS USING Q-LEARNING 585

Fig. 5. LEARNING CURVE FOR LEARNING TO PLANT THE BOMB

B. Learning to plant the bomb

Next experiment was to train the agents for planting the

bomb. In the first experiment, we used expert knowledge that

killing opponents is a better action. Now, we want to explore

whether the bots can evolve to learn similar behavior (or

better) if they are focused on planting the bomb. Again, the

agents had two actions to choose from: attack and ignore. But,

now planting the bomb action was part of ignore action. An

agent would plant the bomb if it is in one of the bomb sites

as a part of ignore action, else it will continue on its current

plan.

The agents did not receive any rewards for killing enemy

agents. Instead, rewards are given only when an agent plant

the bomb: +4 reward for each unit of bomb planted. Similar

to the first experiment, the agents are given -0.1 rewards for

shooting a missile and -0.2 rewards for being hit by an enemy

missile. Also, all the values of Q-table are set to zero before

training.

The best fitness ratio is for the combination of α = 0.94, γ =

0.99 and, ǫ = 0.20. Again, the learning rate is high even though

the graph shown in figure 5 is quite smooth. The discount

rate remains the same. Herein, exploration rate is high due

the fact that agents are not receiving any rewards for killing

the opponent agents. Yet, in order to successfully plant the

bomb an agent has to kill the opponent agents otherwise it

will get killed by them. In order learn to kill blue agents it

should actually fire a missile more often than in the previous

experiment. The utilities require more time to propagate than

before because the only location agents are getting positive

rewards are in the two corners (bomb sites). It also evident

from the figure 5 that it is required to run this simulation for

more number of rounds.

Table I shows the Q-values learned from the ex-

periment. A state in the table is represented by a

triplet [PAE] where P = 0, 1, ..., 6 is the plan num-

ber, A = A,B,C, ..., H is the area and, E =
p if enemy is present or n if enemy not present. Values

in remaining two columns: attack and ignore are the utility

value of taking a particular action. Agent selects the action

with greater utility value with probability of 1-ǫ else selects

the other section.

Few rows in the Q-table have value 0 or very small value

like -0.1, for example state: (0 H N). These are states where

agents were not trained because agents rarely used these areas

while using a particular plan. Similar is the case with all the

TABLE I
Q-TABLE FOR PLAN 0 AND 4

State Attack Ignore State Attack Ignore

0 A n 14.72 19.33 4 A n -0.10 0.00
0 A p 2.10 1.83 4 A p 0.00 0.00
0 B n 26.89 35.14 4 B n -0.10 0.00
0 B p 41.38 32.92 4 B p -0.10 0.00
0 C n 33.67 33.65 4 C n -0.10 0.00
0 C p 41.02 33.10 4 C p -0.10 0.00
0 D n 1.25 1.19 4 D n 0.00 0.00
0 D p -0.09 1.89 4 D p 0.00 0.00
0 E n 18.54 18.47 4 E n -0.10 0.00
0 E p 34.33 23.51 4 E p -0.10 0.00
0 F n 19.58 19.57 4 F n -0.10 0.00
0 F p 19.99 19.98 4 F p -0.10 0.00
0 G n 1.47 1.58 4 G n 0.00 0.00
0 G p 2.26 1.82 4 G p 0.00 0.00
0 H n 0.00 0.00 4 H n 0.00 0.00
0 H p 0.00 0.00 4 H p 0.00 0.00

states of plan 4 and 2(not shown in table) because green agent

while using plan 4 and 2 never encounters the enemy agent.

Therefore, all the enemy present state are having values zero.

Remaining states have values -0.10 because every time a agent

shoots a missile, it receives -0.1 reward. We can infer from the

table that, for the majority of remaining states, agents learned

the following two behaviors:

• To ignore or plant the bomb if enemy is not present. There

is no need to shoot a missile if no enemy is present i.e.

utility value of ignore action is greater than attack action,

for example (0 A n).

• To attack if enemy is present. An agent learned to attack

even though it is not getting any rewards for doing so

i.e. utility value for attack action if greater then utility of

ignore action if enemy is present, for example (0 A p).

We observe the second behavior due to the fact that rewards

propagate from the state where agents plant the bomb to the

state where agents shoot a missile. Also, there is a small

difference in utility values of both the action in the majority

of the states because the same rewards(for bomb planting)

also propagate for ignore action. But as agents are able to

plant more bomb units only if they killed an enemy agent in

a previous state and hence, indirectly learned that killing is

required to plant the bomb. Nevertheless, there are few states

where even if enemy is present and utilities for ignore state

are greater. These are the states with areas away from bomb

sites so propagation for rewards might require more training

or ignore action might actually be a better option to choose(to

run away) because the ultimate goal is to plant the bomb.

The bots generated with this experiment outperformed the

static bots and learned to attack even though they are not

receiving any direct incentives. However, we cannot compare

the results of the experiments in the previous section i.e.

learning to fight with this experiment. In current experiment,

i.e. learning to plant the bomb, definite goal of the agents is

to plant the bomb. We modified plans to achieve this behavior

such that final location of each plan is one of the bomb sites

(BCA or BCB). This action affects the outcome of the game

586 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 6. 12 AREAS

because in the former case agents were moving randomly, but

now they have a definite goal of going to a particular location

and planting the bomb.

C. Learning for deployment

Above experiments showed that with current technique the

competitive bots can be produced but, the bots with random

initial values cannot be supplied with the actual games. So

the bots need to be partially trained before they are actually

supplied with a game. Also, training with more number of

states, as in the case with actual game, also takes considerably

more amount of time. In this experiment bots are trained

for a small number of rounds with the agent having fewer

states and then use those Q-values to train the agents with

large number of states. Rewards and other settings for the

experiment is similar to the experiment is section V.B and

used parameter combination α = 0.94, γ =0.99 and, ǫ = 0.20

for experimentation which produced the bots with maximum

fitness.

Until now, in all the experiments the map is divided into

8 areas. For subsequent experiments, the map is first divided

into 12 areas and then into 16 areas. For a map divided into

8 areas the size of the Q-table is 96 which will increase to

144 for 12 areas and 192 for 16 areas. Figure 6 and Figure 7

shows the divided map for 12 areas and 16 areas respectively.

Note that the new divisions are subset of atleast one division

from the original map (8 area).

Agents are trained on the map with 8 areas for 500, 1000,

1500, and 2000 rounds and the utilities for the agents are

stored. These stored utilities are then used as initial utilities

for the agents to be trained on the map with 12 and 16 areas.

Here, numbers of states for agents with 12 and 16 areas are

more than the agents with 8 areas. Therefore, the utilities for

new states are set equal to utilities of old states from which

they are generated. For example, area I in figure 6 was part of

area A in figure 3 therefore, utilities of all the states with area

I is set equal to utilities of state with area A. For comparison

purpose, we also ran simulation for 12 and 16 areas stating

with all zeros in q-table (without fetching initial q-values from

8 areas), and called them the results with 0 initial utility value.

Fig. 7. 16 AREAS

TABLE II
EXPERIMENTAL RESULTS FOR LEARNING FOR DEPLOYMENT

Round in initial

training with 8

area

Fitness with 12

areas

Fitness with 16

area

0 1.7488 1.6887
500 1.8299 1.7163
1000 1.8023 1.6931
1500 1.8327 1.7306
2000 1.7823 1.7337

Fig. 8. LEARNING CURVE WITH 12 AREAS, WHERE (A) IS THE CURVE

WITHOUT ANY INITIAL TRAINING AND, (B) IS THE CURVE WITH 1000
INITIAL TRAINING FROM 8 STATES

Table II shows the highest ratio achieved by agents in each

setup, i.e. for 12 and 16 areas. Similar values are observed

for different initial training which signifies that number of

initial training does not play a significant role in determining

agent’s ultimate performance. The interesting fact about this

experiment is visible in graphs of figure 8 and figure 9. Both

the figure shows the comparison graph between learning curve

of agents with 0 initial utility values (A) and utilities from

trained samples for 500 or 1000 rounds with 8 areas as initial

utility values(B). Though both the graph almost converge at

the end; notice that, initial fitness of the agents with initial

training is high and remains high throughout. This result shows

that initial training provided to the agents with fewer states is

useful and the agents exhibit a sudden jumps to certain fitness

levels and remain at those level with minor increment. The

initial ups and downs seen in both graphs are due to the fact

that our evaluation criteria is ratio of green wins verses blue

wins which keeps on fluctuating due to less samples.

PURVAG PATEL, NORMAN CARVER, SHAHRAM RAHIMI: TUNING COMPUTER GAMING AGENTS USING Q-LEARNING 587

Fig. 9. LEARNING CURVE WITH 16 AREAS, WHERE (A) IS THE CURVE

WITHOUT ANY INITIAL TRAINING AND, (B) IS THE CURVE WITH 500
INITIAL TRAINING FROM 8 STATES

TABLE III
COMPARISON OF Q-VALUES

State Initial At-

tack

Initial Ig-

nore

Final At-

tack

Final

Ignore

1 G p 283.44 313.69 940.71 886.04834
1 H p 0 288.57 997.46 916.6944
1 A p 318.27 327.12 1027.06 936.54224
3 C p 378.20 449.48 1343.67 1334.412

Finally, table III shows comparison between few selected

samples from the Q-table before and after training in 12 areas

for 20000 rounds. Before training, the utility values of the

attack action, when an enemy was present, is less than the

value of the ignore action. But after the training an agent’s

utility value of the attack action is greater than value ignore

action. Here, an agent evolved to learn to shoot missiles at

opponents when one is present. This demonstrated that an

agent is capable of learning better and different actions than

the initial utilities supplied from small number of abstract

states.

We can conclude from this experiment that when partially

learned values from abstract states are used as initial value

for detailed states, provided a fitness boost to the agents.

The agents thereafter remains at the competitive fitness level

against the static agents and continue learning a better behav-

ior.

VI. CONCLUSION

It is evident from the results that the evolved bots are able

to outperform their static counterparts. Moreover, by using the

Q-learning algorithm bots were able to learn various behaviors

based on the rewards they are getting. Also, having trained a

bot with less number of states we are able to generate a com-

petitive bot for large number of states. In this learning-based

approach, the bots learned to attack or ignore the opponents

based on their current state which comprises of location, plan,

and enemy present or not. No hard coding of any parameters is

required for the bots. The bots selected the actions based on its

utility values which is updated dynamically. Hence, by using

this approach we can not only reduce the efforts to engineer the

hard-coded bots, but also evolve them dynamically to improve

their behavior and adapt to human player strategies.

Furthermore, the performance of the agents can be improved

by devising a method through which agents can learn to select

the plan. Currently, a plan is selected randomly after each
round; instead, a plan based can be selected based on the past

experience of the bots. The bots need to select a plan which

in past has been proved to be most fruitful. This behavior

can be achieved by interpreting their current utilities for using

a particular plan. Along with this, a confluence of various

learning technique can be used to improve the learning speed

of agents. For example, after each round we can use genetic

algorithm to mutate utility values in Q-table among the agents

in order to generate a better population. Currently, all the five

agents are learning separately without any integration among

one another.

Most importantly, we need to test this approach in real

simulation of the game, which was our initial attempt. Until

then, we cannot judge the actual performance of these agents.

Ultimately, the bots need to play against the human players.

Although the dynamic bots were tested against static bots, yet

human behavior is very unpredictable.

REFERENCES

[1] D.M. Bourg and G. Seemann. AI for Game Developers. O’Reilly Media,

Inc., 2004

[2] B. Scott. AI Game Programming Wisdom by Steve Rabin. Charles River

Media, Inc., 2002, pp. 16-20.

[3] P. Hingston. A new design for a Turing Test for Bots. Computational

Intelligence and Games (CIG), 2010 IEEE Symposium on , 2010, pp.

345-350.

[4] N. Cole, S. J. Louis, and C. Miles. Using a Genetic Algorithm to Tune
First-Person Shooter Bot. In Proceedings of the International Congress

on Evolutionary Computation, 2004, pp. 139-145 Vol. 1.

[5] A. Nareyek. Intelligent Agent for Computer Games. In Proceedings of

the Second International Conference on Computers and Games, 2000

[6] F. Tenc, C. Buche, P. D. Loor, and O. Marc. The Challenge of Believabil-
ity in Video Games: Definitions, Agents Models and Imitation Learning.
GAMEON-ASIA’2010, France, 2010, pp. 38-45..

[7] R. Sutton and A. Barto. Reinforcement Learning:An Introduction. The

MIT Press Cambridge, Massachusetts London, England, 1998.

[8] M. McPartland, and M. Gallagher. Learning to be a Bot: Reinforcement
learning in shooter games. 4th Artificial Intelligence for Interactive

Digital Entertainment Conference, Stanford, California, 2008, pp. 78-83.

[9] M. McPartland, and M. Gallagher. Reinforcement Learning in First
Person Shooter Games. IEEE Transactions on Computational Intelligence

and AI in Games, 2011, Vol. 3.1., pp 43-56. .
[10] H. Wang, Y. Gao, and X. Chen. RL-DOT: A Reinforcement Learning

NPC Team for Playing Domination Games. IEEE Transactions on

Computational Intelligence and AI in Games, 2010, Vol. 2.1, pp. 17-26..
[11] D. Loiacono, A. Prete, P. Lanzi, and L. Cardamone. Learning to overtake

in TORCS using simple reinforcement learning. 2010 IEEE Congress on

Evolutionary Computation (CEC), 2010, pp. 1-8

[12] S. Zanetti and A. Rhalibi. Machine Learning Techniques for FPS in
Q3. Proceedings of the 2004 ACM SIGCHI International Conference on

Advances in computer entertainment technology, 2004, pp. 239-244.

[13] D. Johnson and J. Wiles. Computer Game with Intelligence. Australian

Journal of Intelligent Information Processing Systems, 7, 2001, pp. 61-68.

[14] S. Yildirim and S.B. Stene. A Survey on the Need and Use of AI in Game
Agents. In Proceedings of the 2008 Spring simulation multiconference,

2008, pp. 124-131.

588 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

