
Abstract—Computing with Words (CW) is an emerging par-
adigm in knowledge representation and information processing.
It provides a mathematical model to represent the meaning of
imprecise words and phrases in natural language, and to per-
form reasoning on perceptual knowledge. This paper describes
a preliminary extension to Jess, CWJess, which allows reason-
ing in the framework of Computing with Words (CW). The re-
sulting inference shell significantly enhances the expressiveness
and reasoning power of fuzzy expert systems and provides a
Java API which allows users to express various types of fuzzy
concepts, including: fuzzy graphs, fuzzy relations, fuzzy arith-
metic expression, and fuzzy quantified propositions. CWJess is
fully integrated with jess and utilizes jess Rete network to per-
form a chain of reasoning on fuzzy propositions

Index Terms—Computing with Words; fuzzy Logic; Expert
systems; knowledge representation

I. INTRODUCTION

UMAN mind has a limited capability for processing a

huge amount of detailed information in his

environment; thus, to compensate, the brain groups together

the information it perceives by its similarity, proximity, or

functionality and assigns to each group a name or a “word”

in natural language. This classification of information allows

human to perform complex tasks and make intelligent

decisions in an inherently vague and imprecise environment

without any measurements or computation. Inspired by this

human capability, Zadeh introduced the machinery of CW as

a tool to formulate human reasoning with perceptions drawn

from natural language and argued that the addition of CW

theory to the existing tools gives rise to the theories with

enhanced capabilities to deal with real-world problems and

makes it possible to design systems with higher level of

machine intelligence [1][2]. To do this, CW offers two

principal components, (1) a language for representing the

meaning of words taken from natural language, this language

is called the Generalized Constraint Language (GCL), and

(2) a set of deduction rules for computing and reasoning with

words instead of numbers. CW is rooted in fuzzy logic;

however, it offers a much more general methodology for

fusion of natural language propositions and computation

with fuzzy variables. CW inference rules are drawn from

various fuzzy domains, such as fuzzy logic, fuzzy arithmetic,

H

fuzzy probability, and fuzzy syllogism. This paper reports a

preliminary work on the implementation of a CW inference

system on top of JESS expert system shell (CWJess) . The

CW reasoning is fully integrated with JESS facts and

inference engine and allows knowledge to be specified in

terms of GCL assertions.

The current fuzzy logic expert system shells, such as:

fuzzyclips [3], fuzzyjess [4], FLOPS [5], and Frill [6] are

much devoted to implementing Mamdani inference system

and have left out reasoning with other fuzzy concepts such

as: fuzzy relations, fuzzy arithmetic, fuzzy quantifiers, and

fuzzy probabilities. This paper presents a roadmap to

implement a CW expert system shell capable of representing

and reasoning with such concepts. The resulting CWJess

expert system shell would allow users to express their

knowledge in form of fuzzy quantified propositions, discrete

fuzzy relations, and fuzzy arithmetic expressions as well as

fuzzy if-then rules and enables them to perform advanced

fuzzy reasoning.

II. PRELIMINARY: COMPUTING WITH WORDS

This section provides a very brief introduction to

computing with words, the generalized constraint language,

and CW inference rules. More detailed information can be

found in Zadeh’s paper [7].

The core of CW is to represent the meaning of a

proposition in form of a generalized constraint (GC). The

idea is that a majority of the propositions and phrases used in

natural language can be viewed as imposing a constraint on

the values of some linguistic variables such as: time, price,

taste, age, relation, size, appearance, and etc. For example

the sentence: “most Indian foods are spicy” constrains the

two variables: (1) the taste of Indian food, and (2) the

portion of the Indian foods that are spicy. In general, a GC

is in form of:

X isr R

Where X is a linguistic (or constrained) variable whose

values are constrained by the linguistic term R, and the small

r shows the semantic modality of this constraint, i.e., how X

is related to R. Various modalities are introduced in the

literature of CW, among them are:

CWJess: Implementation of an Expert System Shell for
Computing with Words

Elham S. Khorasani, Shahram Rahimi, Purvag Patel, Daniel Houle
Department of Computer Science

Southern Illinois University Carbondale
Carbondale, IL, USA

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 33–39

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 33

 possibility (r=blank): where R is a fuzzy set which
denotes the possibility distribution of X [8] , e.g., “X is
large”. fuzzy graph (r=fg) : where X is a function of another
variable, say Y, and R is a fuzzy estimation (or
granulation) of that function. This modality corresponds
to a collection of fuzzy if-then rules that share the same
variables in their premises and consequences. e.g.,
“X=f(y) isfg (small × large + medium × medium +
large × small)”, which is equivalent to three fuzzy rules:
if Y is small then X is large, if Y is medium then X is

medium and if Y is large then X is small. probability (r=p) : where X is a random variable and R is
the probability distribution of X, e.g., “(X is large) isp
likely ”. usuality (r=u): where X is a random variable and R is
the usual (or typical) value of X, e.g., “X isu big”

A collection of GCs together with a set of logical

connectives (such as: and, or, implication, and negation) and

a set of inference rules form the generalized constraint

language (GCL). The inference rules regulates the

propagation of GCs. Table 1 lists instances of inference

rules introduced for GCL. As shown in this table, each rule

has a symbolic part and a computational part. The symbolic

part shows the general abstract form of the GCs that appear

in the premises and conclusion of a rule, while the

computational part calculates the fuzzy value of the

consequent of the rule based on its premises.

TABLE I. INSTANCES OF CW INFERENCE RULES

Inference

rule
Symbolic part Computational part

Conjunction
Rule

Cisyx

Bisy

Aisx

),(

)v(*)u()v,u(BAC =

Extension
Principle Bis)X(f

AisX

)u(fz:tosubject

))u((sup)z(AUB

=

=

Compositiona
l Rule of
Inference CisY

BisXY

AisX

),(
))u,v(*)u((sup)v(BiAuC =

Fuzzy graph
Interpolation

BisY

AisX

BisYthenAisXif
i

ii
)B*m(sup)v(iiiB =

ni

uum
iAAui

...1

))(*)((sup

Fuzzy
Syllogism

sCaresAQ

sCaresBQ

sBaresAQ

)'('

')'(

''

3

2

1

))(*)(sup()(22113
wwz QQQ

21 wwz:tosubject ×=

w1,w2, and z are the universes of
discourse of Q1, Q2,and Q3 ,
respectively

III. INCORPPRATING CW REASONING IN JESS

Figure 1 shows a schematic view of CWJess Inference
System.

Figure 1. The schematic view of CWJess Inference System

CWJess consists of two components: the Java API and the
CWJess library. The Java API is the core element which
implements CW concepts, such as linguistic variables,
various types of generalized constraints, and the

computational part of CW inference rules. The CWJess
library consists of a list of production rules which define the
symbolic part of CW inference rules. When a user adds a
GCL assertion to the fact base, Jess Rete algorithm checks
the symbolic part of CW inference rules in CWJess library to
find a production rule whose premises match with the facts
and place the consequents of such rules into the agenda.
When a CW inference rule is fired, its consequent calls the
java method which performs the computational part of the
rule and asserts the result back to the fact base.

A. GC Assersions in CWJess Fact Base

The CWJess fact base consists of a set of GC assertions.
A GC assertion may have one of the following forms:

(1) a simple generalized constraint,

(2) a fuzzy graph,

(3) a quantified generalized constraint

(4) an arithmetic generalized constraint.

Different forms of generalized constraints are
implemented as java classes in the java API. The GC facts
are then created as jess shadow facts connected to the
corresponding java object.

A simple generalized constraint consists of four
elements:

 An atomic or composite linguistic variable, such as:
“age”, “size”, “weight”, “price”, “distance”, etc. A list of objects of linguistic variables, for example
object “Mary” for the linguistic variable “Age”, or
object “McDonald’s”, for the linguistic variables
“service-quality”. A semantic modality. The semantic modality may
be: “possibistic”, “probabilistic” “verisitc” . The
semantic modality is by default possibilistic. At this
point, we have only implemented the possibilistic
semantic modality. The implementation of
probabilistic and veristic modalities and their
combination with possibilistic modality requires the
availability of more complex theories and will be
considered as future work of this study.

34 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

 A linguistic value associated with the linguistic
variable and constraint its values.

For example, the generalized constraint: service-
quality(McDonald’s) is good” consists of the linguistic
variable: service quality, object: McDonald’s, semantic
modality: possibilistic, and linguistic value: good.

Two types of linguistic variables are considered: atomic
and composite. The atomic linguistic variable consists of a
name (e.g., oil-price), a unit (e.g., $ per gallon), a range of
values (e.g, 1.0-5.0), and a set of linguistic terms (e.g.,
“cheap”, “mid-price”, and “expensive”). The linguistic
terms are defined using a term name and a membership
function that is a fuzzy set over the range of values for the
linguistic variable. The membership functions may be
defined to have a standard shape, such as : triangular,
trapezoid, Gaussian, Pi shape, S shape, Z shape, crisp
interval, or it may be a piecewise linear, or a discrete
function specified by a set of singletons. Figure 2 shows
three linguistic terms with different type of membership
function for the linguistic variable: “oil-price”.

Figure 2. Examples of membership functions for the linguistic variable:
oil_price

A composite linguistic variable is a fuzzy relation
between two or more linguistic variables. To reduce the
complexity of computation, the membership function of
composite linguistic variable is assumed to be discrete. The
inclusion of continuous fuzzy relation requires complex non-
linear computation, and will be considered as the future
developments of CWJess. Figure 3 shows the membership
function for the linguistic term “petite” of the composite
linguistic variable, “size”, where “size” is a fuzzy relation of
two atomic linguistic variables: “height” and “weight”.

Figure 3. The membership function for th linguistic term: “petite” of the
composite linguistic variable “size”.

A linguistic value in a generalized constraint may be
modified by a fuzzy modifier. The modifiers implemented in

CWJess are: not, more-or-less, a-little-more, slightly-more,
somewhat, very, extremely, indeed, and their combinations.

A Fuzzy graph is a collection of fuzzy if…then rules in
which all the premises and the conclusion share the same
linguistic variables. The general form of a fuzzy graph in
CWJess is as follows:

ni

ikinii GCthenGCGCGCif
...1

21)...(

Where
inii GCGCGC ,...,, 21

denote the generalized

constraints in the premise of the rule, and
ikGC is the

generalized constraint in the consequent of the rule. For
example:
if age(x) is young health(x) is good then insurance(x) is very low

if age(x) is middle-age health(x) is good then insurance (x) is average

if age(x) is old health(x) is moderate then insurance(x) is relatively high

if age(x) is old health(x) is poor then insurance(x) is very high

Although fuzzy graph may seem as the conjunction of a
set of fuzzy if-then rules (or fuzzy implications), it has a very
different meaning. From the mathematical point of view, a
fuzzy graph expresses a functional dependency between two
or more linguistic variables and provides a fuzzy description
of such function when the point to point data is not available.
Hence, fuzzy graph has a completely different semantics than
the fuzzy implication and must be treated differently by the
inference engine.

A quantified generalized constraint (QGC) consists of a
fuzzy quantifier and a generalized constraint with an
anonymous object (variable) which is bounded by the
quantifier. For example: “mostx price(x) is expensive” is a
quantified generalized constraint in which x is an anonymous
object bounded by the quantifier “most”. Fuzzy quantifiers
are defined as fuzzy sets and are assigned a membership
function:]1,0[]1,0[: . In this version of CWJess we

limited ourselves to monotone increasing quantifiers, such as
: “most”, “many”, “several”, “a few”, etc., for applying
Zadeh’s syllogism reasoning [9].

We have implemented two types of QGC: unary and
binary. A unary QGC puts constraint on the proportion of
objects that satisfy a single generalized constraint, e.g., “most

x (age(x) is young)“ whereas a binary QGC imposes a
constraint on the proportion of number of objects that satisfy
two generalized constraints to the number of objects that
satisfy one. For example:“mostx (age(x) is young, health(x)
is good)” is a binary QGC which states that the number of
“x” s who are young and healthy over the number of “x”s
who are young, is most.

An arithmetic generalized constraint (AGC) is a
generalized constraint which has an arithmetic fuzzy
expression as its linguistic value. The arithmetic expression
may consist of linguistic terms or other linguistic variables.
For example: “gas-price(Europe) is gas-price(US) +
approximately $4 per gallon “, which states that the gas
price in Europe is approximately $4 more per gallon than in
the United States.

HeightWeight

ELHAM S. KHORASANI ET AL.: CWJESS: IMPLEMENTATION OF AN EXPERT SYSTEM SHELL 35

B. Implementation of CW Inference Rules

The computational part of all CW rules is implemented in
the java API as the following java methods. The result of the
each method is a normalized fuzzy set.

 Conjunction method: The conjunction method takes a
number of linguistic terms associated with a linguistic
variable, and computes their minimum intersection. (The
minimum operation can be easily replaced with a t-norm
[10]) Disjunction method: The disjunction method takes a
number of terms associated with a linguistic variable and
computes their maximum union. The maximum operation
can be replaced with a t-conorm. Compositional method: The compositional method takes
two linguistic terms: one associated with a composite
linguistic variable and the other one associated with an
atomic linguistic variable, which occurs in the composite
linguistic variable, and calculates their max-min
composition. As an example let us assume that the composite
linguistic variable size of a woman consists of the atomic
linguistic variables, height and weight, i.e.,

))(),(()(xweightxheightxsize
let’s also assume that the membership function for the term

“petite” associated with size, and the term “about 5.2”
associated with the height are given. The compositional
method calculates the membership function of the weight of
a petite woman who is about 5.2 tall, as shown in the
following figure.

Figure 4. Compositional rule of inference. Composition of the fuzzy
relation “petite” with the fuzzy set “about 5.2”. the

 Fuzzy graph Interpolation method: This method
corresponds to Mamdani method of inference. It takes a
fuzzy graph as well as a set of linguistic terms associated
with the linguistic variables in the premises of a fuzzy graph
and computes the corresponding fuzzy set for the linguistic
variable in the conclusion. Unlike Mamdani inference
method, where the input is a singleton, the fuzzy
interpolation method accepts a linguistic term (fuzzy set) as
input and, for each rule, computes the match score as the
degree of similarity between the input fuzzy set and the ones
in the premise of the rule. For instance, consider the fuzzy
graph mentioned as an example in the previous subsection,
and let us assume that the input it: “age is about 55” and
“health is “excellent”, then the fuzzy graph interpolation

method would calculate the fuzzy set for the linguistic
variable ”insurance” as illustrated in figure 5.

Figure 5. Example of fuzzy graph interpolation rule. The gray areas in the
first and second column show the memebrship functions of “about 55”, and

“excellent” for the linguistic variables “age” and “health”, respectively.

 Fuzzy Extension method: The fuzzy extension method,
takes an arithmetic expression on a number of linguistic
terms associated with a linguistic variable, and returns the
fuzzy set resulted from performing the arithmetic operations.
The linguistic terms appear in the arithmetic expressions are
required to have a normal convex fuzzy set.

The implementation of the extension principle is not
trivial and involves nonlinear optimization. Thus
approximation methods are usually used to obtain the
membership function of the resulting fuzzy set. A common
practice is to discretize the membership interval [0,1] into a
finite number of values and, for each value, take the -cut of
all the operands. The arithmetic operations then may be
performed on the resulting intervals, using the interval
arithmetic, in order to come up with the -cut of the output
fuzzy set. Finally, these -cuts are put together to obtain the
output of the arithmetic operations. This approach can be
efficiently implemented and provides a good approximation
to the exact solution of the extension principle [11]. Figure 6
demonstrates the -cut method for computing the result of
the arithmetic expression: “around3 + approximately4 *
about-half”, for the linguistic variable “oil_price”.

Figure 6. An example of alpha-cut implementation of the extension
principle. The table shows the -cuts of the operands and the output of

the arithmetic expression

36 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

 Fuzzy Syllogism: The fuzzy syllogism method takes two
monotone increasing fuzzy quantifiers, and calls the
extension method to calculate and return their multiplication.

The symbolic parts of the above rules are implemented as
production rules in the CWJess library. For example, the
symbolic part of the conjunction rule may be defined as
follows:

;; The conjunction rule

(defrule conjunction

(declare (salience 100))

?c1<-(GC (linguistic_var ?x) (object ?a)

 (linguistic_value ?w))

?c2<-(GC (linguistic_var ?x) (object ?a)

 (linguistic_value ?z&:(<> ?z ?w)))

=>

(assert (GC (linguistic_var ?x) (object ?a)

 (value (CWRULEs.conjunction ?w ?z))))

(retract ?c1 ?c2))

This rule states that if there are two different generalized
constraints in the fact base sharing the same linguistic
variable and the same object, they are combined to one
generalized constraint whose value is the conjunction of the
linguistic values of the premises. GC is a template
automatically created from the generalized constraint class in
the java API. GCWRULES is a java class which implements
the computational parts of CW rules as described earlier.

As another example, consider the compositional rule of
inference, the symbolic part of this rule is defined in CWJess
library as follows:

;; The compositional rule of inference.

(defrule composition

(GC (linguistic_var ?u &:(instanceof ?u

 COMPOSITE_LINGUISTIC_VARIABLE))

 (object ?o) (linguistic_value ?w))

(GC (linguistic_var ?x &:(instanceof ?x

 ATOMIC_LINGUISTIC_VARIABLE))

 (object ?o) (linguistic_value ?z))

(test (occurs ?x ?u)

=>

(assert (GC (linguistic_var (CWRULES.composedVar ?u

 ?x)) (object ?o)(linguistic_value

(CWRULES.composedValue ?w ?z))))

This rule states that if there are two generalized
constraints in the fact base, one with a composite linguistic
variable ?u, and another one with an atomic linguistic
variable ?x , and ?x occurs in ?u, then assert a new
generalized constraint which is the composition of the two
generalized constraints in the premises. The methods
composedVar, and composedValue are static methods
defined in CWRULES and return, respectively, the linguistic
variable and the fuzzy set resulted from the composition.

The symbolic parts of the fuzzy graph interpolation rule,
fuzzy syllogism, and fuzzy extension principle, are defined
in a similar way but are excluded from the paper due to their
complexity and length.

IV. AN EXAMPLE

To demonstrate the CWJess we present a simple example.

Suppose that we would like to encode the following
information in a CWJess fact base: The average chance that a woman is diagnosed by breast

cancer depends directly on her age. The younger a woman

is, the lower is her risk of developing a breast cancer. Many obese women have higher risk of developing a

breast cancer and a Mammogram is strongly recommended

for most women at high risk of breast cancer. Mary has a son who is about 15 . She gave birth to her

son when she was in her 20’s. Also She is few years

younger than Ann who is in her mid-50.

The dependency between the age and the risk of breast
cancer should be represented as a fuzzy graph. To create a
fuzzy graph, the related linguistic variables and their
associated terms must be first defined. In the following Jess
code, “trap-mf”, “tri-mf”, “z-mf”, “p-imf”, “s-mf”, and
“interval-mf” denote trapezoid, triangular, z shape, pi shape,
s shape, and the crisp interval membership functions,
respectively.

;; Defining the linguistic variables and terms that

;; appear in the fuzzy graph

(bind ?age (new ATOMIC_LINGUISTIC_VARIABLE "age"

"year" 0 120))

(?age addTerm “ young” “(0,1) (25,1) (50,0)”)

(?age addTerm “middle-age” “trap-mf” “30 40 50 60”)

(?age addTerm “old”(40, 0) (65 1) (120,1)”)

(bind ?riskbc (new ATOMIC_LINGUISTIC_VARIABLE

“risk-breast-cancer” “percentage” 0 100)

(?riskbc addTerm “ low” “z-mf” “5 10”)

(?riskbc addTerm “average” “pi-mf” “5 10 15 20”)

(?riskbc addTerm “high” “s-mf” “15 30”)

Now the fuzzy graph may be created to show the
dependency between the linguistic variables: ?age and
?riskbc, and fuzzy rules may be created and added to the
fuzzy graph. A fuzzy rule consists of a list of generalized
constraints that makes its premises and its conclusion. The
parameter “?x” denotes an anonymous object which may be
instantiated by the object of a matching generalized
constraint in the fact base. The fuzzy graph is added as a
shadow fact [12] to the working memory.

;; Creating the fuzzygraph

(bind ?fg (new FUZZY_GRAPH)

;;Defining the fuzzy rule: “if age(x) is young then

;;riskbc(x) is low”

(bind ?gc1 (new GENERALIZED_CONSTRAINT ?age “?x”

 “young”)

(bind ?gc2 (new GENERALIZED_CONSTRAINT ?riskbc

 “?x” “low”))

(bind ?rule1 (new FUZZY_RULE ?gc1 ?gc2))

;;Defining the fuzzy rule: “if age(x) is middle-age

;;then riskbc(x)” is average”

(bind ?gc3 (new GENERALIZED_CONSTRAINT ?age “?x”

“middle-age”))

(bind ?gc4 (new GENERALIZED_CONSTRAINT ?riskbc

“?x” “average”))

(bind ?rule2 (new FUZZY_RULE ?gc3 ?gc4))

;;Defining the fuzzy rule: “if age(x) is old then

;;riskbc(x)” is high”

(bind ?gc5 (new GENERALIZED_CONSTRAINT ?age “?x”

ELHAM S. KHORASANI ET AL.: CWJESS: IMPLEMENTATION OF AN EXPERT SYSTEM SHELL 37

 “old”))

(bind ?gc6 (new GENERALIZED_CONSTRAINT ?riskbc

 “?x” “high”))

(bind ?rule3 (new FUZZY_RULE ?gc3 ?gc4))

(?fg addRule ?rule3)

;;Adding the rules to the fuzzy graph

(?fg addRule ?rule1)

(?fg addRule ?rule2)

;; adding the fuzzy graph to the working memory

(add ?fg)

The statement with fuzzy quantifiers may be represented as
a binary quantified generalized constraint. In the following
parameter “?x” is a variable bounded by the quantifier.

;; creating the generalized constraints that appear

;; in the quantified statements

(bind ?weight (new ATOMIC_LINGUISTIC_VARIABLE

 "weight" "Kilogram" 40 250))

(?weight addTerm "obese" "s-mf" "85 100")

(bind ?gc1 (new GENERALIZED_CONSTRAINT ?weight “?x”

 “obese”))

(bind ?gc2 (new GENERALIZED_CONSTRAINT ?riskbc “?x”

 “high”))

(bind ?recom (new ATOMIC_LINGUISTIC_VARIABLE

 "mammogram-recommendation" "percentage" 0 1))

(?recom addTerm "strongly-recommended" "s-mf"

 ".85 1")

(bind ?gc3 (new GENERALIZED_CONSTRAINT ?recom “?x”

 “strongly-recommended”))

;; Creating the quantified generalized constraints

(bind ?qgc1 (new QUANTIFIED_GENERALIZED_CONSTRAINT

 “many” “?x” ?gc1 ?gc2))

(bind ?qgc2 (new QUANTIFIED_GENERALIZED_CONSTRAINT

 “most” “?x” ?gc2 ?gc3))

;; Adding the quantified generalized constraints to

;; the working memory

(add ?qgc1)

(add ?qgc2)

Given that the age of mother is equal to the age of her son
plus the age that she gave birth to him, we have two pieces of
information regarding Mary’s age which we can be encoded
as the following arithmetic generalized constraints.

;; Defining the linguistic terms that appear in the

;;arithmetic generalized constraints

(?age addTerm “in-20’s ” “Interval-mf” “20 30”)

(?age addTerm “about 15” “tri-mf” “13 15 17”)

(?age addTerm “few-years” “trap-mf” “ 2 3 5 7”)

;; Defining the arithmetic generalized constraints

;; and adding them to the working memory

(bind ?agc1 (new ARITHMETIC_GENERALIZED_CONSTRAINT

 ?age “Mary” “in-20’s + about 15”))

(bind ?agc2 (new ARITHMETIC_GENERALIZED_CONSTRAINT

 ?age “Mary” “?age(Ann) - few-years”))

;; Adding the arithmetic generalized constraints to

;; the working memory

(add ?agc1)

(add ?agc2)

And finally, the information regarding Ann’s age can be
defined as a simple generalized constraint:

(?age addTerm “mid-50” “tri-mf” “50 55 60”)

(bind ?gc8 (new GENERALIZED_CONSTRAINT ?age “Ann”

 “mid-50”))

(add ?gc8)

Once the above Jess program is run, the pair of simple
and arithmetic facts: ?gc8 and ?agc2 fire the extension
principle rule. The extension principle rule replaces
“?age(Ann)” with “mid-50” in the arithmetic expression
“?age(Ann) – few years” to achieve a fuzzy value for Mary’s
Age. The extension principle rule is also fired for the
arithmetic fact ?agc1 to calculate the value “in-20’s + about-
15”. At this point the fact base would consist of two
generalized constraints regarding Mary’s age with different
fuzzy values which leads to firing the conjunction rule to
combine the constraints to obtain one fuzzy value for Mary’s
age.

Now the resulting fact regarding Mary’s age together
with the fuzzy graph fact ?fg activate the fuzzygraph
interpolation rule, which in turn calculates the value of
?riskbc (Mary) and adds it as a simple generalized constraint
to the fact base.

The fuzzy graph interpolation rule is also fired by the pair
of facts: ?fg and ?gc8 to calculate the value of
?riskbc(Ann).

Furthermore, the pair of quantified facts: ?qgc1 and
?qgc2 activate the fuzzy syllogism rule which calculates the
proportion of obese women for whom the Mammogram is
highly recommended. The result of this calculation is
asserted to the fact base as a quantified generalized
constraint.

In order to show the output of a jess program to the user,
the CWJess library includes a jess function: “print-GC” .
This function allows users to query the fact base to find the
value of a given linguistic variable. For example in the above
program if the user wishes to know Mary’s age, or her risk of
developing a breast cancer, she can add the following lines to
the jess program:

;; Querying the fact-base

(print-GC ?age “Mary”)

(print-GC ?riskbc “Mary”)

The output is the two normalized fuzzy sets in figures 7
and 8, deduced by using the extension principle, the
conjunction, and the fuzzy graph interpolation rules.

Figure 7. The value of the linguistic variable “age(Mary)”

38 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Figure 8. The value of the linguistic variable: "riskbc(Mary)"

V. SUMMARY AND FUTURE WORK

The paper reports a preliminary work on the implementa-

tion of an expert system shell on top of Jess to perform CW

reasoning. The resulting shell, CWJess, is a powerful tool

which allows users to express fuzzy facts in form of general-

ized constraints of various types. It provides java classes

which enable users to define atomic or composite linguistic

variables, linguistic terms, fuzzy quantified statements, fuzzy

rules, fuzzy arithmetic expressions, and fuzzy graphs. The

CW inference rules, implemented in CWJess, along with Jess

Rete algorithm render an inference engine which is able to

perform forward reasoning over a set of generalized con-

straints.

We are working on making the CWJess tool available for

download via www.purvag.com/cwjess. We will provide a

complete set of instructions to help users to express their

knowledge in terms of GCL. Nevertheless, to facilitate easier

translation of linguistic knowledge, we are planning to devel-

op a human readable intermediate language to hide the com-

plexity of underlying GCL.

Several other developments to CWjess can be proposed to

make it more expressive and to enhance its reasoning power,

among which are:

• Developing necessary classes and methods to allow

users to assert generalized constraints with probabilistic

modality, such as: “(age(Mary) is young) isp likely” and
perform reasoning on such generalized constraints.

• Implementing the compositional rule of inference for

fuzzy relations with a continuous membership function.

REFERENCES

[1] L. A. Zadeh, “Fuzzy logic = computing with words,” Fuzzy Systems,
IEEE Transactions on, vol. 4, no. 2, 1996, pp. 103-111.

[2] L. A. Zadeh, “Computing With Words and Perceptions-A Paradigm-
Shift,” Proc IEEE IRI-2009.

[3] FuzzyCLIPS Version 6.04a User’s Guide, Nat. Res. Council,
Ottawa,ON, Canada, 1998

[4] R. Orchard, “Fuzzy reasoning in jess : The fuzzyj toolkit and
fuzzyjess,” Proc. in ICEIS 2001, 3 rd International Conference on
Enterprise Information Systems, 2001, pp. 533-542.

[5] W. Siler, D. Tucker, and J. Buckley, “A parallel rule firing fuzzy
production system with resolution of memory conflicts by weak fuzzy
monotonicity, applied to the classification of multiple objects
characterized by multiple uncertain features,”International Journal of
Man-Machine Studies, vol. 26, no. 3, 1987, pp. 321-332; DOI
10.1016/s0020-7373(87)80066-4.

[6] J. Baldwin, T. Martin , and B. Pilsworth, “Fril-Fuzzy and Evidential
Reasoning in Artificial Intelligence”, Research Studies Press,
Taunton, Somerset, England, 1995.

[7] L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU): an
outline,” Inf. Sci. Inf. Comput. Sci., vol. 172, no. 1-2, 2005, pp. 1-40.

[8] D. Dubois and H. M. Prade, “Possibility theory : an approach to
computerized processing of uncertainty”, Plenum Press, 1988, p. xvi,
263 p.

[9] L. A. Zadeh, “Commonsense reasoning based on fuzzy logic,” Book
Commonsense reasoning based on fuzzy logic, Series Commonsense
reasoning based on fuzzy logic, ed., Editor ed.^eds., ACM, 1986, pp.
445-447.

[10] P. Hájek, Metamathematics of Fuzzy Logic, Dordrecht: Kluwer, 1998

[11] W. M. Dong and F. S. Wong, “Fuzzy weighted averages and
implementation of the extension principle,” Fuzzy Sets and Systems,
vol. 21, no. 2, 1987, pp. 183-199.

[12] E. F. Hill, Jess in Action: Java Rule-Based Systems, Manning
Publications Co., 2003, p. 480.

ELHAM S. KHORASANI ET AL.: CWJESS: IMPLEMENTATION OF AN EXPERT SYSTEM SHELL 39

