
Abstract—Computing with Words (CW) is an emerging par-
adigm in knowledge representation and information processing. 
It provides a mathematical model to represent the meaning of 
imprecise words and phrases in natural language, and to per-
form reasoning on perceptual knowledge. This paper describes 
a preliminary extension to Jess, CWJess, which allows reason-
ing in the framework of Computing with Words (CW).   The re-
sulting inference shell significantly enhances the expressiveness 
and reasoning power of  fuzzy expert  systems and provides a 
Java API which allows users to express various types of fuzzy 
concepts, including: fuzzy graphs, fuzzy relations, fuzzy arith-
metic expression, and fuzzy quantified propositions. CWJess is 
fully integrated with jess and utilizes jess Rete network to per-
form a chain of reasoning on fuzzy propositions

Index Terms—Computing with Words; fuzzy Logic; Expert 
systems; knowledge representation

I. INTRODUCTION

UMAN mind has a limited capability for processing a 

huge  amount  of  detailed  information  in  his 

environment; thus, to compensate, the brain groups together 

the information it perceives by its similarity,  proximity, or 

functionality and assigns to each group a name or a “word” 

in natural language. This classification of information allows 

human  to  perform  complex  tasks  and  make  intelligent 

decisions in an inherently vague and imprecise environment 

without any measurements or computation. Inspired by this 

human capability, Zadeh introduced the machinery of CW as 

a tool to formulate human reasoning with perceptions drawn 

from natural language and argued that the addition of CW 

theory to the existing tools  gives  rise to  the theories  with 

enhanced capabilities to deal with real-world problems and 

makes  it  possible  to  design  systems with  higher  level  of 

machine  intelligence  [1][2].  To  do  this,  CW  offers  two 

principal  components,  (1)  a  language  for  representing the 

meaning of words taken from natural language, this language 

is called the Generalized Constraint  Language (GCL),  and 

(2) a set of deduction rules for computing and reasoning with 

words  instead  of  numbers.  CW  is  rooted  in  fuzzy logic; 

however,  it  offers  a  much more  general  methodology for 

fusion  of  natural  language  propositions  and  computation 

with fuzzy variables.  CW inference  rules  are  drawn from 

various fuzzy domains, such as fuzzy logic, fuzzy arithmetic, 

H

fuzzy probability, and fuzzy syllogism. This paper reports a 

preliminary work on the implementation of a CW inference 

system on top of JESS expert system shell (CWJess) . The 

CW  reasoning  is  fully  integrated  with  JESS  facts  and 

inference  engine  and allows knowledge to  be  specified  in 

terms of GCL assertions. 

The  current  fuzzy  logic  expert  system  shells,  such  as: 

fuzzyclips [3],  fuzzyjess [4],  FLOPS [5],  and Frill  [6]  are 

much devoted to implementing Mamdani inference system 

and have left out reasoning with other fuzzy concepts such 

as: fuzzy relations, fuzzy arithmetic, fuzzy quantifiers,  and 

fuzzy  probabilities.  This  paper  presents  a  roadmap  to 

implement a CW expert system shell capable of representing 

and  reasoning  with  such  concepts.  The  resulting  CWJess 

expert  system  shell  would  allow  users  to  express  their 

knowledge in form of fuzzy quantified propositions, discrete 

fuzzy relations, and fuzzy arithmetic expressions as well as 

fuzzy if-then rules  and enables  them to perform advanced 

fuzzy reasoning.

II. PRELIMINARY: COMPUTING WITH WORDS

This  section  provides  a  very  brief  introduction  to 

computing with words, the generalized constraint language, 

and CW inference rules. More detailed information can be 

found in Zadeh’s paper [7]. 

The  core  of  CW  is  to  represent  the  meaning  of  a 

proposition in form of a  generalized constraint  (GC).  The 

idea is that a majority of the propositions and phrases used in 

natural language can be viewed as imposing a constraint on 

the values of some linguistic variables such as: time, price, 

taste,  age, relation, size,  appearance, and etc.  For example 

the sentence: “most Indian foods are spicy” constrains the 

two  variables:  (1)  the  taste  of  Indian  food,  and  (2)  the 

portion of the Indian foods that are spicy.  In general, a GC 

is in form of:

X isr R 

Where X is a linguistic (or  constrained) variable whose 

values are constrained by the linguistic term R, and the small 

r shows the semantic modality of this constraint, i.e., how X 

is  related  to  R.  Various  modalities  are  introduced  in  the 

literature of CW, among them are:
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 possibility (r=blank): where R is a fuzzy set which 
denotes the possibility distribution of X [8]  , e.g., “X is 
large”. fuzzy graph (r=fg) : where X is a function of another 
variable, say Y, and R is a fuzzy estimation (or 
granulation) of that function. This modality corresponds 
to a collection of fuzzy if-then rules that share the same 
variables in their premises and consequences.  e.g., 
“X=f(y) isfg (small × large +  medium × medium +
large × small)”, which is equivalent to three fuzzy rules: 
if Y is small then X is large, if Y is medium then X is 

medium and if Y is large then X is small.  probability (r=p) : where X is a random variable and R is 
the  probability distribution of X, e.g., “(X is large) isp 
likely ”. usuality (r=u): where X is a random variable  and R is 
the usual ( or typical) value of X, e.g., “X isu big”

A collection of GCs together with a set of logical 

connectives (such as: and, or, implication, and negation) and 

a set of inference rules form the generalized constraint 

language (GCL). The inference rules regulates the 

propagation of GCs. Table 1 lists instances of inference 

rules introduced for GCL. As shown in this table, each rule 

has a symbolic part and a computational part. The symbolic

part shows the general abstract form of the GCs that appear 

in the premises and conclusion of a rule, while the 

computational part calculates the fuzzy value of the 

consequent of the rule based on its premises.

TABLE I. INSTANCES OF CW INFERENCE RULES
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III. INCORPPRATING CW REASONING IN JESS

Figure 1 shows a schematic view of CWJess Inference 
System. 

Figure 1. The schematic view of CWJess Inference System

CWJess consists of two components: the Java API and the 
CWJess library. The Java API is the core element which 
implements CW concepts, such as linguistic variables, 
various types of generalized constraints, and the 

computational part of CW inference rules. The CWJess 
library consists of a list of production rules which define the 
symbolic part of CW inference rules.  When a user adds a 
GCL assertion to the fact base, Jess Rete algorithm checks 
the symbolic part of CW inference rules in CWJess library to 
find a production rule whose premises match with the facts 
and place the consequents of such rules into the agenda. 
When a CW inference rule is fired, its consequent calls the 
java method which performs the computational part of the 
rule and asserts the result back to the fact base.  

A. GC Assersions in CWJess Fact Base

The CWJess fact base consists of a set of GC assertions.
A GC assertion may have one of the following forms:

(1) a simple generalized constraint,

(2) a fuzzy graph, 

(3) a quantified generalized constraint 

(4) an arithmetic generalized constraint.

Different forms of generalized constraints are 
implemented as java classes in the java API. The GC facts 
are then created as jess shadow facts connected to the 
corresponding java object.

A simple generalized constraint consists of four 
elements: 

 An atomic or composite linguistic variable, such as: 
“age”, “size”, “weight”, “price”, “distance”, etc. A list of objects of linguistic variables, for example 
object “Mary” for the linguistic variable “Age”, or 
object “McDonald’s”, for the linguistic variables 
“service-quality”. A semantic modality. The semantic modality may
be: “possibistic”, “probabilistic” “verisitc” . The 
semantic modality is by default possibilistic. At this 
point, we have only implemented the possibilistic 
semantic modality. The implementation of  
probabilistic and veristic modalities and their 
combination with possibilistic modality requires the 
availability of  more complex theories and will be 
considered as future work of this study.
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 A linguistic value associated with the linguistic 
variable and constraint its values.

For example, the generalized constraint: service-
quality(McDonald’s) is good” consists of the linguistic 
variable: service quality, object: McDonald’s, semantic 
modality: possibilistic, and linguistic value: good. 

Two types of linguistic variables are considered: atomic
and composite. The atomic linguistic variable consists of a 
name ( e.g.,  oil-price), a unit ( e.g., $ per gallon), a range of 
values (e.g,  1.0-5.0), and a set of linguistic terms (e.g., 
“cheap”, “mid-price”, and “expensive”).  The linguistic 
terms are defined using a term name and a membership 
function that is a fuzzy set over the range of values for the 
linguistic variable.  The membership functions may be 
defined to have a standard shape, such as : triangular, 
trapezoid, Gaussian, Pi shape, S shape, Z shape, crisp 
interval, or it may be a piecewise linear, or a discrete 
function specified by a set of singletons.  Figure 2 shows 
three linguistic terms with different type of membership 
function for the linguistic variable: “oil-price”.

Figure 2. Examples of membership functions for the linguistic variable: 
oil_price

A composite linguistic variable is a fuzzy relation 
between two or more linguistic variables. To reduce the 
complexity of computation, the membership function of 
composite linguistic variable is assumed to be discrete. The 
inclusion of continuous fuzzy relation requires complex non-
linear computation, and will be considered as the future 
developments of CWJess. Figure 3 shows the membership 
function for the linguistic term “petite” of the composite 
linguistic variable, “size”, where  “size” is a fuzzy relation of 
two atomic linguistic variables: “height” and “weight”. 

Figure 3. The membership function for th linguistic term: “petite”  of the 
composite linguistic variable “size”.

A linguistic value in a generalized constraint may be
modified by a fuzzy modifier. The modifiers implemented in 

CWJess are: not, more-or-less, a-little-more, slightly-more, 
somewhat, very, extremely, indeed, and their combinations.

A Fuzzy graph is a collection of fuzzy if…then rules in 
which all the premises and the conclusion share the same 
linguistic variables. The general form of a fuzzy graph in 
CWJess is as follows:

 
ni

ikinii GCthenGCGCGCif
...1

21 )...(

Where 
inii GCGCGC ,...,, 21

denote the generalized 

constraints in the premise of the rule,  and 
ikGC is the 

generalized constraint in the consequent of the rule. For 
example:
if age(x) is young  health(x) is  good  then insurance(x) is very low

if age(x) is middle-age  health(x) is good then insurance (x) is average

if age(x) is old  health(x) is moderate then insurance(x) is  relatively high

if age(x) is old  health(x) is poor then insurance(x) is very high

Although fuzzy graph may seem as the conjunction of a 
set of fuzzy if-then rules (or fuzzy implications), it has a very 
different meaning.  From the mathematical point of view, a 
fuzzy graph expresses a functional dependency between two 
or more linguistic variables and provides a fuzzy description 
of such function when the point to point data is not available. 
Hence, fuzzy graph has a completely different semantics than 
the fuzzy implication and must be treated differently by the 
inference engine.

A quantified generalized constraint (QGC) consists of a 
fuzzy quantifier and a generalized constraint with an 
anonymous object (variable) which is bounded by the 
quantifier. For example: “mostx price(x) is expensive” is a 
quantified generalized constraint in which x is an anonymous 
object bounded by the quantifier “most”. Fuzzy quantifiers 
are defined as fuzzy sets and are assigned a membership 
function: ]1,0[]1,0[:  . In this version of CWJess we 

limited ourselves to monotone increasing quantifiers, such as 
: “most”, “many”, “several”, “a few”, etc., for applying 
Zadeh’s syllogism reasoning [9].

We have implemented two types of QGC: unary and 
binary. A unary QGC puts constraint on the proportion of 
objects that satisfy a single generalized constraint, e.g., “most 

x (age(x) is young)“ whereas a binary QGC imposes a 
constraint on the proportion of number of objects that satisfy 
two generalized constraints to the number of objects that 
satisfy one. For example:“mostx ( age(x) is young, health(x) 
is good)” is a binary QGC which states that the number of 
“x” s who are young and healthy over the number of “x”s 
who are young, is most.

An arithmetic generalized constraint (AGC) is a 
generalized constraint which has an arithmetic fuzzy 
expression as its linguistic value. The arithmetic expression 
may consist of linguistic terms or other linguistic variables. 
For example: “gas-price(Europe) is gas-price(US) + 
approximately $4 per gallon “, which states that the gas 
price in Europe is approximately $4 more per gallon than in 
the United States. 

HeightWeight
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B. Implementation of CW Inference Rules

The computational part of all CW rules is implemented in 
the java API as the following java methods. The result of the 
each method is a normalized fuzzy set.   

 Conjunction method:   The conjunction method takes a 
number of linguistic terms associated with a linguistic 
variable, and computes their minimum intersection. (The 
minimum operation can be easily replaced with a t-norm 
[10]) Disjunction method: The disjunction method takes a
number of terms associated with a linguistic variable and 
computes their maximum union. The maximum operation 
can be replaced with a t-conorm. Compositional method: The compositional method takes
two linguistic terms: one associated with a composite
linguistic variable and the other one associated with an 
atomic linguistic variable, which occurs in the composite 
linguistic variable, and calculates their max-min 
composition. As an example let us assume that the composite 
linguistic variable size of a woman consists of the atomic 
linguistic variables, height and weight, i.e.,

))(),(()( xweightxheightxsize 
let’s also assume that the membership function for the term 

“petite”  associated with size, and the term “about 5.2” 
associated with the height are given. The compositional 
method calculates the membership function of the weight of 
a petite woman who is about 5.2 tall, as shown in the 
following figure.

Figure 4. Compositional rule of inference. Composition of the fuzzy 
relation “petite” with the fuzzy set “about 5.2”. the 

 Fuzzy graph Interpolation method: This method 
corresponds to Mamdani method of inference. It takes a 
fuzzy graph as well as a set of linguistic terms associated 
with the linguistic variables in the premises of a  fuzzy graph
and  computes the corresponding fuzzy set for the linguistic 
variable in the conclusion. Unlike Mamdani inference 
method, where the input is a singleton, the fuzzy 
interpolation method accepts a linguistic term (fuzzy set) as 
input and, for each rule, computes the match score as the 
degree of similarity between the input fuzzy set and the ones 
in the premise of the rule. For instance, consider the fuzzy 
graph mentioned as an example in the previous subsection, 
and let us assume that the input it: “age is about 55”  and 
“health is “excellent”, then  the fuzzy graph interpolation 

method would calculate the fuzzy set for the linguistic 
variable ”insurance” as illustrated in figure 5.

Figure 5. Example of fuzzy graph interpolation rule. The gray areas in the 
first and second column show the memebrship functions of “about 55”, and 

“excellent” for the linguistic variables “age” and “health”, respectively.

 Fuzzy Extension method: The fuzzy extension method, 
takes an arithmetic expression on a number of linguistic 
terms associated with a linguistic variable, and returns the 
fuzzy set resulted from performing the arithmetic operations. 
The linguistic terms appear in the arithmetic expressions are 
required to have a normal convex fuzzy set.

The implementation of the extension principle is not 
trivial and involves nonlinear optimization. Thus
approximation methods are usually used to obtain the 
membership function of the resulting fuzzy set. A common 
practice is to discretize the membership interval [0,1] into a 
finite number of values and, for each value, take the -cut of 
all the operands. The arithmetic operations then may be 
performed on the resulting intervals, using the interval 
arithmetic, in order to come up with the -cut of the output 
fuzzy set.  Finally, these -cuts are put together to obtain the 
output of the arithmetic operations.   This approach can be 
efficiently implemented and provides a good approximation 
to the exact solution of the extension principle [11]. Figure 6
demonstrates the -cut method for computing the result of 
the arithmetic expression: “around3 + approximately4 * 
about-half”, for the linguistic variable “oil_price”.

Figure 6. An example of alpha-cut implementation of the extension 
principle. The table shows the  -cuts of the operands and the output of 

the arithmetic expression
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 Fuzzy Syllogism: The fuzzy syllogism method takes two 
monotone increasing fuzzy quantifiers, and calls the 
extension method to calculate and return their multiplication. 

The symbolic parts of the above rules are implemented as 
production rules in the CWJess library.  For example, the 
symbolic part of the conjunction rule may be defined as 
follows:

;;  The conjunction rule

(defrule conjunction 

(declare (salience 100))

?c1<-(GC (linguistic_var ?x ) (object ?a)

  (linguistic_value ?w))

?c2<-(GC (linguistic_var ?x)  (object ?a) 

   (linguistic_value ?z&:(<> ?z ?w)))  

=>

(assert (GC (linguistic_var ?x) (object ?a) 

  (value (CWRULEs.conjunction ?w ?z))))

(retract ?c1 ?c2))

This rule states that if there are two different generalized 
constraints in the fact base sharing the same linguistic 
variable and the same object, they are combined to one 
generalized constraint whose value is the conjunction of the 
linguistic values of the premises. GC is a template 
automatically created from the generalized constraint class in 
the java API. GCWRULES is a java class which implements 
the computational parts of CW rules as described earlier.

As another example, consider the compositional rule of 
inference, the symbolic part of this rule is defined in CWJess
library as follows:

;; The compositional rule of inference. 

(defrule composition

(GC (linguistic_var ?u &:(instanceof ?u        

     COMPOSITE_LINGUISTIC_VARIABLE)) 

     (object ?o) (linguistic_value ?w))

(GC (linguistic_var ?x &:(instanceof ?x    

     ATOMIC_LINGUISTIC_VARIABLE)) 

     (object ?o) (linguistic_value ?z))

(test (occurs  ?x ?u )    

=>

(assert (GC (linguistic_var (CWRULES.composedVar ?u 

    ?x)) (object ?o)(linguistic_value 

(CWRULES.composedValue ?w ?z ))))

    

This rule states that if there are two generalized 
constraints in the fact base, one with a composite linguistic 
variable ?u, and another one with an atomic linguistic 
variable ?x , and ?x occurs in ?u, then assert a new 
generalized constraint which is the composition of the two 
generalized constraints in the premises. The methods
composedVar, and composedValue are static methods 
defined in CWRULES and return, respectively, the linguistic 
variable and the fuzzy set resulted from the composition.  

The symbolic parts of the fuzzy graph interpolation rule, 
fuzzy syllogism, and fuzzy extension principle, are defined 
in a similar way but are excluded from the paper due to their 
complexity and length.

IV. AN EXAMPLE

To demonstrate the CWJess we present a simple example. 

Suppose that we would like to encode the following 
information in a CWJess fact base: The average chance that a woman is diagnosed by breast 

cancer depends directly on her age. The younger a woman 

is, the lower is her risk of developing a breast cancer.  Many obese women have higher risk of developing a 

breast cancer and a Mammogram is strongly recommended 

for most women at high risk of breast cancer.  Mary has a son who is about 15 . She gave birth to her 

son when she was in her 20’s. Also She is few years 

younger than Ann who is in her mid-50.

The dependency between the age and the risk of breast 
cancer should be represented as a fuzzy graph. To create a 
fuzzy graph, the related linguistic variables and their 
associated terms must be first defined. In the following Jess
code, “trap-mf”, “tri-mf”, “z-mf”, “p-imf”, “s-mf”, and 
“interval-mf” denote trapezoid, triangular, z shape, pi shape,
s shape, and the crisp interval membership functions,
respectively.

;; Defining the linguistic variables and terms that 

;; appear in the fuzzy graph

(bind ?age (new ATOMIC_LINGUISTIC_VARIABLE "age" 

"year" 0 120 ))

(?age addTerm “ young” “(0,1) (25,1) (50,0)” )

(?age addTerm “middle-age” “trap-mf” “30 40 50 60”)

(?age addTerm  “old”(40, 0) (65 1) (120,1)” )

(bind ?riskbc  (new  ATOMIC_LINGUISTIC_VARIABLE  

“risk-breast-cancer”  “percentage” 0 100)  

(?riskbc addTerm “ low” “z-mf”  “5 10” )

(?riskbc addTerm “average” “pi-mf”   “5 10 15 20”)

(?riskbc addTerm  “high”  “s-mf”  “15 30”)

Now the fuzzy graph may be created to show the 
dependency between the linguistic variables: ?age and 
?riskbc, and fuzzy rules may be created and added to the 
fuzzy graph. A fuzzy rule consists of a list of generalized 
constraints that makes its premises and its conclusion. The 
parameter “?x” denotes an anonymous object which may be 
instantiated by the object of a matching generalized 
constraint in the fact base. The fuzzy graph is added as a 
shadow fact [12]  to the working memory.

;; Creating the fuzzygraph

(bind ?fg  (new  FUZZY_GRAPH)

;;Defining the fuzzy rule: “if age(x) is young then 

;;riskbc(x)  is low”

(bind ?gc1 (new GENERALIZED_CONSTRAINT ?age  “?x”  

   “young”)

(bind  ?gc2  (new GENERALIZED_CONSTRAINT ?riskbc  

   “?x”  “low”))

(bind ?rule1  (new FUZZY_RULE ?gc1 ?gc2))

;;Defining the fuzzy rule: “if age(x) is middle-age 

;;then riskbc(x)”  is average”

(bind  ?gc3  (new GENERALIZED_CONSTRAINT ?age  “?x”  

“middle-age”))

(bind  ?gc4  (new GENERALIZED_CONSTRAINT ?riskbc  

“?x”  “average”))

(bind ?rule2  (new FUZZY_RULE ?gc3 ?gc4))

;;Defining the fuzzy rule: “if age(x) is old then 

;;riskbc(x)”  is high”

(bind  ?gc5  (new GENERALIZED_CONSTRAINT ?age  “?x”  
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  “old”))

(bind  ?gc6  (new GENERALIZED_CONSTRAINT ?riskbc  

  “?x”  “high”))

(bind ?rule3  (new FUZZY_RULE ?gc3 ?gc4))

(?fg addRule ?rule3)

;;Adding the rules to the fuzzy graph

(?fg addRule ?rule1)

(?fg addRule ?rule2)

;; adding the fuzzy graph to the working memory

(add ?fg)

The statement with fuzzy quantifiers may be represented as 
a binary quantified generalized constraint. In the following 
parameter “?x” is a variable bounded by the quantifier.

;; creating the generalized constraints that appear 

;; in the quantified statements

(bind ?weight (new ATOMIC_LINGUISTIC_VARIABLE 

  "weight" "Kilogram" 40 250))

(?weight addTerm "obese"  "s-mf"  "85 100")

(bind ?gc1 (new GENERALIZED_CONSTRAINT ?weight “?x” 

  “obese” ) )

(bind ?gc2 (new GENERALIZED_CONSTRAINT ?riskbc “?x” 

  “high”))

(bind ?recom (new ATOMIC_LINGUISTIC_VARIABLE 

  "mammogram-recommendation" "percentage" 0 1))

(?recom addTerm "strongly-recommended"  "s-mf"  

  ".85 1") 

(bind ?gc3 (new GENERALIZED_CONSTRAINT ?recom “?x” 

  “strongly-recommended” ))

;; Creating  the quantified generalized constraints

(bind ?qgc1  (new QUANTIFIED_GENERALIZED_CONSTRAINT  

  “many” “?x” ?gc1 ?gc2))

(bind ?qgc2  (new QUANTIFIED_GENERALIZED_CONSTRAINT  

  “most” “?x”  ?gc2 ?gc3))

;; Adding the quantified generalized constraints to 

;; the working memory

(add ?qgc1)

(add ?qgc2)

Given that the age of mother is equal to the age of her son 
plus the age that she gave birth to him, we have two pieces of 
information regarding Mary’s age which we can be encoded
as the following arithmetic generalized constraints.

;; Defining the linguistic terms that appear in the 

;;arithmetic generalized constraints                           

(?age addTerm “in-20’s ”  “Interval-mf”  “20 30” )

(?age addTerm “about 15” “tri-mf”  “13 15 17” )

(?age addTerm “few-years” “trap-mf” “ 2 3 5 7”)

;; Defining the arithmetic generalized constraints 

;; and adding them to the working memory

(bind ?agc1  (new ARITHMETIC_GENERALIZED_CONSTRAINT 

  ?age  “Mary” “in-20’s + about 15” ))

(bind ?agc2 (new ARITHMETIC_GENERALIZED_CONSTRAINT 

  ?age “Mary” “?age(Ann) - few-years”))

;; Adding the arithmetic generalized constraints to 

;; the working memory

(add ?agc1)

(add ?agc2)

And finally, the information regarding Ann’s age can be 
defined as a simple generalized constraint:

(?age addTerm “mid-50”   “tri-mf”  “50 55 60”)

(bind ?gc8 (new GENERALIZED_CONSTRAINT ?age “Ann” 

  “mid-50”))

(add ?gc8)

Once the above Jess program is run, the pair of simple 
and arithmetic facts: ?gc8 and ?agc2 fire the extension 
principle rule. The extension principle rule replaces 
“?age(Ann)” with “mid-50” in the arithmetic expression
“?age(Ann) – few years” to achieve a fuzzy value for Mary’s 
Age. The extension principle rule is also fired for the 
arithmetic fact ?agc1 to calculate the value “in-20’s + about-
15”. At this point the fact base would consist of two 
generalized constraints regarding Mary’s age with different 
fuzzy values which leads to firing the conjunction rule to 
combine the constraints to obtain one fuzzy value for Mary’s 
age.

Now the resulting fact regarding Mary’s age together 
with the fuzzy graph fact ?fg activate the fuzzygraph 
interpolation rule, which in turn calculates the value of 
?riskbc (Mary) and adds it as a simple generalized constraint 
to the fact base.

The fuzzy graph interpolation rule is also fired by the pair 
of facts: ?fg  and ?gc8 to calculate the value of 
?riskbc(Ann).

Furthermore, the pair of quantified facts:  ?qgc1 and 
?qgc2 activate the fuzzy syllogism rule which calculates the 
proportion of obese women for whom the Mammogram is 
highly recommended. The result of this calculation is 
asserted to the fact base as a quantified generalized 
constraint.

In order to show the output of a jess program to the user, 
the CWJess library includes a jess function: “print-GC” . 
This function allows users to query the fact base to find the 
value of a given linguistic variable. For example in the above 
program if the user wishes to know Mary’s age, or her risk of 
developing a breast cancer, she can add the following lines to 
the jess program:

;; Querying the fact-base

(print-GC ?age “Mary”)

(print-GC ?riskbc “Mary”)

The output is the two normalized fuzzy sets in figures 7 
and 8, deduced by using the extension principle, the 
conjunction, and the fuzzy graph interpolation rules.

Figure 7. The value of the linguistic variable “age(Mary)”
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Figure 8. The value of the linguistic variable: "riskbc(Mary)"

V. SUMMARY AND FUTURE WORK

The paper reports a preliminary work on the implementa-

tion of an expert system shell on top of Jess to perform CW 

reasoning. The resulting shell,  CWJess,  is a powerful tool 

which allows users to express fuzzy facts in form of general-

ized  constraints  of  various  types.  It  provides  java  classes 

which enable users to define atomic or composite linguistic 

variables, linguistic terms, fuzzy quantified statements, fuzzy 

rules,  fuzzy arithmetic expressions,  and fuzzy graphs.  The 

CW inference rules, implemented in CWJess, along with Jess 

Rete algorithm render an inference engine which is able to 

perform forward  reasoning over  a  set  of  generalized  con-

straints. 

We are working on making the CWJess tool available for 

download via www.purvag.com/cwjess.  We will provide a 

complete set  of  instructions to  help  users  to  express  their 

knowledge in terms of GCL. Nevertheless, to facilitate easier 

translation of linguistic knowledge, we are planning to devel-

op a human readable intermediate language to hide the com-

plexity of underlying GCL.

Several other developments to CWjess can be proposed to 

make it more expressive and to enhance its reasoning power, 

among which are:

• Developing necessary classes and methods to allow 

users to assert generalized constraints with probabilistic 

modality, such as: “(age(Mary) is young) isp likely” and 
perform reasoning on such generalized constraints.

• Implementing the compositional rule of inference for 

fuzzy relations with a continuous membership function.
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