
����������� � ���� � �	�ABC � DA � �BA�A�� � �E	�F�B��
���A�A��A������AE�����������A�����F������	�A����E�F�B�
��F�B�	���������A����������AE����	����A�����������	�A����
	����AE��B��A����F�D	BA����E���	���B����A���A�AB	������F�
A�A� �	!EA � 	��E��	���� � �B������A�� � "�A � ����A��� � 	BA�
�A��B�!A��!���A�	�#!$A���%	��E������#%����A��F��	����C�
��A � �F � ��A � ������E� � �A� � 	��B�	��A� � F�B � �A��B�!����
�A�	&���AE�� � #�A � �F � ��A � �	�� � BA	���� � F�B � �	�����
�����	�A � ��� � ����A��� � ��A��F�A� � ��B� �� � ��A � �A�	&
���AEC��������B����A���F�D	BA���� �A��	��������	�F�B�	E�
D	�C�	��DAEE�	��	����	���	�	E������ B���A������BA	�A�	�
���	�����A��F���E	�� 	�A����� ���B������A������'�������A�
�A�	&���AE��F���������A���C�DA��	���A�AB	�A��A����	�A��
��	���	��	�����������F�D	BA����E��AB�F��	�����

�� �������	����

�AB	CDEF�DFC FD����C�EF��C� F������ED FCF���E�F����E�FC��
���C��F��F������C����FD�D�E�F �A!F�ED�"��F��FD#�����DF����

�E��#C�F���E���"F��F�C�C$CDEFD��E�CDFC��F$#D��EDDFC�����C�
����D�F��AB	CDE%FCDFCFD����C�EF����FCDD�D���"F��F�AF�ED�"�FC��F
"E�E�C���" F E&E�#�C$�E F C�����C���� F ��������ED% F �#��E����F
������ED'

�

• 	���E��#C� F���E����" F �� F �C�C$CDE F D��E�CD% F ��C�DC�����F
���"�C�D%FC��F$#D��EDDFC�����C����DF��FC�F�A(

•)#���C�E� F�ED�"� F�� F �E�C����C� F�C�C$CDE FD#$D��E�CDF ��F
��EF*��F����C�F����F *�+!(

•)#���C�E� F ���E"�C���� F �� F D#$D��E�CD F ���� F C F #����E�F
�C�C$CDEFD��E�CF��F��EF*�+(

•)#���C�E� F "E�E�C���� F �� F A,-.��- F ���E F ��� F �C���#DF
�C�C$CDEF�C�C"E�E��FD�D�E�DF �/0AD!(

• 	���E��#C�F�ED�"�F��F������F#DE�����E��C�EF ��!F���E�D(F
C��

•)#���C�E� F "E�E�C���� F �� F E&E�#�C$�E F ��������ED F ��F
$#D��EDDFC�����C����D�
��F���E�F��F������EF�ED�"�F��F�C���#DF��C�����F���E�E��E��F

���E�D F 1�0! F $� F ��AB	CDE% F �E F ��EC�E� F C F �#�$E� F ��F
���E����"% F�E�C��E�E� F ����E��D F C�� F ����C� F �#�ED F ��C� F C�EF
#DE�F��F��EF�ED�"�F����EDD�F/ED��ED%F�EF�C�EFC�D�F�E�E���E�F
C�� F E�$E��E� F ���� F ��AB	CDE F ��D#C� F C�� F �E��D����� F $CDE�F
����D F ��C� F C���� F D#�� F ����E��D F C�� F �#�ED� F ��E� F CDD�D�F
�ED�"�E�DF��F��EC���"F����C���F�C���F���E�DFC��F��E��FD�����"F

CDF�E��D�����F�E��������DF��FCF"#��E�F�C��F0C��F�EC�#�EDF��F
��AB	CDE FC�� F ��EFD�E�����C����F�� F ��D F#DC"EF�C�F$E F ��#��F
��F2345�F

��E�E F �D FC F D����"F�EE� F �� F�C�EF1�0 F����E��D F D�E����E�F
����C��� F �� F C F ��C����� F ���E�E��E�� F�C�% F ��E� F �� F $E F �#���F
���E�E��E��F��F�E��D�����F$CDE�FD�E�����C����DF��C�F�����C���F
�C� F ����#�E F D��E F ����E�E��C���� F �E�C��D� F �#� F �#��E��F
�EDEC��� F �D F $CDE� F �� F ��� F �E�C�E� F C����C��ED F �� F ����C���F
�ED���$EF��AB	CDEF1�0F	���E��D�F��EF��F��E�F�DF$CDE�F��F
0�+ F C�� F ��E F ���E� F ��E F �� F C F �E&�#C� F ���C�� F A�E�����F
-C�"#C"E F �A-!� F �� F 235% F �E F "��E F C F D�E�����C���� F �� F ��EF
��AB	CDEF�E&�#C�F���E����"F�C�"#C"E%F�C�E�F��AB	�ED-C�"F
��C� F ����C��6ED F ��AB	CDE F 1�0 F ����E��D F C�� F ������EDF
���E����" F �� F C F ����C� F�C�� F ��AB	�ED-C�" F�E�C����E� F �DF
�E�E���E� F #��E� F C F ��D#C� F ���"�C����" F E�������E�� F ���F
C����$#�EF"�C��C�FD�E�����C����DF�C�E�F7�D#C�-�A)F2385�F

��F���DF�C�E�%F�EF�����DEFCF�E�C����E�F��F��AB	CDEF1�0F
����E��D%F�����F�DF$CDE�F��F��EF0E�CF�$9E��F+C������F 0�+!F
:�4� F0�+F:�4F�DFCF������F�E�C��E�C����E�F�����DE�F$�F
�$9E��F0C�C"E�E��F;��#�F �0;!F��E�EFCF�E�C����E�F�DF
��EC�E� F $� F �EC�D F �� F �0- F ��CDD F ��C"�C�D F C�� F �$9E��F
	��D��C��� F -C�"#C"E F �	-! F 23<5� F)D F�E F ��#�� F ��� F ����F
D�C��C���6E� F ����E�E��C���� F �� F0�+% F�E F�E���E� F �� F #DEF
=���EF�E�C��E�C����E��F=���EF�DF��EF=����DEF����E�E��C����F
�� F 0�+ F :�4 F �� F >C�C F ���"�C����" F �C�"#C"E F ����� F �DF
������E�F$�F=����DEF0��E����"F+�C�E���?F =0+!F2@5�F=���EF
����E��DFC�EF���FC��C�DF��E����C�F��F0�+F:�4F����E��D%F$#�F
��E� F C�E F E&��EDD��E F E��#"� F �� F ��EC�E F �#� F ��AB	CDE F�E�C�
���E��F)F$E�E���F��FD#��FCF�E�C����E�F�DF��������"FD����C�EF
���#�E��C����F��F����C�F�C��F/ED��ED%F��EC�E�F�E�C����E�F
�C� F $E F #DE� F ��� F ��E F D����C�E F ���� F �E�����C���� F �� F =0+F
E�������E��� F �� F C�D� F �E��EDE��D FC F ���C�� F C�C��D�DF
D�E�����C����F�E�EDDC��F��F��EC�EF��AB	�ED-C�"%FCDFCF�E&�#C�F
�A-F��FD#�����F�AF�ED�"��

�� F+�"#�EF3F�EF���#D��C�EF��EF��#�F�C�E�E�FC�����E��#�EF��F
�#� F D��#����% F ����� F �D F �C����E� F ���� F �0; F ��#�A�C�E�E�F
C�����E��#�EFD�C��C���F-E�E�F0*F������DEDF�E�C��E�C����E�F
 0�+ F :�4! F 285 F ��C� F �D F #DE� F ��� F ����E�E��C���� F �� F ��EF
��AB	CDE F �E�CA���E� F 0:!� F 0: F �E�E� F �E��EDE��D F ��EF
��AB	CDEF1�0F�E�C����E�FD�E����E�F$�F0�+FD�E�����C����

(��#%�!	�A���A�	&���AE��F������	�A���������A���

0��C�FBE��?���C%
����E�D���F��F����FAC�%F

+C�#���F��F�E�����C�FA��E��ED%F
��"F��F�$�C����CCFD%F

:3444F����FAC�%FAE�$�C%F
=�C��'F���C��E�E#�D�C���D

��C�F-#?���C%F
����E�D���F��F����FAC�%F

+C�#���F��F�E�����C�FA��E��ED%F
��"F��F�$�C����CCFD%F

:3444F����FAC�%FAE�$�C%F
=�C��'F��C�E#�D�C���D

A�C���CF)�E?D�C%
7�C�����F��C�FE��C

����E�D���F��F����FAC�%F
+C�#���F��F�E�����C�FA��E��ED%F

��"F��F�$�C����CCFD%F
:3444F����FAC�%FAE�$�C%F

=�C��'FGD�C���C%F
��C"��C�HE#�D�C���DH

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 825–832

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 825

and implemented in EMF. Using the IIS*Case PIM meta-

model, a designer can specify and implement a conceptual

model of an IS that is placed at the M1 level of the four-

layered data architecture from Figure 1. By using appli-

cations of an IS generated by IIS*Case, end users manipulate

real data, i.e. they create and use models of entities from real

world (M0), using the conceptual model (M1).

Apart from Introduction and Conclusion, the paper is

organized in two sections. In Section 2, we present a related

work, while in Section 3 we give a presentation of IIS*Case

PIM concepts specified through the meta-model that is

implemented in EMF environment.

II. RELATED WORK

Nowadays, meta-modeling is widely spread area of

research and there is a huge number of references covering

MOF based meta-models. However, we could not find

papers presenting formal approaches to specifying meta-

model implementation and design of CASE tools, based on

MOF or Ecore meta-meta-models.

We found a vast number of meta-model specifications and

implementations based on MOF or Ecore specifications.

Meta-models based on MOF are presented in [2], [3]. The

authors in both papers propose the meta-models of the Web

Modeling Language. The meta-model specification and

design is implemented under EMF environment. Defining

W2000 [2] as a MOF meta-model the authors specify it as an

UML profile. In [3], the authors provide a solution for

generation of MOF meta-models from document type

definition (DTD) specifications [15]. A formal specification

of OCL is given in [4]. In their meta-model, the authors

precisely define the syntax of OCL, as it is given in [14].

They propose a solution for the presented meta-model

integration with the UML meta-model. In [5], the authors

propose the Kernel MetaMetaModel (KM3) that represents a

DSL for meta-model definition. In [16], the authors propose

the UML Profile, EUIS, for the specification of business

DSSOLFDWLRQV¶� user interfaces. Their solution provides

automatic interface code generation that is based on their

own HCI standard. They developed a DSL specified as UML

Profile that offers user interface modeling and generation.

There are various meta-modeling tools that are generally

based on their own meta-meta-model specifications. One of

them is Generic Modeling Environment (GME) [8], a

configurable toolkit for domain specific modeling and

program synthesis based on UML meta-models. MetaEdit+

[6] allows the creation and the design of meta-models in

graphical editor using the Object-Property-Role-Relationship

data model. All of these tools can also be used for the

IIS*Case PIM meta-model description in a formal way.

III.IIS*CASE META-MODEL

In this paper, we present the IIS*Case PIM meta-model

specified by Ecore meta-meta-model. Hereby we give an

overview of the following IIS*Case main PIM concepts:

Project, Application system, Form type, Component type,

Application type, Program unit as well as Fundamental

concepts such as Attributes and Domains. A model of the

Fig. 2. A meta-model of IIS*Case main PIM concepts

Fig 1. Four layered meta-data architecture

826 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

IIS*Case main concepts with their properties and

relationships is presented in Figure 2. More information

about these concepts may be found in [10] and [11], as well

as in many other authors' references.

A. Project

A modeling process in the IIS*Case tool is organized

through one or more projects. Therefore, the central concept

in our meta-model from Figure 2 is Project. For each

project, a designer defines the project name as its mandatory

property. All existing elements in the repository of IIS*Case

are always created in the context of a project. Fundamental

concepts and Application systems are subunits of a Project.

For each project, we can define zero, or more instances of

the Application system. A designer of an IS can create

application systems of various types. By the Application type

concept, a designer may introduce various application

system types and then associate each instance of an

application system to exactly one application type.

In the following example, we illustrate the usage of the

application system and application type concepts. We have

two application systems created: Student Service and Faculty

Organization. Student Service is the child application system

of the parent application system Faculty Organization. Two

kinds of application types are created: a) System and b)

Subsystem. Further, we classify application system Faculty

Organization as the System and Student Service as the

Subsystem application type.

Each project is organized through application systems and

fundamental concepts. Fundamental concepts are formally

independent of any application system. Fundamental concept

instances can be used in more than one application system,

because they are defined at the level of a project.

Fundamental concepts comprise zero or more:

x Attributes,

x Domains,

x Program units,

x Reports and

x Inclusion dependencies.

At the level of a project, IIS*Case provides generation of

various types of repository reports.

B. Domain

 Domains specify allowed values of database attributes.

They are classified as:

x Primitive and

x User defined.

Therefore, in our meta-model, there are two classes:

PrimitiveDomain and UserDefinedDomain that are

subclasses of a Domain class.

Primitive domains represent primitive data types that exist

in formal languages, such as string, integer, char, etc. The

reason for existence of user defined domain concept is to

allow designers to create their own data types in order to

raise the expressivity of their models. Each domain has its

domain name, description and default value. At the level of a

primitive domain, a designer may specify length required

item value. It specifies if a numeric length: must be, may be,

or is not to be given. For user defined domains, a designer

needs to define a domain type and a check condition.

IIS*Case supports two classes of user defined domains:

x Domains created by the inheritance rule and

x Complex domains.

A domain created by the inheritance rule references a

specification of some primitive or user defined domain. By

the inheritance, all the rules defined at the level of a

referenced (superordinated) domain also hold for the

specified domain. We call it a child domain.

Complex domains may be created by the tuple rule, set

rule, or choice rule. A domain created by the tuple rule we

call simply tuple domain, because it represents a tuple of

values. The items of such a tuple structure are some of

already created attributes. A domain created by the choice

rule we call a choice domain. It is specified in almost the

same way as a tuple domain. The choice domain concept is

the same as the choice type of XML Schema Language. Each

value of a choice domain corresponds to exactly one

attribute. A set domain represents sets of allowed values over

a specified domain.

Check condition is a regular expression that can

additionally constrains possible values of a domain created

by a designer.

Domain concept allows definition of display properties of

screen items that correspond to attributes and their domains.

Each domain corresponds to exactly one element of type

Display. The Display concept specifies rules, later used by

the application generator to generate screen or report items

that correspond to some of the attributes, and attributes

correspond to some of domains. Technical aspects of the

display properties implementation may be found in [12] and

[13].

C. Attribute

In Figure 3, we present a meta-model of the IIS*Case

Attribute concept. Each attribute in an IIS*Case project is

identified by its name. It also has a description and a

Boolean specifier if it belongs to the database schema. In

practice, the most of created attributes belong to the database

schema. For attributes representing derived (calculated)

values in reports or screen forms a designer may decide if

they are to be included in the database schema. By this, we

classify attributes as: a) included or b) non-included in a

database schema.

According to the way how an attribute gains a value, we

classify attributes as: a) non-derived or b) derived. A value

of a non-derived attribute is created by an end user. A value

of derived attribute is always calculated from the values of

other attributes, by applying some function, i.e. a calculation

formula. There is a rule that any non-included attribute must

be specified as derived one.

MILAN CELIKOVIC, IVAN LUKOVIC, SLAVICA ALEKSIC, VLADIMIR IVANCEVIC: A MOF BASED META-MODEL OF IIS* CASE PIM CONCEPTS 827

The function that is used to calculate a derived attribute

value is formally specified in the IIS*Case repository.

Additionally a designer may specify parameters that are

passed into the function. The Function concept will be

presented in the following subsection, Program Units. If an

attribute is non-included in a database schema, the function

is referenced as a query function. Only derived attributes that

are included in a database schema may additionally reference

three IIS*Case repository functions specifying how to

calculate the attribute values on the following database

operations: insert, update and delete.

The attribute may be specified as a) elementary or b)

renamed. A renamed attribute references a previously

defined attribute. The source of such an attribute is the

referenced attribute, but with the different semantics. The

renamed attribute needs to be included in database schema.

To each attribute a domain must be associated. This

association allows defining a default value and a check

condition. If the attribute value is not specified, the default

value is assigned to it. Check condition is the attribute check

expression that represents the regular expression that

additionally constrains the value of the attribute.

At the level of an attribute, we can specify the display

properties. The concept of the Display properties is same as

the one at the level of the Domain concept. The values of

display properties, specified at the level of the associated

domain, may be inherited or overridden according to the

requirements of an IS project.

D. Program Units

The Program unit concept is used to express complex

application functionalities. We classify program units as: a)

Functions, b) Packages and c) Events.

The Function concept is used to specify any complex

functionality that later may be used in other specifications.

Each function has its name and return type that are

mandatory properties, as well as a formal specification of a

function body and a description that are optional. The return

type is a reference to a domain. A function specification may

include a list of formal parameters. Each formal parameter of

a function is specified by its name and a sequence number, as

mandatory properties. Exactly one domain is associated to

each formal parameter. Any parameter may also have a

default value specified. With respect to the ways of

exchanging values between the function and its calling

environment, we classify formal parameters as: a) In, b) Out

and c) In-Out, with a usual meaning as it is in many general

purpose programming languages.

IIS*Case provides grouping created functions into

packages. Each function may be included into one or more

packages, or may stay as a stand-alone object. By the

location of the deployment in a multi-layer architecture, the

packages are classified as: a) Database server packages, b)

Application server packages and c) Client packages. A

package is identified by its name, and may have an optional

description.

The Package concept is modeled by the inheritance rule.

We have the abstract class named Package. It is superordi-

nated to the classes: DBServerPackage, ApplicationSer-

verPackage and ClientPackage. For each instance of the

Package class, there may be zero or more references to the

instances of the Function class.

The Event concept is used to represent any software event

that may trigger some action under a specified condition.

Each event is identified by its name, and may have an

optional description. Similar to the packages, by the location

of the deployment in a multi-layer architecture, we also

Fig. 3. A meta-model of the IIS*Case Attribute concept

828 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

classify events as: a) Database server events, b) Application

server events and c) Client events. The Event concept is

modeled in the similar way like Package, by applying the

inheritance rule.

E. Application System

The Application System concept is used to model

organizational parts of each Project. Each application system

has its name and a description as mandatory properties.

Besides, it may reference other, subordinated application

systems and we call them child application systems. By this,

a designer may create a hierarchy of application systems in a

project. Application system hierarchy is modeled by a

recursive reference.

Various kinds of IIS*Case repository objects may be

created at the level of an application system, but in this paper

we focus on two of them only, as PIM concepts: a) Form

type and b) Business Application.

F. Form type

Form type is the main concept in IIS*Case. The meta-

model of this concept is presented in Figure 4. It abstracts

document types, screen forms, or reports that end users of an

information system may use in a daily job. By means of the

Form type concept, a designer indirectly specifies at the

level of PIMs a model of a database schema with attributes

and constraints included, as well as a model of transaction

programs and applications of an information system.

Apart from creating form types in an application system, a

designer may include into the application system form types

created in other application systems. Therefore, we classify

form types as: a) owned and b) referenced. A form type is

owned if it is created in an application system. It may be

modified later on through the same application system

without any restrictions. A referenced form type is created in

another application system and then included into the

application system being considered. All the referenced form

types in an application system are read-only.

Each form type has a name that identifies it in the scope of

a project, a title, frequency of usage, response time and

usage type. Frequency is an optional property that represents

the number of executions of a corresponding transaction

program per time unit. Response time is also an optional

property specifying expected response time of a program

execution. By the usage type property, we classify form

types as: a) menus and b) programs.

Menu form types are used to model menus without data

items. Program form types model transaction programs

providing data operations over a database. They may

represent either screen forms for data retrievals and updates,

or just reports for data retrievals. As a rule, a user interface

of such programs is rather complex. A program form type

may be designated as considered in database schema design

or not considered in database schema design. Form types

considered in database schema design are used later as the

input into the database schema generation process. Form

types not considered in database schema design are not used

in the database schema generation process. They may

represent reports for data retrievals only.

Each program form type is a tree of component types. A

component type has a name, title, number of occurrences,

allowed operations and a reference to the parent component

type, if it is not a root component type. Name is the com-

ponent type identifier. All the subordinated component types

of the same parent must have different names.

Each instance of the superordinated component type in a

Fig. 4. A meta-model of the IIS*Case Form Type concept

MILAN CELIKOVIC, IVAN LUKOVIC, SLAVICA ALEKSIC, VLADIMIR IVANCEVIC: A MOF BASED META-MODEL OF IIS* CASE PIM CONCEPTS 829

tree may have more than one related instance of the corres-

ponding subordinated component type. The number of

occurrences constrains the allowed minimal number of

instances of a subordinated component type related to the

same instance of a superordinated component type in the

tree. It may have one of two values: 0-N or 1-N. The 0-N

value means that an instance of a superordinated component

type may exist while not having any related instance of the

corresponding subordinated component type. The 1-N value

means that each instance of a superordinated component type

must have at least one related instance of the subordinated

component type.

The allowed operations of a component type denote

database operations that can be performed on instances of

the component type. They are selected from the set {query,

insert, update, delete}.

A designer can also define component type display

properties that are used by the program generator. The

concept of component type display is defined by properties:

window layout, data layout, relative order, layout relative

position, window relative position, search functionality,

massive delete functionality and retain last inserted record.

Window layout has two possible values: ³New window´

and ³6ame window´ and specifies if the component type is

to be placed in a new window or in the same window as the

parent component type. Data layout specifies the way of

component type representation in a screen form. Two values

are possible: ³)ield layout´ or ³7able layout´. By the ³)ield

layout´, only one record at a time is displayed in a form. By

WKH�³7able layout´, a set of records at a time is displayed in a

screen form, in a form of a table. The relative order is a

sequence number representing the order of a component type

relative to the other sibling component types of the same

parent in a form type tree. The layout relative position

represents the component type relative position to the parent

component type. We may select ³Bottom to parent´ value if

we want to place the component type below the layout of the

parent component type in a generated screen form, or ³Right

to parent´ value if it is to be placed right to the parent one.

Window relative position is to be specified only when ³New

window´ layout is selected. A designer may specify one of

the three possible values: ³&enter´F� ³/eft on top´, or

³&ustom´. The ³&enter´ value denotes that the center of a

new window is positioned to match the center of the parent

window. ³Left on top´ specifies that the top left corner of the

new window will match the top left corner of the parent

window. By selecting the ³&ustom´ value, a relative position

of the new window top left corner to the top left corner of the

parent window is explicitly specified by giving X and Y

relative positions.

³Search functionality´ represents the Boolean property

that enables generation of the filter for data selection. If

search functionality is enabled, end-users are allowed to

refine the WHERE clause of a SQL SELECT statement. If

checked, ³massive delete functionality´ provides generating

a delete option next to each record in a table layout. The

³retain last inserted record´ property specifies if the last

inserted record is to be retained in the screen for future use.

Each component type includes one or more attributes. A

component type attribute is a reference to a project attribute

from the Fundamentals category. It has a title that will

appear in the generated screen form. Also, it may be declared

as mandatory or optional on the screen form. The allowed

operations of a component type attribute denote database

operations that can be performed on the attribute, by means

of the corresponding screen item. They are selected from the

set {query, insert, update, nullify}. For a component type

attribute a designer may also specify display properties and

by this define its presentation details in the screen form. The

display properties are specified in the same way as it is for

attribute specifications. Values of the display properties may

be inherited from the attribute specification or overridden.

So as to unify the layout formatting rules of selected

component type attributes, a designer may group them into

items groups. Each item group may include one or more

component type attributes or other item groups from the

same component type. Any item group has its name, title,

context and overflow properties. The name and title are

mandatory properties. Context and overflow are Boolean

properties, specifying if an item group is to be used for

presenting layout contextual information or as a layout

overflow area.

Each component type DWWULEXWH�SURYLGHV�GHILQLQJ�D�³/LVW�Rf

YDOXHV´�B/29C�IXQFWLRQDOLW\��To do that, a designer needs to

reference a form type that will serve as a LOV form type. He

or she should also define how an end user can edit attributes:

³2QO\�YLD�/29´�RU�³'LUHFWO\�	�YLD�/29´��³2QO\�YLD�/29´�

property means that attribute value may not be inserted or

edited XVLQJ�D�NH\ERDUGF�EXW�RQO\�XVLQJ� WKH�/29��³'LUHFWO\�

	�YLD�/29´�PHDQV� WKDW�LQVHUWLQJ�RU�HGLWLQJ�DWWULEXWH�YDOXHV�

is provided both via NH\ERDUG� DQG� /29�� ³)LOWHU� YDOXH� E\�

/29´� SURSHUW\� specifies if all values from LOV will be

displayed, or only those filtered according to the pattern

given by an end user. Restrict expression represents the

where clause that is concatenated to the rest of where clause

in the SQL statement supporting the LOV.

Each component type has one or more keys. Each

component type key comprises one or more component type

attributes. It represents the unique identification of a

component type instance but only in the scope of its

superordinated component instance. Uniqueness constraints

may be defined for each component type also. Each

component type uniqueness constraint comprises at least one

component type attribute, but may have more than one. If

uniqueness constraint attributes have non-null values, it is

possible to uniquely identify a component type instance but

only in the scope of the superordinated component instance.

In Figure 5, we illustrate the usage of the Form Type

concept. We have the form type Student_Grades, that has

two component types Students and Grades. Student_Grades

830 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

form type refers to the information about student grades.

Student component type represents instances of students,

while Grades represents instances of grades for each student.

Student component type is the parent to the Grades

component type.

Allowed database operation for Student is read, while the

allowed operations for Grades are read, insert, update and

delete. The end user of the generated transaction program

specified through the form type Student_Grades, is able to

read data from the set of student instances. He or she can

read, update and delete existing grades for each of the

students, but can also insert new instances of the grades.

Student component type should be positioned in New

Window layout and centered to its parent window. Data

layout of Student component type is in the form of field

layout style. Multiple deletions and retaining last inserted

record for student records in the screen form are not

allowed, while search functionality for student records is

enabled. Search functionality property allows generation of

the filter for the selection of student instances in the

generated screen form, so that the end users are able to refine

the SQL SELECT statement. Student component type owns

three attributes: StudentId, StudentName and Year.

StudentId is the key of the Student component type. For each

of Student component type attributes, we may specify values

of the properties, previously presented.

In the similar way we can give the specification of the

Grades component type with attributes CourseShortName,

Date and Grade. CourseShortName is the key of the Grades

component type.

G. Business Application

Business Application concept represents the way to

formally describe an IS functionality and is organized

through a structure of form types. Each business application

has a name and a description. One of the form types included

into the structure must be declared as the entry form type of

the application. It represents the first transaction program

invoked upon the start of the application. Each business

application must have the entry form type. To create the

form type structure of an application, a concept of the form

type call is used. By the form type calls, designers model

execution of calls between generated transaction programs.

They are also used to model parameters and passing the

values between two transaction programs during the call

executions. The concept of a form type call comprises two

form types: a calling form type and a called form type.

Any form type may have formal parameters defined. Each

formal parameter has a mandatory name as the identifier. It

must be related to exactly one domain. In the specification of

a form type call, it is possible to associate each parameter to

a called form type attribute. By this, a designer specifies to

which attributes real parameter values will be passed during

the call execution.

For a called form type in a call we need to specify Binding

and Options properties. Binding property comprises formal

parameters of a called form type. For each parameter a

designer specifies how a real argument value is to be passed

to the parameter. There are three possible options: ³value´,

³attribute reference´F or ³parameter reference´. The value is

a constant that will be passed during a call execution. The

³attribute reference´ provides a relation to a calling form

type attribute that gives a value to be passed to the parameter

during a call execution. The ³parameter reference´ provides

a relation to a calling form type parameter that gives a value

to be passed to the parameter during a call execution.

The Options properties comprise: calling method, calling

mode, and UI position. Calling method comprises two

Boolean properties: a) ³6HOHFW� RQ� RSHQ´ and b) ´Restricted

VHOHFW´� ³Select on open´ means that the called form type is

opened with an automatic data selection. ³Restricted select´

allows the data selection in the called form type restricted

just to the values of passed parameters. Calling mode

specifies a general behavior of the calling form type during

the call execution. Three possibilities are allowed: ³0odal´F�

³1on-modal´ or ³&lose calling form´. ³Modal´ means that a

user cannot activate the calling form type while the called

form type is opened. ³Non-modal´ means that both the

calling and the called form type are simultaneously active in

WKH�VFUHHQ��³Close calling form´ is used to cause the closing

of the calling form type during the call execution. UI

position specifies how a call will be provided at the level of

UI: as a menu item or as a button item.

IV.CONCLUSION

In this paper we presented the IIS*Case PIM meta-model,

based on MOF 2.0 specification. Our intention was not to

present all the elements of our meta-model in detail. Instead,

we tried to focus just on those meta-model details that are

necessary to give a general picture of the model. We believe

that the formal specification of our meta-model is not for

documentation purposes only, but it is a necessary step in

creating a textual DSL to support IS design and give another

view of the IS description.

We may use meta-model presented in this paper in the

verification of relational database schemas. We assist

designers to detect conflicts at the level of relational

database model, and then we can help them at the level of

meta-models to find the appropriate solution of detected

problems. Although the algorithms for detection and

Fig. 5. A form type Student_Grades

MILAN CELIKOVIC, IVAN LUKOVIC, SLAVICA ALEKSIC, VLADIMIR IVANCEVIC: A MOF BASED META-MODEL OF IIS* CASE PIM CONCEPTS 831

resolving constraint collisions at the level of relational data

model has already been implemented in IIS* Case, we want

to raise the process of collision resolving at the PIM level of

abstraction.

Our further research will include experiments with other

technologies that rely on MOF. The presented meta-model is

a good base for a research in the area of Query View

Transform (QVT) set of languages. Our intention is to

embed into IIS*Case transformations between different data

models. Providing data model transformations may play an

important role in the IS design process. In the course of data

reengineering process, our plan is to provide the data integ-

ration from various sources based on different data models.

Data transformation rules specified by QVT could be applied

at the level of meta-models specified by various data-models,

all expressed in a unified manner in MOF. Our intention is to

provide transformations of the models specified in IIS* Case

to the UML models. Providing such transformations we

allow designers to have models specified in UML standard

with OCL constraints.

ACKNOWLEDGMENT

The research presented in this paper was supported by Mi-

nistry of Education and Science of Republic of Serbia, Grant

III-44010: Intelligent Systems for Software Product Deve-

lopment and Business Support based on Models.

REFERENCES

[1] I. Lukovic, M. J. Varanda Pereira, N. Oliveira, D. Cruz, P. R.

Henriques, ³A DSL for PIM Specifications: Design and Attribute

*UDPPDU�EDVHG�,PSOHPHQWDWLRQ´, Computer Science and Information

Systems (ComSIS), ISSN: 1820-0214, DOI:

10.2298/CSIS101229018L, Vol. 8, No. 2, 2011, pp. 379-403.

[2] L. Baresi, F. Garzotto, M. Maritati, ³:�����DV�D�02)�0HWDPRGHO�´�

In Proc. of the 6th World Multiconference on Systemics, Cybernetics

and Informatics - Web Engineering track. Orlando, USA, 2002.

[3] A. Schauerhuber, M. Wimmer, E. Kapsammer, ³Bridging existing

web modeling languages to model-driven engineering: A metamodel

IRU� ZHE0/´F International Workshop on Model Driven Web

Engineering (2nd), Palo Alto, CA, 2006.

[4] M. Richters, M. Gogolla, ³$�PHWD-PRGHO� IRU�2&/´� ,Q� 3URF�� of the

2nd international conference on The unified modeling language

beyond the standard, ISBN:3-540-66712-1, 1999.

[5] F. Jouault, J. Bézivin, ³KM3: a DSL for Metamodel Specification´, In

Proc. of 8th IFIP International Conference on Formal Methods for

Open Object-Based Distributed Systems, Bologna, Italy, 2006,

Springer LNCS 4037, pp. 171-185.

[6] MetaCase Metaedit+, [Online] Available: http://www.metacase.com/.

[7] Meta-Object Facilty, [Online] Available: http://www.omg.org/mof/.

[8] GME: Generic Modeling Environment, [Online] Available:

http://www.isis.vanderbilt.edu/Projects/gme/.

[9] Eclipse Modeling Framework, [Online] Available:

http://www.eclipse.org/modeling/emf/.

[10] ,�� /XNRYLü, P. Mogin, -�� 3DYLüHYLü, 6�� 5LVWLüF ³An Approach to

Developing Complex DaWDEDVH� 6FKHPDV� 8VLQJ�)RUP� 7\SHV´F

Software: Practice and Experience, 2007, DOI: 10.1002/spe.820, Vol.

37, No. 15, pp. 1621-1656.

[11] ,�� /XNRYLü, 6�� 5LVWLü, P. Mogin, J. 3DYLüHYLüF ³Database Schema

Integration Process ± A Methodology and Aspects of Its Applying´F

Novi Sad Journal of Mathematics, Serbia, ISSN: 1450-5444, Vol. 36,

No. 1, 2006, pp. 115-150.

[12] -�� %DQRYLüF ³An Approach to Generating Executable Software

Specifications of DQ�,QIRUPDWLRQ�6\VWHP´F�3K�'��7KHVLVF University of

Novi Sad, Faculty of Technical Sciences, Novi Sad, 2010.

[13] $�� 3RSRYLü, ³A Specification of Visual Attributes and Business

Application 6WUXFWXUHV� LQ� WKH� ,,6D&DVH� 7RRO´F� 0U� B0�6F�C� 7KHVLVF

University of Novi Sad, Faculty of Technical Sciences, 2008.

[14] Object Management Group (OMG), OCL SpecificationVersion 2.0,

[Online] Available: http://www.omg.org/docs/ptc/05-06-06.pdf, June

2005.

[15] Document Type definition (DTD), [Online] Available:

http://www.w3.org/TR/html4/sgml/dtd.html.

[16] B. Perisic, G. Milosavljeivc, I. Dejanovic, B. Milosavljevic, ³UML

3UR¿OH� IRU� 6SHFLI\LQJ� 8VHU� ,QWHUIDFHV� RI� %XVLQHVV� $SSOLFDWLRQV´,

Computer Science and Information Systems (ComSIS), ISSN: 1820-

0214, DOI: 10.2298/CSIS110112010P, Vol. 8, No. 2, 2011, pp. 405-

426.

[17] N. Oliveira, M. J. Varanda Pereira, P. R. Henriques, D. Cruz, B.

Cramer, ³VisualLISA: A Visual Environment to Develop Attribute

Grammars´, Computer Science an Information Systems, (ComSIS),

ISSN:1820-0214, Vol. 7, No. 2, 2010, pp. 265-289.

832 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

