
Concurrency Control Techniques for a Multimedia

Database System

Cosmin Stoica Spahiu

University of Craiova

Faculty of Automation, Computers and Electronics

Craiova - Dolj, Romania

Email: stoica.cosmin@software.ucv.ro

Abstract—The paper presents the concurrency control methods
used to provide simultaneous access to databases, in a multimedia
relational database management system. This is an original sys-
tem that integrates methods for extracting visual characteristics
(color and texture characteristics) from images and for executing
content-based visual queries. In order to accomplish this, it was
defined an original new data type called IMAGE. This data type
is used to store the images along with the characteristics extracted
and other important information. The problems that should be
handled refers to process multiple requests and access the same
set of data in a concurrent environment. The databases must
be protected with a synchronization algorithm to ensure that the
information doesn’t get corrupted when multiple clients’ requests
access concurrently the same set of data.

I. INTRODUCTION

THE VISUAL data along with other types of multimedia

information is very complex. It needs a lot of storage

space and it has to permit querying in order to be retrieved

from large images collections. To solve all these demands in

an efficient way, a multimedia database management system

(MMDBMS) is needed.

Most of the systems existing on the market nowadays offer

no support at all, or only partial support for the multime-

dia data. In [5][6] it is proposed an original solution: it is

implemented a multimedia database relational system that

includes all the algorithms needed to extract color and texture

characteristics from images, store them inside the databases

and executing visual-based queries.

It is a TCP/IP client-server system based on the SQL

language. The system can be used to manage medium sized

databases, containing up to several tens of thousands of

records.

One of the major objectives of a every DBMS is to allow

multiple users to access simultaneously the databases existing

on the system.

If a single-user database system is taken into account, the

active user can access all the information in the database

without any concern that other users could modify the same

set of data, at the same time. However, this kind of system has

no use in real world. The biggest advantage is when multiple

users, executing multiple operations in the same time, can

access the same set of data. That is why in such systems

it is vital to exist a module for managing concurrency and

data consistency [12]. Its main role is to check that all the

operations are executed in such a way that they appear to be

executed one at a time (in a serializing mode).

This kind of data sharing implies the existence of specific

algorithms for solving conflicts that can appear when the same

set of data is accessed. The way these kind of conflicts are

solved, depends on the type of the requests taken into account:

retrieval or updates.

When discussing about retrieval, no other control is neces-

sary, except the one that is provided by default by the operating

system. This is due to the fact that the physical access to

disk can be done only in a sequential manner. As long as

no user makes any update to the data, it is not important

in which order the data is accessed. The operating system

will manage all the requests and will specify in each case the

concurrency solving algorithm needed in order to minimize

the total response time.

If the users’ requests imply updating the data (insert, update

or delete), it is necessary to have specific algorithms for

dealing with concurrent writings. The problems that could

appear refer to the cases when several users send requests for

modifying the same set of data, or some of them send updating

requests and the others send retrieval requests. The simplest

way to solve these problems is to block the access to the

database while each request is solved. In this way, each request

is solved sequentially, but the performances of the system are

highly affected.

The paper has the following structure: Section 2 presents

the related work, Section 3 presents the MMDBMS and the

adopted solution, and Section 4 presents the conclusion and

future work in this project.

II. RELATED WORK AND CONCURRENCY METHODS

The interaction of two or several read/write operations can

generate inconsistences into the database and/or non-valid

results (the result obtained in a sequential execution can be

different than the result of a concurrent execution). These

problems might appear if the same set of data is accessed.

Depending to the type of operation that is executed, several

types of anomalies can be observed:

• loosing an update (write/write conflict): the update of one

operation is lost because of an update of another operation

which has not taken into account the result of the first one

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 751–754

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 751

• improper reading (write/read conflict): the data is read

before the first operation has finished the update and

modified the data

• non-repeatable reading (read/write conflict): It is also

called ”dirty reading”. It is met when two consecutive

readings of the same data return different results.

The simplest algorithm that can be used to avoid the prob-

lems presented above is to restrict the access to database to one

operation at a time. The access of all the other operations will

be restricted. Two methods are needed in order to implement

this: lock(data) and unlock(data).

The types of locks that can be used are: SHARED and

EXCLUSIVE locks [1][2]. An exclusive lock is the commonly

used locking strategy that provides an exclusive control on the

data set. A shared lock can be acquired when a command

wants only to read a data set, and not to modify it. If it

has already acquired a shared lock on the data set, no other

operations can acquire an exclusive lock on that data [1][2].

In order to manage the active locks, a lock manager module

should be implemented in order to maintain a list of records

for each locked data. The locks will be stored in this list in

the order in which they arrive.

It is presented next the strategies used by three well known

database management systems for managing multimedia data

(images files) and controlling the concurrency: MySQL, Mi-

crosoft SQL Server and Oracle Database Server.

A. MySQL Server

Most of the systems existing on the market nowadays offers

only partial support for managing multimedia data, or no

support at all. This is due to the fact that multimedia data

needs a lot of disk space, making databases to become huge

even for a relative small number of records [8]. In these cases it

is recommended to have a special system file structure for the

disc (NTFS recommended) and the free space to be carefully

supervised.

MySQL does not contains any dedicated data type or

methods for images management[9]. The only data type that

can be used is BLOB. A BLOB is a binary large object that

stores objects in an unstructured manner. BLOB attributes have

no character set. The sorting and comparing operations are

based on the numeric values of the bytes.

B. Microsoft SQL Server

MS SQL Server offers two special data types: image and

text. Both data types are treated in a similar manner and no

supplementary support is offered. The system does not include

any methods for extracting visual characteristics from images

or for executing special operations.

More than that, MS SQL Server 2008 recommends to void

using these data types, as they will be removed in a future

version of the system [11].

The multi-user environment is maintained using two con-

currency control techniques: Pessimistic and Optimistic con-

currency control techniques. Users specify the type of con-

currency control by selecting transaction isolation levels for

connections or concurrency options on cursors [11].

When the pessimistic concurrency control technique is used,

the locks prevents users from modifying data in a way that

could affect the other users. After a user performs an action

that activates a lock, the other users cannot perform actions

that would conflict with that lock, until it is deactivated by the

owner. This is called pessimistic control because it is mainly

used in environments where it is high contention for data, and

where the cost of protecting data with locks is less than the

cost of rolling back transactions when concurrency conflicts

occur [10][11].

When optimistic concurrency control technique is used,

users do not lock data when they read it. There are two ways

for this method to be implemented: optimistic with values and

optimistic with row versioning [10].

The optimistic with values method is used when there is

only a slight chance that another user to update a row in the

interval between when a cursor is opened and when the row is

updated. When a user updates data, the system checks to see

if another user changed the data after it was read. If another

user updated the data, an error is raised. Typically, the user

receiving the error rolls back the transaction and starts over.

This method is mainly used in environments where there is

low contention for data, and where the cost of occasionally

rolling back a transaction is lower than the cost of locking

data when read [10][11]. In this case the user can deal with

occasional error indicating another user has modified the row.

The optimistic with versioning method is based on row

versioning. The underlying table must have a version identifier

of some type that the server can use to determine whether

the row has been changed after it was read into the cursor.

In SQL Server, that capability is provided by the timestamp

data type, which is a binary number that indicates the relative

sequence of modifications in a database. Each time a row with

a timestamp column is modified in any way, SQL Server stores

the current timestamp. If a table has a timestamp column, then

the timestamps are taken down to the row level. The server

can then compare the current timestamp value of a row with

the timestamp value that was stored when the row was last

fetched to determine whether the row has been updated. The

server does not have to compare the values in all columns, only

the timestamp column. If an application requests optimistic

concurrency with row versioning on a table that does not

have a timestamp column, the cursor defaults to values-based

optimistic concurrency control [10] [11].

C. Oracle Database

The Oracle Database System provides the full solution for

efficient management and retrieval of multimedia data (images,

audio, and video), by using the Oracle Multimedia feature

(formerly known as Oracle interMedia) [12].

The images are managed using the ORDImage object data

type, which supports the storage, management, and manipula-

tion of images. Each object includes all the attributes, methods,

and SQL functions and procedures needed for management.

For concurrency control, The Oracle Database divides the

locks types in three main categories [12]:

752 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

• DML locks (data locks): used to protect the data. The

locks from this category can lock, either the entire table,

or only specific rows in the table. Row-Level Locking are

used by read committed and serializable transactions. A

table lock can be held in any of several modes: row share,

row exclusive, share, share row exclusive, and exclusive.

• DDL locks (dictionary locks): are used to protect the

structure of objects (e.g.: the structure of the tables)

• Internal locks: are used to protect the datafiles (internal

database structures). They are completely automatic and

does not need any user interference.

The locks manager can upgrade the locks to a higher

level when needed. If a user owns a shared lock (to execute

SELECT operations) and at a certain step he executes an

UPDATE, the lock will be converted to an exclusive lock [12].

III. CONCURRENCY MANAGEMENT FOR A MULTIMEDIA

DATABASE MANAGEMENT SYSTEM

A. General presentation of the system

The implemented system is a databases management system

that can be used both for executing simple text-based queries,

and more complex content-based visual queries. The content-

based visual queries use the color and texture characteristics

that were automatically extracted from images, in order to

compute the images similarity [5][6][7][8].

This tool is easy to be used because it respects the SQL

standard. It does not need advanced knowledge in informatics

and has the advantage of low cost. It is a good alternative

compared to a classical database management system, which

would need higher costs for server acquisition and for de-

signing the applications that execute content-based retrieval

operations [5][6][20].

The MMDBMS permits databases and tables creation, con-

straints definition, inserting images and alphanumerical infor-

mation, and executing simple text-based queries or complex

content-based queries using color and texture characteristics.

An original element of the system is a new data type that

was defined, called IMAGE. This type is used to store both

the image itself and the vectors of characteristics (texture and

color histogram) [5][6].

Another original aspect is that the system integrates all the

algorithms needed to process the images, extract the charac-

teristics and execute retrieval queries based on the content.

When discussing about multimedia data, especially images,

it is not important to find an exact match between two images.

It is more important to be able to find similar images. There are

many algorithms that can be used for processing the images

and extracting the color and texture characteristics, but there is

not any certain method that can be considered to provide the

best results in any situation. The quality of the results depends

to the type of images taken into account [21].

Our system is designed to be used mainly in medical domain

where the experiments indicated that the best results were ob-

tained using Gabor filters [3][16][17] for texture characteristic

and the histogram representation quantized to 166 values, for

color characteristic [20][8].

The similarity was computed using Euclidian distance for

the texture characteristic and histograms intersection for the

color characteristic. The users have the possibility to choose

for each executed query what characteristic to be used to

compute the similarity: only texture, only color, or both of

them (each with an weight of 50%)[5].

B. Concurrency management

The second important aspect of this MMDBMS is that it

provides simultaneous access to information for many clients

via TCP/IP network. The problems that should be handled

refers to process multiple requests and access the same set of

data in a concurrent environment.

The system must include a synchronization algorithm to

ensure that the information doesn’t get corrupted when multi-

ple clients’ requests access concurrently the same set of data.

However, in most of the cases the information is frequently

read and only occasionally written. It is far more efficient to

allow all reading requests to be executed simultaneously and

only write requests to be executed in an exclusive manner.

The locking mechanism that was chosen for the system

is based on L. Lamport’s bakery algorithm [2][22][23]. This

algorithm was chosen because it offers a good balance between

performances and implementation complexity.

There are two types of locks used: shared locks used for

reading (e.g.: SELECT) and exclusive locks used for writing

(e.g.: INSERT). These types of locks are used only at the table

level of granularity. There are not defined row-level locks or

others locks at a higher level of granularity.

If a SELECT command is retrieved (that implies reading

from database), a read-lock will be enabled on the tables (files)

involved in the operation. This lock will be active until the

tables (files) will no longer be used. It is a non-exclusive lock,

meaning that all other reading requests will be permitted, each

of them activating their own read-lock [7].

If an INSERT command or other command that involves

writing into database will be received meanwhile, it cannot

be executed. No writes are permitted while any read-lock is

active. Instead it will be put in a waiting queue for a random

period of time. The write operation can be executed only when

no other lock is active. After all locks are inactivated for a

specific table, the write-lock can be activated. This type of

lock is an exclusive one. No other request (read or write) can

be accepted while this is active [7].

When an operation activates a lock, it can include one

or several tables. If there is no foreign key defined on the

requested table, only one table will be locked. If the table

includes foreign keys, all the connected tables will be locked

using the same type of lock for all of them.

In order to override the critical section when locks are

activated or upgraded, it is used the Lamport’s bakery syn-

chronization algorithm [23]. This way it is not possible for

two different users to lock accidentally the same resources.

When a lock is no longer needed, it will be deactivated

directly without using any synchronization algorithm.

COSMIN STOICA SPAHIU: CONCURENCY CONTROL FOR A MULTIMEDIA DATABASE SYSTEM 753

The basic idea for the Lamport’s bakery algorithm is quite

simple. Each user’s request receives a serving number when

a lock is needed. The holder of the lowest number is the next

one that gets access to resources [23]. The implementation of

the algorithm is presented next[24]:

Algorithm 1. The Bakery Algorithm

waiting[i] <- true;

No[i] <- max(No[0],...,No[n-1])+1;

waiting[i] <- false;

for j <- 0 ... n-1 do {

while waiting[j] do nothing;

while (No[j] != 0) and

(No[j] < No[i])

do nothing;

}

*ENTER critical section:

No[i] <- 0;

* Activate requested lock

To implement this algorithm, there are need two lists. There

is one entry in each list for every lock request. The first array

stores the priority number. The other list contains a boolean

value for each request specifying if that request is in line to

receive a number.

When a new lock request arrives and needs to be enabled,

first it sets its boolean value to true. Then it is assigned the

next number available for waiting its turn. After it receives

a number, its no longer waiting so it sets its waiting value

to false. Next, the lock request goes through the first list and

if there is a request with a lower number, or a request that’s

waiting for a number, it waits until that request is finished or

assigned a higher number. After the lock manager traverses

the list it searches for the request with the lowest number in

order to be served and activate the lock [24].

IV. CONCLUSION

The paper presented the way concurrency is managed in an

original implementation of a multimedia database management

system. This system has integrated methods for extracting the

color and texture characteristics from images and executing

content-based visual queries. In order to accomplish this, it

was defined a new data type called IMAGE that is used to

store the images along with the extracted characteristics and

other important information.

The problems that should be handled are: processing multi-

ple requests and accessing the same set of data simultaneously.

The system must include a synchronization algorithm to ensure

that the information doesn’t get corrupted when multiple

clients’ requests access concurrently the same set of data. The

adopted solution uses a read/write locking mechanism that is

based on Lamport’s bakery algorithm for entering into critical

section and activating the locks.When a lock is activated, the

whole table is locked. There are not defined other levels of

granularity.

In the future work, the system will include other types of

locks defined at the row level. The DBMS will automatically

chose what is the best type of lock that should be used for

each request in part.

V. ACKNOWLEDGEMENT

The support of the The National University Research Coun-

cil under Grant CNCSIS IDEI 535 is gratefully acknowledged.

REFERENCES

[1] ITL Education Solutions Limited, Introduction to Database Systems,
Pearson Education India, 2008.

[2] A.S. Tanenbaum, Modern Operating Systems (Second Edition),Prentice
Hall, 2001.

[3] A. Del Bimbo, Visual Information Retrieval, Morgan Kaufmann Publish-
ers. San Francisco USA, 2001.

[4] T. Gevers, Image Search Engines: An Overview, Emerging Topics in
Computer Vision. Prentice Hall, 2004.

[5] C. Stoica Spahiu, A Multimedia Database Server for information storage

and querying, International Symposium on Multimedia - Applications and
Processing (MMAP’09), Vol. 4, pp. 517 - 522, 2009.

[6] C. Stoica Spahiu, L. Stanescu, D.D. Burdescu, and M. Brezovan,
File Storage for a Multimedia Database Server for Image Retrieval,
The Fourth International Multi-Conference on Computing in the Global
Information Technology (ICCGI 2009), pp.35-40, 2009.

[7] C. Stoica Spahiu, Testing the performances of a multimedia database
system, International Journal of Computer Science and Applications
(IJCSA), 2011 (to be published).

[8] C. Stoica Spahiu, L. Stanescu, D.D. Burdescu, M. Brezovan, Visual Inter-
face for Content-based Query in Image Databases, Intelligent Interactive
Multimedia Systems and Services (KES 2009), Vol. 226, pp. 231 - 240,
2009.

[9] MySQL 5.0 Reference Manual http://dev.mysql.com/doc/refman/

5.0/en/index.html

[10] K. Delaney, F. Guerrero, Database Concurrency and Row Level Ver-

sioning in SQL Server 2005 http://msdn.microsoft.com/en-us/

library/cc917674.aspx

[11] SQL Server 2008 Books Online, January 2009
http://msdn.microsoft.com/en-us/library/ms187875.aspx

[12] Oracle9i Database Online Documentation (Release 2 (9.2))
http://download.oracle.com/docs/cd/B10501_01/server.920/

a96524/c21cnsis.htm

[13] C. Carson, S. Belongie, H. Greenspan, J. Malik, Blobworld: Image
segmentation using expectation-maximization and its application to image

querying, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.
24(8), pp. 1026-1038, 2002.

[14] D. Comaniciu, P. Meer, Robust analysis of feature spaces: color image
segmentation, IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 750-755, 2003.

[15] M. Cooper, The tractibility of segmentation and scene analysis, Interna-
tional Journal of Computer Vision, Vol. 30(1), pp. 27-42, 1998.

[16] J.J. Henriksen, 3D surface tracking and approximation using Gabor

filters, 2007.
[17] M. Lindenbaum, R. Sandler, Gabor Filter Analysis for Texture Seg-

mentation, Technical Report CIS-2005-05, Technion - Computer Science
Department, 2005.

[18] M. M. Martnez, An introduction to content-based information retrieval

by normalized compression distance, Master Thesis, 2009.
[19] R. Yong, H. Thomas, S. Chang, Image Retrieval: Current Techniques,

Promising Directions, and Open Issues, Visual Communication and Image

Representation, Vol. 10, pp. 39-62, 1999.
[20] L. Stanescu, D.D. Burdescu, M. Brezovan, C. Stoica Spahiu, and A. Ion,

A New Software Tool For Managing and Querying the Personal Medical

Digital Imagery, International Conference on Health Informatics, pp. 199-
204, 2009.

[21] H. Tamura, T. Mori and T. Yamawaki, Textural Features Corresponding
to Visual Perception , SMC, Vol. 8, pp. 460-473, 1978.

[22] G.L. Peterson, Myths About the Mutual Exclusion Problem, Information
Processing Letters, Vol. 12(3), pp. 115116, 1981.

[23] L. Lamport, A New Solution of Dijkstra’s Concurrent Programming

Problem, Communications of the ACM 17(8), pp. 453-455, 1974.
[24] J. Emerson, Thread Synchronization and Critical Section

Problem, http://www.jonemerson.net/dev/articles/

ThreadSynchronizationAndSemaphores.html

754 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

