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Abstract—Targets on availability are generally included in any
Service Level Agreement (SLA). When those targets are not
met, the service provider has to compensate the customer. The
obligation to compensate may represent a significant risk for the
service provider, if the SLA is repeatedly violated. In this paper
we evaluate the probability that a SLA commitment on the service
availability is violated, when the service restoration time follows
an exponential, Weibull, or lognormal distribution. For a two
state model, where the service alternates between availability and
unavailability periods, we show that such probability decreases as
the variance of the restoration time grows, and that lengthening
the time interval over which the service availability is evaluated
reduces the risk for the service provider just if the compensation
grows quite less than the length of that time interval.

I. INTRODUCTION

S
ERVICE level agreements (SLAs) define the contractual

obligations of the service provider towards the customer,

the mechanisms to enforce the delivery of the committed

service quality, and the obligations of the service provider if

the service level falls below the committed value [1], [2].

A key parameter in SLAs is the service availability, for

which a target figure is declared. If the service is unavailable,

the customer is not provided what it has paid for (an economi-

cal loss in itself), but suffers an additional larger loss due to the

discontinuity in its business operations or social relationships.

The latter category of losses may reach values of the order of

100-200 k$ per minute of service interruption (see [3]).

The obligations of the service provider generally consist in

the payment of a sum if the target availability figure is not met.

If the service availability targets are not met repeatedly, the

service provider is bound to suffer large losses, especially if

that happens on a massive scale rather than for a few individual

customers.

The service provider has to be able to evaluate the risk

it incurs because of SLA violations, which in turn requires

to evaluate the probability that the target figures are not

met. Many SLA monitoring tools exist: HP OpenView Fire-

hunter, CiscoWorks2000 Service Management Solution, and

Lucent’s CyberService, among those marketed in the recent

past. However, SLA monitoring tools allow to perform an ex-

post evaluation of the quality of service delivered, rather than

the predictive evaluation that the service provider needs to

properly set its commitment and negotiate a sustainable SLA.

In [4] the probability of violating availability SLAs has been

evaluated by simulation, when the service restoration time

follows an exponential distribution, but two more complex

distributions are envisaged for the service restoration time,

namely the Weibull and the lognormal. The same Weibull

distribution is suggested in [5] as the best-fit model in the

cases of grid computing services.

In this paper we provide a thorough examination of the risk

of violating the SLA obligations, considering three models (ex-

ponential, Weibull, and lognormal) for the service restoration

time. We provide an analytical expression for the probability of

violating an availability SLA commitment for the exponential

case, while previous results were based on simulation only. We

provide simulation results for the same probability of violation,

when the service restoration time follows instead a Weibull

or lognormal distribution, which had not been dealt with in

the literature. We show that the probability of SLA violation

decreases as the variance of restoration times grows, and that

lengthening the time interval over which the availability targets

are examined is convenient for the service provider just if the

compensation amount for each violation grows quite less than

proportionally with the length of that time interval.

The paper is organized as follows. In Section II, we define

the service model we adopt for our analysis. In Section III, we

provide a formal definition of the service level agreement for

availability and of the compensation policy. Finally, we pro-

vide in Section IV the results for the three models considered.

II. SERVICE MODEL

In order to assess the violations of SLA obligations, we

need a model for the service provided to the customer. In this

section, we describe a simple model based on the alternation of

ON and OFF states, and provide the definition of availability.

We consider the service to be either available or not.

Though the customer could experience a graceful performance

degradation, SLA commitments are sharp [6]. At time t, the

state St of the service equals 1 if the service is available, and

0 otherwise. The service undergoes a sequence of alternating

availability and unavailability (ON and OFF) states, whose

average durations are respectively the Mean Time To Failure

(MTTF) and Mean Time To Repair (MTTR). The durations of

the OFF periods are represented by the sequence of positive
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i.i.d. random variables {B1, B2, B3, . . .}. We assume that the

service starts in the ON state. The variable NT ∈ N0 represents

the number of failures in the period (0, T ] (NT = 0 means

that the service works uninterruptedly in (0, T ]).
The service model is fully specified when we define the

probability distribution for the duration of the ON and OFF

periods. Here we assume that the duration of the ON period

follows an exponential distribution, and the duration of the

OFF period follows either an exponential distribution, or a

Weibull, or a lognormal distribution. Two-parameter models

(lognormal and Weibull) are used for more complex repair

scenarios such as with significant travel time [4].

As the key service performance parameter for our model, we

consider the availability. For our two-state model, the steady-

state availability Φ is defined as the expected value of the state

variable [7], or, equivalently, as the probability that the service

is ON, and can also be expressed through MTTF and MTTR:

Φ = E[St] = P[St = 1] =
MTTF

MTTF + MTTR
. (1)

III. SERVICE LEVEL AGREEMENTS AND COMPENSATION

POLICIES

In SLAs, the service provider commits itself to provide an

adequate quality of service, and compensate the customer if

that commitment is not honored. In this section, we review

the definition of service availability targets, and describe the

compensation policy considered in the following.

In SLAs, target values are indicated for service availability

[8], [9]. In the basic definition (1), we must state what the

object is whose availability we consider, and how we declare

that object to be available or not. For example, in [10] a list

of services and the associated definitions of availability are

provided.

In order to check if the SLA obligations are met in an

operational context, we set an observation interval T and

measure the availability through the ratio of the cumulative

outage duration XT during the observation interval and the

length of the observation interval itself:

Φ̂ =
T −XT

T
= 1−

∑NT

i=0 Bi

T
. (2)

If we fix the length of the observation interval, the SLA

obligation Φ̂ > z (the threshold z being a positive quantity)

can be expressed as the constraint XT < W = (1−z)T on the

cumulative outage duration XT over the observation interval.

In particular, we can set a threshold z = Φ equal to the

declared steady-state availability. However, due to the random

nature of the failure process, there is a non-zero probability

that the SLA obligation is violated.

The compensation policy states what the service provider is

to pay its customer when the service fails. We assume that the

compensation is paid out for failures occurring over a period

of time of extension T (the observation period), rather than

on each single failure. In this paper, we consider a simple

compensation policy based on the steady-state availability: a

fixed amount of money is paid when XT > W = (1− Φ)T .

IV. PROBABILITY OF VIOLATION OF AVAILABILITY

TARGETS

The risk for service providers, deriving from the unfulfilled

commitments, depends on the probability of violating the SLA

targets. In this section, we provide results for the cases where

the service restoration times follow an exponential, a Weibull,

or a lognormal distribution. For the exponential case, we obtain

an approximate analytical expression. Instead, for the Weibull

and lognormal cases, we resort to simulation.

Exponential restoration times. In services with high avail-

ability, we have MTTR ≪ MTTF. In that case, the process of

failure occurrences can be approximated by a Poisson process.

Over a finite horizon T , the number NT of failures follows

approximately a Poisson distribution with average value λT ,

where λ is the failure rate. By the total probability theorem,

and recognizing that the number of failures and the duration

of the outages are independent of each other, we can express

the probability of violation as

P[XT > W ] ≃ P

[

NT
∑

i=0

Bi > W

]

=
∞
∑

k=0

P[NT = k] · P

[

NT
∑

i=0

Bi > W |NT = k

]

=

∞
∑

k=1

P[NT = k] · P

[

k
∑

i=1

Bi > W

]

(3)

Since the durations of outages are i.i.d. random variables

with an exponential distribution, their sum follows an Erlang

distribution. When there are k failures, the probability distri-

bution of the cumulative outage duration is

P

[

k
∑

i=1

Bi ≤ x

]

=

∫ x

0

µke−µvvk−1

(k − 1)!
dv x > 0

=
1

(k − 1)!
γ(k, µx),

(4)

where γ(k, x) is the lower incomplete Gamma function [11].

By replacing the expression of the Poisson distribution and

the result (4) in the probability of violation (3), we obtain the

final expression

P[XT > W ] =
∞
∑

k=1

(λT )k

k!
e−λT

[

1−
1

(k − 1)!
γ(k, µW )

]

= 1− e−λT −
∞
∑

k=1

(λT )k

k!(k − 1)!
e−λT γ(k, µW )

(5)

The resulting probability of violating the SLA depends on

the failure rate λ, the observation interval T , and the threshold

W for the overall duration of outages W = (1− Φ)T .

We report in Fig. 1 the probability of SLA violation for

several values of the steady-state availability, from 95% to the

excellent five nines case. We assume MTTR=4 hours, a value

typically adopted (see Chapter 2.2 in [12]). The range of values
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TABLE I
EXPECTED NUMBER OF TARGET VIOLATIONS OVER ONE YEAR

Obs. int. T [months] Viol. prob. over T Expected violations

1 0.140 1.679
2 0.224 1.345
3 0.277 1.109
4 0.312 0.936
6 0.353 0.706

12 0.401 0.401

for the observation interval goes up to 1 year, corresponding

to 8640 hours. The probability of violating the targets grows
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Fig. 1. Probabiity of violation under exponential restoration times

with the observation interval. This would seem contradictory

with the generally held view that adopting long measurement

intervals favors the service provider, since it allows to smooth

out single events of protracted unavailability. Actually, we have

to assess the overall number of violations taking place over

an evaluation period of fixed length. If we reduce the length

of the observation interval T , the probability of violation over

T reduces, but the number of observation intervals included

in the evaluation period increases. For example, for the case

where A = 99.9% and MTTR = 4 hours, we see in Table I

that the expected number of violations over a year actually

decreases as we lengthen the observation interval: service

providers may reduce their risk by lengthening the observation

interval. However, we should consider the economical loss

deriving from the application of the compensation policy.

We expect the compensation sum to increase as the obser-

vation interval lengthens. We should therefore multiply the

expected number of violations (third column in Table I) by

the compensation paid for each violation. The data in the

table show that lengthening the observation interval from

one month to one year reduces the overall expected loss if

C12/C1 < 1.679/0.401 ≃ 4.19, i.e., quite less than 12 times,

the increase in the observation interval.

If the service provider adopts a threshold on the measured

availability larger than the steady state availability, it may

bring the probability of violation down to acceptable values.

For example, in [13] it is envisaged that the service provider

may revise the performance objectives (e.g., by relaxing the

constraint on the availability), if the SLA obligations are not

being met. In Fig. 2, we see that the probability of violating

the SLA obligation decreases when we raise the threshold over

the steady-state availability (43 minutes for T = 1 month

and 2 hours 19 minutes for 6 months, when the steady-state

availability is 99.9% and MTTR=4 hours).
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Fig. 2. Impact of limit outage duration on the probability of SLA violation

Weibull restoration times. The probability distribution

of restoration times may differ from the exponential. For

example, in [5] a Weibull distribution is proposed to model

the duration of outages in grid computing.

Under the Weibull hypothesis, the probability distribution

for duration of the generic i-th outage is

P[Bi < x] = 1− e−(x/σ)θ x ≥ 0, (6)

where σ is the scale factor, and θ is the shape factor. When

θ = 1 the Weibull distribution becomes the exponential one.

For the case of grid computing, the shape factor should lie in

the [0.6, 1] range [5]. When θ < 1, the variance of the service

restoration time increases with respect to the exponential case.

We determine the probability of violation by simulation,

since no closed form exists for the distribution of the sum

of i.i.d. Weibull random variables. We consider 105 instances

of the observation interval, generating the number of failures

according to a Poisson process, and the duration of each outage

through a Weibull-distributed random number.

In Fig. 3 we show the probability of violating the SLA,

when MTTR=4 hours and θ = 0.7 (a standard deviation

slightly lower than six hours, against the four hours of the

exponential case). Despite the larger variance of the restoration

time in the Weibull case, the violation probability is slightly

lower than in the exponential case.

In Fig. 4, we examine in greater detail the impact of

the shape factor, when the steady-state availability is 99.9%.

Since the variance of the service restoration time grows as θ
decreases, the probability of SLA violation decreases as the
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Fig. 3. Probability of violation under Weibull repair times (θ = 0.7)

variance grows. When θ = 0.6, the violation probability is

roughly 17.5% lower than in the exponential case.
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Fig. 4. Probability of violation under Weibull repair times (Φ = 99.9%)

Lognormal restoration times. In addition to the expo-

nential and the Weibull case, the lognormal model has been

proposed in [4] for the service restoration times.

Again, no closed form exists for the probability distribution

of the sum of lognormal random variables, and we resort

to simulation. We adopt a restoration time with mean value

MTTR=4 hours, and a standard deviation ranging from 4 hours

(as in the exponential case) to 7 hours (as in the Weibull case

with θ = 0.6), and 105 simulation instances. In Fig. 5, we

compare with the Weibull case for the largest standard devia-

tion of the service restoration time (7 hours): the differences

are larger for the high availability case (Φ = 99.9%), but quite

negligible when the steady-state availability is not very large,

and smooth out as the observation interval lengthens.

V. CONCLUSION

We have evaluated the probability that the availability

commitments included in a Service Level Agreement are not

met. The analysis has been conducted for a two-state service
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Fig. 5. Comparison between the Weibull and the lognormal case

model, with alternating periods of service availability and

service restoration. Three probability models have been con-

sidered for the service restoration times: exponential, Weibull,

and lognormal. We have shown that the availability target

values are less likely to be violated as the variance of the

service restoration time gets larger. If the service providers

opts for longer evaluation intervals (for the assessment of

SLA commitments), it must set compensations quite less than

proportional to the length of the observation interval itself.
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