
Abstract—Minority game is a simulation of a zero-sum game,  
which has a similar structure to that of a real world market like a  
currency exchange market. We discuss a way to implement the  
game and provide a simulation environment with agents that can  
use  various  types  of  strategies  to  make  decisions  including  
genetic algorithms, statistics, and cooperative strategies. The goal  
of  this  simulation  study  is  to  find  the  effective  strategies  for  
winning the zero-sum game. Results show that both honesty and  
dishonesty  can  lead  to  a  player's  success  depending  on  the  
characteristics of the majority of players.

I. INTRODUCTION

HE El  Farol  Bar  problem was proposed  in  1994  by 

W. Brian Arthur [1].  This  problem involves  inductive 

reasoning using previous histories of other agents to make 

their decisions. In this problem, there are N people who inde-

pendently decide every week to go to a bar or not.

T

The El Farol Bar problem can also be used in market con-

texts with agents buying or selling an asset at each step. Af-

ter each step, the price of the asset is calculated by a simple 

supply and demand rule: if there are more buyers, the market 

price will be high, and conversely, if there are more sellers 

than buyers,  the market price  will be low. With the price 

high,  the sellers do well, and with the price low, the buyers 

do well. In either way, the minority group always wins.

A variant  of  the  El  Farol  Bar  problem is  the  minority 

game, which was proposed by Challet, Marsili,  and Zhang 

[2]. In the minority game, we have an odd total number of 

players to always produce majority / minority decisions. If 

the majority of people stay home, the bar becomes “enjoy-

able” while if the majority of people go to the bar,  it  be-

comes “crowded”. Therefore,  the payoff of the game is to 

declare the agents who take minority action as winners, the 

majority as losers.

Another important aspect of the minority game is that this 

is a zero-sum game, in which the decisions of each player in-

fluence those of others, and the total sum of the profit and 

loss of all players becomes zero. In this paper, we assume the 

minority game to be a simple economic model and discuss 

the characteristics of the zero-sum game by implementing the 

minority game [3]. 

II.  SCORING METHOD

Agents  are  limited  in  their  computational  abilities,  and 

they can only retain the last M game outcomes in their mem-

ory. This memory acts like a shift register with the new bit 

pushing out the oldest bit. Every agent makes his/her next 

decision based only on these M bits of historical data.

Each agent accumulates “capital” reflecting his/her overall 

score. The agent gets a real point only if the strategy used 

wins in the next turn. To make the game closer to a real-life 

stock market, we chose to use our own system of scoring:

If the agent wins a round: score = score + nMajority

If the agent loses a round: score = score - nMinority

with nMajority and nMinority denoting the number of play-

ers  in the majority and minority groups,  respectively.  Be-

cause initially all agents receive 0’s as their scores, this scor-

ing system ensures that at any time, the sum of all agents’ 

scores stay the same, or that the total score (capital in the 

real  world)  is  conserved,  but  its  distribution changes after 

each turn.

III. IMPLEMENTATION

Our  simulation  is  an  agent-based  model  [4]  with four 

different types of agents.  Normal agents make decisions us-

ing genetic algorithms [5]. Given a sequence of the last  M 

outcomes, there are  2M possible inputs for an agent’s deci-

sion making. A strategy specifies what the next action is for 

every sequence of last M outcomes, so there is a total num-

ber  of  22M  
possible  strategies.  After  every  turn,  a  certain 

number  of  strategies  with  poor  performances,  calculated 

based on a virtual score the agent could have been with the 

strategy, is discarded, and new strategies are randomly gen-

erated.

Team agent is a Normal agent who belongs to a team to 

share their memories to make a team decision without ac-

cessing previous decisions of others as done in a previous 

work  [6].   The  agents  with  the  higher  scores  have  more 

weight for their votes by the following formula:

R= ∑
i=1

nTeamMembers
si−min

max−min
×ri

where si is the score of agent i; and ri is the response of the 

agent (-1 or 1). If  R > 0, the team's decision is to stay, and 

vice versa.

Additionally, we assign each Team agent a percentage of 

loyalty towards their team. We have Team agents with two 

types of loyalty: the first is to tell a lie about his intention 

when voting for the team decision (type 1), and the second is 

to do the opposite of the team decision (type 2).

Super agent is another agent who makes decisions based 

on a certain number of previous market results, which weigh 

more on the most recent history. It calculates the probability 

of the Super agent to go to the bar in the next turn:
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P=100−(∑
i=1

nHists

i
2×HistPercentStay [i ])/ ∑

i=1

nHist

i
2

This is a simple way to predict the market, and it is based 

on the assumption that the number of agents that go and the 

number that stay will converge in the long run as they learn. 

IV. DATA STRUCTURE

To conserve space, instead of using Java's boolean to store 

the histories of agents, we use short instead. Each boolean 

costs 1 byte, so for an agent with 10 history entries, it costs 

10 bytes to save his history, which seems like a small num-

ber. However, if each agent has 12 strategies, the total num-

ber of bytes used to store all possible histories for a normal 

agent's strategies is over 200 MB for 1501 agents. Therefore, 

instead of using 10 boolean values to indicate whether the 

agent has won or lost  the past latest 10 turns, we chose to 

use one bit to store the outcome of one turn, so in total we 

only need 1 bit instead of 1 byte to store the history. Because 

the maximum number of history entries an agent can store is 

10, we use one Java's short value to store all the history en-

tries.  Thus, instead of 10 bytes,  we only need 2 bytes for 

each agent. In total, we only need 3 KB instead of 15 KB. 

Now using  the  same  approach  for  histories  stored  within 

each strategy (not  within each agent),  the total  number of 

bytes we need to allocate for the strategies is just over 55 

MB. This is a good upper bound for memory consumption, 

compared to 200 MB with Java's boolean.

Since each agent's history is a short, we can just store each 

strategy's responses as a boolean array and use the agent's 

history as the index for that array. In the end, we are able to 

reduce the number of bytes allocated for all strategies further 

to about 18.5 MB for the same configurations. 

In addition, instead of using arrays of booleans to store the 

responses of Normal strategies, we chose arrays of integers, 

so the boolean value in the previous implementation is now 

represented by only one bit. Since one boolean value con-

sumes 8 bits (1 byte), this method of representing one bool-

ean value using 1 bit thus reduces the memory consumption 

8 times. As a result, we increase the maximum number of 

Normal agents from 1,600 to 10,000 on our laptops. There-

fore, our final design consumes a total of about 2.3 MB, or 

almost 1/100 of the initial 200 MB.

V.  SIMULATION

A. Normal agents

Suppose there are 1001 Normal agents with the memory 

size of 6 turns in the simulation, Figure 1 shows the graph 

produced when it runs for 3650 turns.  In the graph on the 

left side, the red curve represents the best score of all agents 

in the simulation while the blue curve represents the absolute 

value of the worst. The bar graph on the right shows the dis-

tribution of the scores of each agent. The average score of all 

agents, which is zero, is denoted as a red vertical line.

Fig 1. Graph of Normal agents

The distribution graph shows a well-balanced bell curve 

that shows a normal distribution of the agents' scores.  The 

genetic algorithm, which the Normal agents use, optimizes 

the winning probability of each agent, so supposedly each 

agent fine tunes their decision-making strategy and increases 

their score as time goes on. However, because of the charac-

teristics of the zero-sum game, all agents cannot win at the 

same time. This configuration shows the characteristics of a 

zero-sum game very well.

B. Normal agents and Super agents

We ran the simulation again with 1001 agents for 3650 

turns, but with 501 Normal agents and 500 Super agents who 

use statistics based on market history rather than their past 

decisions. 

Fig 2. Graph of Normal agents and Super agents
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Fig 3. Comparison of Normal and Super scores decomposed

Interestingly, similar to the previous configuration, we ob-

served a well-balanced normal distribution (Figure 2). In ad-

dition, the distribution of each type of agent is very similar to 

each other (Figure 3).  This suggests that  the bell curve in 

Figure 2 is the sum of two smaller and almost identical bell 

curves. Thus, it shows that simple statistics based on a mar-

ket history can make wining decisions as good as  genetic al-

gorithms can. 

C. Normal agent and loyal Team agents

Another interesting configuration is when Team agents are 

100% loyal to their teams. The participants in this configura-

tion  consist  of  501  Normal  agents  and  5  teams,  each  of 

which consists of 100 members. 
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Fig 4. Graph of Normal agents and team agents
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Fig 5. Comparison of Normal and Team scores

Team agents perform far more poorly than Normal agents 

since they all do exactly the same thing. As this is a minority 

game, this type of Team strategy is the worst of all strategies. 

Figures 4 and 5 also show how the scores of theses two types 

of agents are highly independent of each other.

D. All agents in one simulation

In  the  next  two configurations,  we ran  the  experiments 

with 501 Normal agents,  5 teams of 100 agents each, and 

500  Super  agents  for  3650  turns.  Team agents  now have 

their loyalties randomly generated for both types. 

1) With disloyal Team agents: liars (Type 1)

Type 1 disloyal Team agents lie about their intentions.

Fig 6. All agents – Team agents use team strategy  1
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Fig 7. Comparison of agent types

Using Figure 7 and simulation B, we can conclude that the 

bell curve to the right of the red average line in Figure 6 is 

the  sum of  Normal  and  Super  agents.  Their  averages  are 

much better  than those  of  Team agents  (Figure  7).  Team 

agents' scores are scattered, and there is a very strong nega-

tive correlation between score and loyalty. About 20% of the 

Team agents who are the most disloyal perform above the 

zero mark.

2) With disloyal Team agents: perverse fellows (Type 2)

In this case, type 2 disloyal agents do the opposite of their 

team's resolution. We predicted that the team decisions affect 

the majority of the members, so the ones who do not follow 

the team's agreement are more likely to win. 

Fig 9. All agents – Team agents use team strategy  2
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Fig 10. Comparison of agent types
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Fig 11. Plotting of Team agents who use team strategy 2

To our surprise, the negative correlation between loyalty 

and score as in type 1 disloyalty is not true anymore. There is 

either a positive or negative correspondence between loyalty 

and score for members of the same team. The ones who be-

tray their team 50% of the time do not lose or gain anything 

in the game (Figure 11). In contrast to Figure 7, Figure 10 

shows how the Team agents, taken as a whole, perform just 

as  well  as  the Normal  and  Super  agents. However,  Team 

agents' scores are more spread out. When viewing both Fig-
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Fig 8. Plotting of Team agents who use team strategy 1

AKIHIRO EGUCHI, HUNG NGUYEN: MINORITY GAME: THE BATTLE OF ADAPTATION, INTELLIGENCE, COOPERATION AND POWER 633



ures 7 and 10, we can recognize how the best Team agents 

win over the Normal and Super agents, and even make their 

scores  shift  down dramatically.  This  helps  “even out”  the 

field,  so the score distribution goes back to the bell curve 

shape (Figure 9). 

E. The final showdown of Team agents

To see how the two types of Team agents would compete 

with each other, in this final simulation, we have eight teams, 

whose  loyalties  are  randomly generated,  with  100  agents 

each: the first four are type 1 and the other four are type 2.

Fig 12. Two types of Team agents

- 6 0 0 ,0 0 0

- 5 0 0 ,0 0 0

- 4 0 0 ,0 0 0

- 3 0 0 ,0 0 0

- 2 0 0 ,0 0 0

- 1 0 0 ,0 0 0

0

1 0 0 ,0 0 0

2 0 0 ,0 0 0

3 0 0 ,0 0 0

4 0 0 ,0 0 0

s c o r e s t e a m  a g e n t

S t r a t e g y 1 S t r a t e g y  2

Fig 13. Comparison of team strategies
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Fig 14. Plotting of two types of Team agents

Type 2 outperforms type 1 both absolutely and on aver-

age. Furthermore, the score distribution of teams following 

type 2 is more balanced (Figure 14), and the difference be-

tween the  highest  and  lowest  scores  is  less  than  those  of 

teams following type 1 (Figure 8). However, because teams 

with type 2 “steal” from teams following type 1,  the total 

score distribution is skewed to the right. 

VI. OBSERVATIONS

If  we take  a  look at  the  wealth distribution  in  the  real 

world, we can see a similar trend to our simulation. Accord-

ing to a report by Dr. Zhu Xiao Di, in the United States in 

2004, the top 25 percent of households owned 87 percent of 

the wealth in the country whereas the bottom 25 percent of 

households owned nothing [7]. This is illustrated in Figures 

7 and 8, which show the scores of loyal team agents who are 

“bullied” by both their disloyal teammates and by Normal 

and  Super  agents.  From the  results,  if  you  are  a  Normal 

agent, then you will likely live an average life. However, if 

you are a Team agent, i.e.,  more prone to be positively or 

negatively influenced by other people, your life could be ex-

treme in either way. At first, we assumed that being disloyal 

to the society that one belongs to would be the only way to 

win the game, but the simulation showed that this is not al-

ways the case. When the honest and loyal are the minority, 

they win against the tricksters and treacherous majority; and 

vice versa. Therefore, we successfully showed that similar to 

the real world, any organization could be extremely success-

ful either by being honest or dishonest depending on its envi-

ronment.

VII. CONCLUSION

In this paper, we discussed a way to implement a variant 

of the minority game. In order to deal with a large number of 

participants in the simulation, we introduced several ways to 

optimize the architecture.  Then, we ran the simulator with 

several strategies to observe the results. Because of the char-

acteristics of the game, the genetic algorithm produced a nor-

mal distribution. We also showed how a genetic algorithm is 

comparable to statistical analysis of the game. Since this is a 

minority game, team decisions play an important part. If all 

Team agents are  honest,  they are  likely to  perform worse 

than Normal agents. Then, we showed how the three types of 

agents would perform together in the same game with disloy-

al Team agents who lie to their teammates (type 1), or who 

do the opposite of their team's decision (type 2). The obser-

vation is that type 2 helps Team agents as whole: it makes 

the best Team agents better than the best of Normal and Su-

per agents and narrows the gap between the worst of team 

agents and the worst of the other two types. There also exist 

both positive and negative correlations between loyalty and 

score with type 2 while only negative correspondence is ob-

served with type 1. The last simulation illustrates how type 2 

is more effective than type 1. This also shows that to win this 

game,  both  loyal  and  disloyal  Team agents  can  win.  The 

losers  are  the  ones  with opposite  characters  of  their  own 

teams.
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