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Abstract—This paper presents the idea of fuzzy controlling of
evolution in the genetic algorithm (GA) for multiobjective opti-
mization. The genetic algorithm uses the Fuzzy Logic Controller
(FLC), which manages the process of selection of individuals to
the parents’ pool and mutation of their genes. The FLC modifies
the probability of selection and mutation of individuals’ genes,
so algorithms possess improved convergence and maintenance of
suitable genetic variety of individuals. We accepted the well-
known LOTZ problem as a benchmark for experiments. In
the experiments we investigated the operating time and the
number of fitness function calls needed to finish optimization. We
compared results of the elementary algorithms and the modified
algorithm with the modification of probability of selection and
mutation of individuals. Some good results have been obtained
during the experiments.

I. INTRODUCTION

IN MANY practical problems, it’s often expected that

several indicators achieve optimal value at the same

time, which is called multi-objective optimization problem

[1][6][10]. These multiple objectives, often conflicting with

each other, can accept the maximum or minimum in other

points of the search space. The multi-objective optimization

problem (MOP) can be stated as follows:






maximizeF (x) = [f1(x)f2(x)f3(x)...fm(x)]
subject to: gj(x) ≤ 0 for j = 1, 2, ..., k
x ∈ S

(1)

where

x = [x1x2x3...xn] ∈ ℜ, n ∈ N, (2)

is an n-dimensional vector of decision variables,

F (x) = [f1(x)f2(x)f3(x)...fm(x)], (3)

are objective functions, and

gi(x) are constrains.

Let us choose an optimization problem, with m objectives,

which are, without loss of generality, all to be maximized.

The set of potential solutions can be parted to two subsets:

dominated and not dominated.

Let x, y ∈ S, x is said to be dominated by y, if fi(y) ≥ fi(x)
for all i = 1, 2, ...,m and fj(y) > fj(x) for at least one index
j. A solution x∗ ∈ S is said to be pareto-optimal if there

does not exist another solution x, such that x∗ is dominated

by x. F (x∗) is then called a pareto-optimal objective vector.

The set of all the pareto-optimal objective vectors is called

a pareto-optimal front. A set of pareto-optimal solutions is

usually found as a result of multiobjective optimization. The

decision-maker can use his preferred method to choose the

final solution from the pareto-optimal set.

Genetic algorithms stand for a class of stochastic opti-

mization methods that simulate the process of natural evo-

lution [3][5][7][9]. In a genetic algorithm, a population of

strings (called chromosomes), which encode candidate solu-

tions (called individuals) to an optimization problem, evolves

toward better solutions. They usually search for approximate

solutions of composite optimization problems. A characteristic

feature of genetic algorithms is that in the process of the

evolution they do not use the specific knowledge for given

problem, except of fitness function assigned to all individuals.

The specific knowledge for a given problem can set a trend

for evolution and improve the efficiency of the algorithm.

The genetic algorithm consists of the following steps:

1) the choice of the first generation,

2) the estimation of an individuals’ fitness,

3) the check of the stop condition,

4) the selection of individuals to the parents’ pool,

5) the creation of a new generation with the use of opera-

tors of crossing and mutation,

6) the printing of the best solution.

The source code of genetic algorithm was published in [7].

We used this code as elementary genetic algorithm.

There are two parameters in elementary genetic algorithms

which determine evolution: the probability of selection to the

parents’ pool and the probability of mutation. GA can be

improved by the knowledge of experts. Experts can predict

the course of the process of evolution. The experts’ knowl-

edge about evolution has a descriptive character and is often

subjective, so we use the fuzzy logic controller to set a trend

of evolution.

II. ADAPTATION OF THE PROBABILITY OF SELECTION

AND MUTATION

The probability of selection determines the ability of an

individual to act as a parent and produce offspring. The

chances of the individual for transferring its genetic material to

the next generation increase with the probability of selection.

Well-adapted individuals are the most wanted ones in the par-

ents’ pool. However, weak individuals should also hit for the
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parents’ pool in order to prevent violent loss of their genetic

material and premature convergence. We suggest introduction

of an additional FLC for evaluating each individual in the

population. The FLC modifies the probability of selection

using the following rules:

• enlarge the probability of selection for the individuals

with the value of the fitness function of above the average

in generations in which the average value of the fitness

function grows with relation to the preceding generation,

• don’t change the probability of selection for individuals

with the value of the fitness function equal to the average

in generations in which the average value of the fitness

function does not change the relation to the preceding

generation,

• diminish the probability of selection for individuals with

the value of the fitness function below the average in

generations in which the average value of the fitness

function decreases with relation to of the preceding

generation.

The FLC calculates the adaptation ratio for all individuals

based on two parameters:

- the increase of the average fitness function for the whole

population (determines the change of the fitness function

between the current and the previous populations)

∆Fpop = F (T )
pop − F (T−1)

pop (4)

- an individual’s fitness (determine the difference between

the average value of the fitness function in the population

and an individual’s fitness)

Wi = F
(T )
i − F (T )

pop (5)

where:

F
(T )
i - the fitness function of individual i in moment T,

F
(T )
pop - the average fitness function of the whole popula-

tion in moment T.

The FLC uses the center of gravity [9] defuzzyfication method.

As the result from the controller we accepted:

wpsi - the adaptation ratio of the probability of selection

of individual i.

The modified probability of selection of individual i obeys the

formula:

ps′(i) = ps(i) ∗ wpsi for i = 1, ...N, (6)

where:

ps′(i) - the modified probability of selection of individual

i,

ps(i) - the probability of selection of individual i,

wpsi - the adaptation ratio of the probability of selection

calculated by the FLC for the individual i.

The knowledge base of FLC is shown in Table 1 (fuzzy

values of the adaptation ratio of probability of selection for

individual i)

Values in the table are:

TABLE I
FUZZY VALUES OF THE ADAPTATION RATIO OF PROBABILITY OF

SELECTION FOR INDIVIDUAL i

∆Fpop

Wi

NS ZERO PS PL

S VS S A A

A S A A L

L S A L L

Fig. 1. The membership functions of the increase of the average fitness
function for the whole population

- fuzzy sets of increase fitness function for whole popula-

tion ∆Fpop,

o NS - negative small,

o ZERO - closed to zero,

o PS - positive small,

o PL - positive large,

- fuzzy sets of an individual’s fitness Wi and fuzzy sets of

ratio wpsi,

o VS - very small,

o S - small,

o A - average,

o L - large.

Figures 1 - 3 shows the membership functions of the

increase of the average fitness function for the whole pop-

ulation, an individual’s fitness and the adaptation ratio of the

probability of selection.

The probability of mutation determines the ability of the

algorithm to explore and exploit the search space. In the initial

period, mutations are frequent in order to find the solution in

the whole search space (exploration mode). In the final period,

mutations are rarer than at the start, so the algorithm can search

the earlier established areas of possible optima (exploitation

mode). The mutation of the gene can cause that the new, well

adapted individual will translocate the population to the area

of the total optimum. We suggest introduction of an additional

FLC for evaluating each individual in the population. The FLC

modifies the probability of mutation using the following rules:

• enlarge the probability of mutation of individuals with

the value of the fitness function of less then the average

in generations in which the average value of the fitness

function decreases with relation to the preceding genera-

tion,
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Fig. 2. The membership functions of an individual’s fitness

Fig. 3. The membership functions of the adaptation ratio of the probability
of selection

• don’t change the probability of mutation of individuals

with the value of the fitness function equal to the average

in generations in which the average value of the fitness

function does not change in relation to the preceding

generation,

• diminish the probability of mutation of individuals with

the value of the fitness function above the average in gen-

erations in which the average value of the fitness function

increases with relation to the preceding generation.

The FLC calculates the adaptation ratio for all individuals

based on two parameters:

- the population’s quality (defines the difference between

the fitness function of the best individual discovered so far

and the average fitness function of the current population)

∆Fpop = Fmax − F (T )
pop (7)

- the individual’s fitness (the same the parameter was used

for the modification of the probability of selection)

Wi = F
(T )
i − F (T )

pop (8)

where:

F
(T )
i - the fitness function of individual i in moment T,

F
(T )
pop - the average fitness function for the whole popu-

lation in moment T.

The FLC uses the center of gravity defuzzyfication method.

As the result from the controller we accepted:

Fig. 4. The block scheme of the modified genetic algorithm

wpmi - the adaptation ratio of the probability of mutation

of individual i.

The modified probability of mutation of an individual i obeys

the formula:

pm′(i) = pm(i) ∗ wpmi for i = 1, ...N, (9)

where:

- pm′(i) - the modified probability of mutation of individ-

ual i,

- pm(i) - the probability of mutation of individual i,

- wpmi - the adaptation ratio of the probability of mutation

calculated by the FLC for the individual i.

Figure 4 shows the block scheme of the modified genetic

algorithm (the block of the fuzzy logic is noted with the

grading). The construction of FLC for modification of the

mutation is almost the same as FLC for modification of the

selection. The construction of the fuzzy logic controller in

details is considered in [8].

III. COMPUTATIONAL EXPERIMENTS

The goal of the experiment is the verification of the idea

of fuzzy controlling of evolution in the modified genetic

algorithm for multiobjective optimization. The FLC estimates

all individuals and modifies their probability of selection and

mutation. The algorithm looks for any pareto-optimal solution.

The LOTZ (Leading Ones, Trailing Zeroes) problem with the

size from 50 to 100 was chosen as the test function. The LOTZ

can be stated as the maximization problem of two objectives.

LOTZ1(x) =

n
∑

i=1

i
∏

j=1

xj , (10)
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TABLE II
THE AVERAGE VALUES OF THE RUNNING TIME AND THE NUMBER OF FITNESS FUNCTION CALLS

Elementary Modification
of mutation

Modification
of selection

Modification
of selection
and mutation

SEMO NSGA2

LOTZ50
time [s] 0,063 0,097 0,133 0,199 17,15 14,26
number of fitness
function calls

25743 15196 22985 21350 7700 10700

LOTZ60
time [s] 0,172 0,207 0,361 0,575 38,32 30,41
number of fitness
function calls

60245 31401 57052 59160 36500 27500

LOTZ70
time [s] 0,564 0,528 0,92 1,309 49,76 31,13
number of fitness
function calls

164034 75335 134509 126560 44000 28500

LOTZ80
time [s] 1,098 1,036 1,956 3,377 49,78 57,11
number of fitness
function calls

275626 137082 267112 309490 45000 49000

LOTZ100
time [s] 5,233 3,932 7,879 12,99 51,09 77,57
number of fitness
function calls

1129902 460269 984622 1125690 48000 82000

LOTZ2(x) =

n
∑

i=1

n
∏

j=i

(1− xj), (11)

LOTZ(x) = (LOTZ1(x), LOTZ2(x)), (12)

where: x = (x1, x2, ..., xn) ∈ {0, 1}.
We compared algorithms with modification of selection and

mutation with elementary genetic algorithm. The first popula-

tion was generated randomly. All the algorithms started at the

same point in the search space. The algorithms’ parameters

used in the experiment:

- the genes of individuals are represented by binary num-

bers,

- the probability of crossover = 0,8,

- the probability of mutation = 0,15,

- the number of individuals in the population = 10,

- the algorithms were stopped after finding any pareto-

optimal solution.

To measure the achievements of modified algorithms, we

choosed two other algorithms SEMO and NSGA2, usually

used for solving LOTZ problem. SEMO is a population-based

evolutionary algorithm for multiobjective optimization pro-

posed in [4]. NSGA2 in an elitist multiobjective evolutionary

algorithm proposed in [2]. We used a PISA-implementation of

the algorithms written by Marco Laumanns. The SEMO and

NSGA2 find a set of pareto optimal solutions, so they were

stopped after finding any pareto optimal solution. For SEMO

and NSGA2 we use:

- one-bit mutation,

- population size 100,

- probability of mutation 0,15

- probability of recombination 0,8.

Each algorithm was executed 10 times. In Table 2 there are

average values of the running time and the number of fitness

function calls obtained by the algorithms.

The graph in Figure. 5 illustrates the average running time

of the algorithms.

The graph in Figure. 6 illustrates the average number of

fitness function calls needed by the algorithms.

Fig. 5. The average running time of the algorithms

Fig. 6. The average number of the fitness function calls needed by the
algorithms
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IV. CONCLUSION

Modified algorithms need less fitness function calls in all

experiments than elementary algorithms, but it need more

fitness function calls than algorithm SEMO and NSGA2. The

running time of modified algorithms is noticeably shorter

than the algorithm SEMO and NSGA2.

The adaptation of parameters of the algorithms demands

additional computational effort. The running time of the func-

tions of the large computational complexity in the large search

space can be diminished. The FLC effectively manages evo-

lution in genetic algorithms by modification of the probability

of selection and mutation.

The algorithms looked for any pareto-optimal solution. In

the future, we are going to check whether the adaptation of

parameters of the algorithm can direct evolution toward the

point in pareto front preferred by the decision-maker.
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