
A Type and Effect System for Implementing
Functional Arrays with Destructive Updates

Georgios Korfiatis
Email: gkorf@softlab.ntua.gr

Michalis Papakyriakou
Email: mpapakyr@softlab.ntua.gr

Nikolaos Papaspyrou
Email: nickie@softlab.ntua.gr

School of Electrical and Computer Engineering

National Technical University of Athens

Polytechnioupoli, 15780 Zografou, Athens, Greece

Abstract—It can be argued that some of the benefits of purely
functional languages are counteracted by the lack of efficient and
natural-to-use data structures for these languages. Imperative
programming is based on manipulating data structures destruc-
tively, e.g., updating arrays in-place; however, doing so in a purely
functional language violates the language’s very nature. In this
paper, we present a type and effect system for an eager purely
functional language that tracks array usage, i.e., read and write
operations, and enables the efficient implementation of purely
functional arrays with destructive update.

I. INTRODUCTION

A
RRAYS are ubiquitous data structures in imperative pro-

gramming, offering constant-time storing and retrieval

of data. On the contrary, their use in the purely functional

programming paradigm is not equally natural. A key prop-

erty in purely functional programs is referential transparency,

which guarantees that an expression has always the same value

in any context. Referential transparency facilitates reasoning

about program properties and also enables many compiler

optimizations. Yet this entails that an operator intended to

update the contents of a given array should actually yield

a fresh (updated) copy of the array, leaving the original

untouched, and thus adding a significant time and space

complexity overhead to the program.

Naı̈ve implementations of such an update operator would

require an additional O(n) complexity for each update, both

in time and space, where n is the size of the array. Better

implementations could be based on building a set of differ-

ences between the original and the updated array, in the same

spirit more or less as Haskell’s DiffArray. In principle, such

implementations could be tailored to specific use patterns for

arrays, (e.g., single-threaded updates); however, as Haskell’s

bug reports reveal, the overall performance is very poor.

Pippenger has shown that every algorithm using strict im-

pure data structures that runs in O(n) can be translated to an

algorithm using pure data structures that runs in O(n log n)
time, simulating random access memory with appropriate

algebraic data structures such as balanced binary trees [12].

He has also shown that there are algorithms for which this

is the best one can do; in other words, there are algorithms

for which an impure language performs asymptotically better

than a pure language. This result has caused a significant

stir in the functional programming community. It has been

discussed whether it is valid for lazy pure languages [2], or

for algorithms without “on line” requirements.

On the other hand, two practical questions have been raised

on this subject:

• What good does this study of asymptotic behavior make?

Even if the book-keeping cost of using purely functional

data structures can be amortized throughout the program

and does not increase the overall program complexity, it

still induces a constant factor slowdown that may not be

negligible.

• How easy is it to work with (and analyze the performance

of) purely functional data structures? In other words, how

easily can one reuse a long-standing imperative algorithm

in a purely functional language and will it be the same

algorithm after all?

Let us consider a motivating example. Suppose we are

given as input a tree structure which we need to subsequently

process, e.g., perform a depth-first traversal. Suppose also that

the input is given in the following form: the first line contains

the number of nodes n (numbered from 0 to n − 1) and the

following n lines contain the nodes’ parents. The root of the

tree is given a parent of −1. The following program snippet

in C++ can be used to read such a tree. For each node i, the

list c[i] contains the node’s children. Variable r contains

the tree’s root.

int n, r;

scanf("%d\n", &n);

list<int> c[n];

for (int i=0; i<n; i++) {

int p;

scanf("%d\n", &p);

if (p >= 0)

c[p].push_back(i);

else

r = i;

}

Input
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Now consider an equivalent program snippet in a purely

functional programming language. We use here OCaml syntax,

but we assume purely functional arrays with the following sig-

nature. Function upd returns the updated array; semantically,

the result of upd a i x can be thought of as a new array
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whose contents equal those of a, with the exception of value

x occupying position i.

type ’a array

val newArray : int -> ’a -> ’a array

val get : ’a array -> int -> ’a

val upd : ’a array -> int -> ’a -> ’a array

We skip the reading of data and assume that both n and the

list of the nodes’ parents l have already been read. Our goal

is to build a data structure of type tree, which we can then

process in a purely functional fashion.

type tree = T of int * tree list

Function build does precisely this. It walks down the

list l, using array c to collect for each node a list of its

children, exactly as the imperative program does. Argument

r propagates the tree’s root node. Finally, function mkTree

builds the tree structure using the information that has been

collected in c.

let build n l =

let rec walk i c r = function

| [] ->

(c, r)

| p :: ps when p >= 0 ->

let c = upd c p (i :: get c p) in

walk (i+1) c r ps

| _ :: ps ->

walk (i+1) c i ps in

let c = newArray n [] in

let (c, r) = walk 0 c 0 l in

let rec mkTree u =

T (u, map mkTree (get c u)) in

mkTree r

With a naı̈ve implementation of functional arrays, copying

the array every time it is updated, function build will require

O(n2) time, while its imperative counterpart takes just O(n).
Even smarter implementations, e.g., using a balanced binary

tree for c, will take O(n log n). There doesn’t seem to be

a natural way to bring the complexity down to O(n) without

updating the array in-place. Notice that, in the program snippet

above, the array c is updated and used only in a single-

threaded way; after the updating takes place, the original

array is never used again. In this program, all array updates

can be done destructively without altering its semantics, thus

obtaining an O(n) time complexity. This, however, need not

be the case, and this is the real difficulty in optimizing purely

functional arrays.

It is desirable to combine the best of the two worlds, impera-

tive and purely functional, in a language that implements array

operations efficiently while complying with the referential

transparency principle of purely functional programming. In

this paper, we present a type and effect system for a purely

functional language that enables such an optimization in a safe

manner. In particular, the language includes an update operator

that can be implemented destructively, but is semantically

equivalent to the pure upd function that we have just seen.

In the sections that follow, we present our approach in an

e ::= w | let x = e1 in e2 | w1 w2 | if w then e1 else e2
| newArrayw1 w2 | getw1 w2 | updw1 w2 w3 | . . .

w ::= x | v

v ::= f | ℓ | true | false | i

f ::= λx : τ.e | fix x : τ.f

τg ::= Bool | Int

τ ::= τg | Array τg | (x : τ1)
γ&δ
−−→ τ2

Fig. 1. Syntax.

informal way through examples (Section II), then the formal-

ization of the type and effect system (Section III). Section

IV discusses related work. We finish with some concluding

remarks and directions for future work.

II. AN INFORMAL ACCOUNT OF OUR APPROACH

In Fig. 1 we define a simple eager functional language,

whose main deviation from conventional languages is that

evaluation order is explicit: all operators take evaluated ar-

guments (w), which are values (v) or variables that contain

values (x). More complex expressions must be explicitly

“linearized”, forming essentially a sequence of let-bindings

with primitive operations. Making the evaluation order explicit

is not an important feature of our language, but it facilitates the

presentation of our approach. Programs in a traditional eager

functional language, like the last example of Section I, can be

straightforwardly transformed to this linear form. For example,

x y z is translated to let y ′ = x y in y ′ z . Notice also that our

language is explicitly typed, but a more-or-less standard type

inference can be used to fill in most of the type annotations.

The language includes integer values (i), boolean values and

standard conditional expressions, function values (f ) which

can be recursive, and location constants (ℓ) that do not appear

in the original program. Although we do not show them, we

assume the existence of operators for manipulating integer and

boolean values. The language also includes operators for array

manipulation:

• newArray i v creates an array of size i whose cells are

all initialized with value v and returns it;

• get a i returns the ith element of array a; and

• upd a i v returns an array equal to a except that position

i is now occupied by value v.

A type (τ ) is either a ground type (τg), which can be

Bool or Int, an array type whose element is necessarily of

ground type, or a function type. The non-standard annotations

in function types will be explained shortly. We assume that

arrays are 0-indexed and we do not care to use the type system

to avoid array out-of-bounds errors.

The main idea is to maintain an effect for each expression,

which records the uses of variables that represent arrays within

this expression. Let’s start by assuming that an effect consists

only of a qualifier assignment (ξ), which assigns a qualifier

q to each of the array variables used in an expression. (In a

short while we will extend our notion of effect.) A variable is
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assigned qualifier W (written) if it has been used in an upd

operation, or qualifier R (read) if it has been used in a get

operation.

For example, assuming that a is of array type, consider the

following expression:

let v = get a 0 in {a :R}
upd a 1 v {a :W}

Each subexpression produces the qualifier assignment shown

to its right. The expression gets its overall effect by combining

the effects of its subexpressions in the order of execution. In

this example it yields the assignment {a :R, a :W}.

It is crucial that an array be not used, either for writing or

for reading, after it has been written. Therefore, computing

the overall effect of the following expression should fail.

let a′ = upd a 1 0 in {a :W}
get a 0 {a :R}

However, due to the possibility of aliasing, it is not guaran-

teed that two variables in the effect of an expression refer to

distinct arrays. It is thus necessary to keep track of the order

in which the effects appear when combining two (seemingly

unconnected) effects. In particular, we maintain a constraint

set (κ) which records every pair of variables x<y such that

x :W has appeared before y : q, for any qualifier q. In order

to keep track of aliased variables, we additionally annotate

each expression with a propagation set (δ) which records

variables of array type that may be the result of evaluating

this expression.

To summarize all this, we relate each expression with a tuple

γ& δ, where the effect γ is itself a tuple 〈ξ, κ〉, consisting of

an assignment of qualifiers to variables and a set of constraints.

Apart from the standard typing environment, we also keep an

aliasing environment A mapping variables to all their possible

aliases; this environment is updated in every let binding, using

the propagation set δ of the bound expression.

Consider the following example, which is equivalent to the

previous one and should therefore also be rejected:

let b = a in 〈∅, ∅〉& {a}
let a′ = upd a 1 0 in 〈{a :W}, ∅〉& ∅

get b 0 〈{b :R}, ∅〉& ∅

The first let binding leads to nothing more than the aliasing

A(b) = {a}. The subsequent operators upd and get result

in the qualifier assignments for a and b, respectively. What is

important, however, is the combination of all these effects in

the result of this expression. The overall effect is the qualifier

assignment {a : W, b : R}, along with the constraint set

{a<b}, which is produced because a :W is executed before

b : R. When getting out of its scope, b is replaced by its

propagation set {a} both in the qualifier assignment and in

the constraint set. This leads to the constraint set {a < a},

which is unsatisfiable, and the program is rejected.

Lambda abstractions have no effects themselves. Neverthe-

less, they need to remember the possible effects of their body.

This is done by annotating the function type with the effect

and the propagation set. When applying a function, the effect

on the arrow should be checked for compatibility with respect

to the effects collected so far. Thus typing the application f 4
in the following example will fail, because a has been updated

before being read by the function.

let f = λx : Int.get a x in f : Int
〈{a:R},∅〉& ∅
−−−−−−−−→ Int

let a′ = upd a 0 0 in 〈{a : W}, ∅〉& ∅
f 4 〈{a : R}, ∅〉& ∅

Annotations on arrow types can also contain references

to the formal parameters of the function. To this end, we

name the type of each formal parameter, as in the following

example. (Of course, only annotations for array types are

of any use; we thus omit naming parameters of a different

type in the following examples.) When applying a function,

the formal parameters mentioned in its effect are substituted

with the variable (and its aliases) that correspond to the

actual parameter. Typechecking the following example will

fail, because application f r updates r before this is read by

the last get operation.

let f = λa : Array Int.upd a 0 0 in

f : (a : Array Int)
〈{a:W},∅〉& ∅
−−−−−−−−−→ Array Int

let r′ = f r in 〈{r :W}, ∅〉& ∅
get r 0 〈{r : R}, ∅〉& ∅

The following example demonstrates how aliasing can be

detected in our system. Function f , which takes two array

parameters x and y, is applied to the same array r.

let r = newArray 5 0 in

let f =
λx : Array Int.
λy : Array Int.

let a = updx 3 4 in 〈{x :W}, ∅〉& ∅
let b = get y 3 in 〈{y :R}, ∅〉& ∅

upd a 2 b 〈{a :W}, ∅〉& ∅
in

let f ′ = f r in

f ′ r

Function f has the following type:

(x : Array Int)
∅& ∅
−−−→

(y : Array Int)
〈{x:W,y:R},{x<y}〉& ∅
−−−−−−−−−−−−−−−→ Array Int

Notice that the first arrow carries no effect, since it only yields

a closure. Application f r has type:

(y : Array Int)
〈{r:W,y:R},{r<y}〉& ∅
−−−−−−−−−−−−−−−→ Array Int

and the last application f ′ r produces the effect

〈{r :W, r :R}, {r<r}〉

which contains an unsatisfiable constraint.

As a bigger example, we adapt the core of the motivating

example from Section I. Function walk collects in array c the

list of children of each node, taking as input the list of nodes’

parents (l). We assume a ground type List Int of lists of

integers but, as our language does not support tuples, we skip
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the calculation of the tree’s root, which can easily be done by

a separate function. We also assume the usual list operators:

nil and cons, isnil, head, and tail.

letwalk =

fix f : Int
∅& ∅
−−−→ (c : Array (List Int))

∅& ∅
−−−→

List Int
〈{c:W,c:R},∅〉& ∅
−−−−−−−−−−−→ Array (List Int).

λi : Int.
λc : Array (List Int).
λl : List Int.
let b = isnil l in

if b then
c

else

let p = head l in
let ps = tail l in
let c′ =
let b = (p >= 0) in

if b then
let v = get c p in

let v′ = cons i v in

upd c p v′

else

c in

let i′ = i+ 1 in

let f1 = f i′ in
let f2 = f1 c

′ in

f2 ps

III. FORMALIZATION

In this section we formally present the operational semantics

of our language and the type and effect system. The syntax of

the language has already been presented in Fig. 1.

A. Operational semantics

In Fig. 2, we define a standard eager operational semantics

of expressions with respect to a memory µ, mapping locations

ℓ to memory blocks. A memory block { vi
i<n } has size n

and contains the values v0, . . . , vn−1. The linearized nature of

the language ensures that there is only one propagation rule

in the semantics (for let), with every other rule corresponding

to a particular sort of redex. Note that upd ℓ j v updates the

memory block in-place and returns the original location.

B. Type system

Effects γ are defined in Fig. 3 as a pair 〈ξ, κ〉, where ξ
is an assignment of qualifiers q to variables and κ a set of

constraints. A propagation set δ is simply a set of variables,

an aliasing environment A maps variables to sets of variables,

and a typing environment Γ maps variables to types τ .

We have opted to presented the type system in a form

of input and output effects. This allows us to determine a

type error at the exact program point that is to blame for the

constraint violation. The typing judgment for an expression e

Γ;A; γ0 ⊢ e : τ & γ& δ

µ; e −→ µ′; e ′

µ; e1 −→ µ′; e ′1
µ; let x = e1 in e2 −→ µ′; let x = e ′1 in e2

µ; let x = v in e −→ µ; e[v/x ]

µ; (λx : τ.e) v −→ µ; e[v/x ]

µ; if true then e1 else e2 −→ µ; e1

µ; if false then e1 else e2 −→ µ; e2

µ; (fix x : τ.f ) v −→ µ; f [(fix x : τ.f )/x ] v

ℓ fresh inµ
∀ j .(0 <= j < i ⇒ vj = v)

µ;newArray i v −→ µ, ℓ 7→{ vj
j<i }; ℓ

0 <= j < n

µ, ℓ 7→{ vi
i<n };get ℓ j −→ µ, ℓ 7→{ vi

i<n }; vj

0 <= j < n

∀ j .(0 <= i < n ∧ i 6= j ⇒ v ′
i = vi)

v ′
j = v

µ, ℓ 7→{ vi
i<n };upd ℓ j v −→ µ, ℓ 7→{ v ′

i

i<n
}; ℓ

Fig. 2. Operational semantics.

q ::= W | R

ξ ::= ∅ | ξ, x :q

κ ::= ∅ | κ, x<y

γ ::= 〈ξ, κ〉

δ ::= ∅ | δ, x

A ::= ∅ | A, x 7→δ

Γ ::= ∅ | Γ, x : τ

Fig. 3. Qualifiers, effects, and environments.

yields a type τ , effect γ, and propagation set δ, given type

environment Γ, aliasing environment A, and input effect γ0.

The output effect γ results from a combination of the input

effect and the actual effect of the expression in question. The

typing judgment for evaluated arguments (w) is similar but

lacks the output effect; it will be presented later.

Consider first the rule for get:

Γ;A; γ0 ⊢ w1 : Array τg & δ1
Γ;A; γ0 ⊢ w2 : Int& ∅
γ = γ0 ⋉ δ1 : R

Γ;A; γ0 ⊢ getw1 w2 : τg & γ& ∅

Arguments w1 and w2 are first checked and w1 corresponds

to a propagation set δ1. In fact, since locations do not appear

in the original program that we typecheck, w1 can only be a
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variable, say x, thus δ1 must be the singleton {x}, as it will

become clear in the rule for variables. The actual effect of

the get expression is 〈{x : R}, ∅〉, since variable x is used

for reading. This is expressed concisely, generalized for any

δ, using the following notation:

δ : q ≡ 〈{x : q | x ∈ δ}, ∅〉

Input and actual effects are combined according to the

following function:

γ1 ⋉ γ2 ≡ 〈ξ1, κ1〉⋉ 〈ξ2, κ2〉 ≡
〈ξ1 ∪ ξ2, (κ1 ∪κ2)∪{x<y | (x :W) ∈ ξ1 ∧ (y :q) ∈ ξ2}〉

which takes the union of the qualifier assignments (ξ1 and

ξ2) and the union of constraints (κ1 and κ2) plus a new set

of constraints which results from the combination of every

written variable in γ1 with every variable in γ2.

The rule for upd is similar; here the actual effect has a W

assignment instead of R.

Γ;A; γ0 ⊢ w1 : Array τg & δ1
Γ;A; γ0 ⊢ w2 : Int& ∅
Γ;A; γ0 ⊢ w3 : τg & ∅
γ = γ0 ⋉ δ1 : W

Γ;A; γ0 ⊢ updw1 w2 w3 : Array τg & γ& ∅

In both rules, we have omitted array index out-of-bounds

checks. This is orthogonal to our approach and we would not

like to diverge from the issue of destructive implementation

of arrays to discuss it in this paper.

Creating a new array produces no effect; therefore the

rule for newArray simply propagates the input effect after

checking its arguments.

Γ;A; γ0 ⊢ w1 : Int& ∅
Γ;A; γ0 ⊢ w2 : τg & ∅

Γ;A; γ0 ⊢ newArrayw1 w2 : Array τg & γ0 & ∅

In order to typecheck a let expression, we first check the

bound expression e1 given input effect γ0.

Γ;A; γ0 ⊢ e1 : τ1 & γ1 & δ1
Γ, x : τ1;A⊕ x 7→δ1; γ1 ⊢ e2 : τ2 & γ2 & δ2
τ ′ = τ2[δ1/x ]
γ′ = γ2[δ1/x ]
δ′ = δ2[δ1/x ]

Γ;A; γ0 ⊢ let x = e1 in e2 : τ ′ & γ′ & δ′

This produces type τ1, effect γ1 and propagation set δ1. The

body e2 is checked on input effect γ1, since this represents

the combination of γ0 with the actual effect of e1, that is, all

the effects that occurred prior to the execution of e2. Apart

from adding the binding variable in the type environment, we

also add the aliasing information for e1 in the map A. Binding

variable x maps to all variables contained in the propagation

set δ1 and to all their aliases, transitively, as defined below:

A⊕ x 7→δ ≡ A, x 7→δ ∪
⋃

{A(y) | y ∈ δ}

The resulting type, effect, and propagation set of the let

expression are those computed for its body. However, these

may contain occurrences of x, which must be replaced by its

aliases δ1. The required substitutions are defined below.

δ′[δ/x] =

{

δ′ − {x} ∪ δ if x ∈ δ

δ′ otherwise

γ[δ/x] = 〈ξ[δ/x], κ[δ/x]〉

ξ[δ/x] = {y :q | (y :q) ∈ ξ ∧ y 6= x}

∪
⋃

{δ : q | (x : q) ∈ ξ}

κ[δ/x] = {y<z | (y<z) ∈ κ ∧ y 6= x ∧ z 6= x}
∪ {w<z | (y<z) ∈ κ ∧ y = x ∧ w ∈ δ}
∪ {y<w | (y<z) ∈ κ ∧ z = x ∧ w ∈ δ}

Substituting δ for x in γ amounts to removing any assignment

x :q and any constraint containing x, and adding the respective

assignments and constraints for all variables in δ. Substitution

of δ in a type (τ [δ/x]) walks through the arrows recursively

and applies the substitution for γ and δ.

The rule for application is the most elaborate one.

Γ;A; γ0 ⊢ w1 : (x : τ)
γ&δ
−−→ τ ′ & ∅

Γ;A; γ0 ⊢ w2 : τ & δ2
A ⊢wf τ ′[δ2/x ]
A ⊢wf γ[δ2/x ]
γ′ = γ0 ⋉ γ[δ2/x ]
A ⊢wf γ′

A; γ′ ⊢compat δ[δ2/x ]

Γ;A; γ0 ⊢ w1 w2 : τ ′[δ2/x ] & γ′ & δ[δ2/x ]

We first typecheck w1 and w2. The effect of the application is

the effect γ that the function carries on its type. As explained

in the related example in Section II, any occurrence of the

formal parameter x need to be replaced by the aliases of

the actual parameter, δ2. This substitution may render some

constraints inconsistent; thus the resulting effect needs to be

checked for well-formedness. Judgment

A ⊢wf γ

checks whether γ is well-formed, i.e., it contains no constraint

of the form x<y where x and y are aliases (or the same vari-

able). Similarly, the effect γ′ that results from combining the

input effect with the computed one need to be checked, since

it contains fresh constraints. Likewise, the output propagation

set is the result of substituting δ2 for the formal parameter x in

the propagation set of the function, δ. Given the output effect

γ′, we have to make sure that the resulting propagation set

does not include any variable that has already been used for

writing. For this purpose we employ the following judgment:

A; γ ⊢compat δ

which checks whether δ is compatible with γ given A, i.e., it

does not contain any variable such that either itself or one of

its aliases is assigned qualifier W in γ.

Finally, the resulting type τ ′ can itself be an arrow type.

Since it can contain occurrences of the formal parameter x,

these have to be replaced by d2, too. This substitution may

break some constraints; we have thus to check the well-

formedness of the type. Judgment

A ⊢wf τ
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checks the well-formedness of a type with respect to aliasing

environment A by checking the well-formedness of all possi-

ble γ’s contained in the type as well as the compatibility of

all δ’s with their respective γ.

The rule for if typechecks the two alternatives e1 and e2
given the same input effect γ0.

Γ;A; γ0 ⊢ w : Bool& ∅
Γ;A; γ0 ⊢ e1 : τ & γ1 & δ1
Γ;A; γ0 ⊢ e2 : τ & γ2 & δ2
γ = γ1 ∪ γ2
δ = (δ1 −WA(γ2)) ∪ (δ2 −WA(γ1))

Γ;A; γ0 ⊢ if w then e1 else e2 : τ & γ& δ

The output effect γ is the union of the two alternative

effects, since we need to conservatively assume that either of

the two effects has actually happened. Similarly, the output

propagation set δ results from the union of the alternative

propagation sets. However, extra care is needed here. We need

to make sure that δ be compatible with γ. We thus subtract all

written variables (and their aliases) of γ1 (notation WA(γ1))
from δ2, and those of γ2 from δ1 respectively. This ensures

that if a variable is assigned qualifier W in either effect, then

it cannot be an alias for the if expression.

Finally, an evaluated argument w is considered an ex-

pression, too. The following rule simply uses the respective

judgment and propagates the input effect.

Γ;A; γ0 ⊢ w : τ & δ

Γ;A; γ0 ⊢ w : τ & γ0 & δ

Evaluated arguments (values and variables) are typechecked

with the following judgment.

Γ;A; γ0 ⊢ w : τ & δ

This differs from the judgment for expressions in that there

is no output effect. On the other hand, rules expect an input

effect γ0, but only for reasons of checking compatibility, as it

will be explained shortly.

The first rule concerns variables of an array type.

(x : Array τg) ∈ Γ
A; γ0 ⊢compat {x}

Γ;A; γ0 ⊢ x : Array τg & {x}

Using the appropriate compatibility judgment, we check that

such a variable has not been previously used for writing. The

main duty of this rule is to propagate variable x as an alias.

Likewise, considering a variable of type other than an array,

possibly of arrow type:

(x : τ) ∈ Γ
isNotArray τ
A; γ0 ⊢compat τ

Γ;A; γ0 ⊢ x : τ & ∅

or a lambda abstraction:

Γ, x : τ ;A; ∅ ⊢ e : τ ′ & γ& δ

A; γ0 ⊢compat (x : τ)
γ&δ
−−→ τ ′

Γ;A; γ0 ⊢ λx : τ.e : (x : τ)
γ&δ
−−→ τ ′ & ∅

we have to check that the γ and δ on the arrow types

are compatible with the input effect, in order to rule out

closures containing variables that have been previously used

for writing.

The rule for fix simply checks that the body of fix, f , has

the same arrow type as its annotated binder x.

τ = (y : τ1)
γ&δ
−−→ τ2

Γ, x : τ ;A; γ0 ⊢ f : τ & ∅

Γ;A; γ0 ⊢ fix x : τ.f : τ & ∅

Finally, the typing for boolean and numerical constants

is standard. Fig. 4 presents the compatibility and well-

formedness judgments mentioned in this section.

IV. RELATED WORK

Several type-based solutions to the destructive update prob-

lem for functional languages have been proposed. In some of

them, as in our work, the language uses “functional” arrays and

the goal is to identify updates that can be done destructively,

to enable compiler optimizations. The lazy purely functional

language Clean [13] employs uniqueness typing in order to

add side effects without sacrificing referential transparency

[1]; a simplified version of uniqueness typing has also been

presented [3]. Clean’s type system works by assigning types

containing uniqueness information to expressions. Typecheck-

ing takes into account annotations assigned to variables by a

sharing analysis, which indicates whether a variable has been

used only once within its scope or more than once. Related

to uniqueness types is also the work of Harrington [8], and

Hage et al. [7], [10]. The use of uniqueness types instead of

monadic arrays in languages like Haskell is also advocated by

Diviánszky [5].

Type-based approaches for functional arrays that are more

directly related to the classic theory of linearity have also

been proposed. Guzmán and Hudak [6] present a type and

effect system similar to ours for a non-strict language, which

is based on calculating “liabilities”, i.e., mutability, shareness,

and linearity attributes for each variable. Their system also

cannot handle “unnamed” structures (such as the ones created

by ML’s ref constructor) and for this reason they apply

several syntactic restrictions (which we avoid by using a lin-

earized language). They assume some strictness analysis and

disallow higher-order arguments to strict function application.

Contrary to our work, arrays of functional values are allowed.

Also, marginally related to our work is Tov and Pucella’s

programmer-friendly capability-based type system with affine

types [17].

In another family of strongly typed functional languages, ar-

rays are used in the “imperative” style. Then, in languages de-

rived from ML, some of the language’s purity is sacrificed for

improved efficiency and the researchers’ goal is to minimize

the cost of impurity [11], [9], [16]. An interesting solution is

the use of monadic computations in Haskell [18], which save

purity and referential transparency by defining a “language

inside the language” for performing impure operations.
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A; γ ⊢compat δ

A; γ ⊢compat ∅

x 6∈ WA(γ)
A; γ ⊢compat δ

A; γ ⊢compat δ, x

A; γ ⊢compat τ

A; γ ⊢compat τg

A; γ ⊢compat Array τg

A; γ ⊢compat τ
A; γ ⊢compat τ

′

A; γ ⊢compat δ
′

A; γ ⊢compat γ
′

A; γ ⊢compat (x : τ)
γ′

&δ′

−−−→ τ ′

A; γ ⊢compat γ
′

A; γ ⊢compat {x | ∃q : (x :q) ∈ ξ}

A; γ ⊢compat 〈ξ, κ〉

aliasesA x ≡ {z | y ∈ (A(x), x) ∧ (A ⊢ areAlias y z)}
WA(〈ξ, κ〉) ≡

⋃

{aliasesA x | (x :W) ∈ ξ}

A ⊢wf τ

A ⊢wf τg

A ⊢wf Array τg

A ⊢wf τ
A ⊢wf τ ′

A ⊢wf γ
A; γ ⊢compat δ

A ⊢wf ((x : τ)
γ&δ
−−→ τ ′)

A ⊢wf γ

A ⊢wf κ

A ⊢wf 〈ξ, κ〉

A ⊢wf κ

∀ x .∀ y .(x<y) ∈ κ ⇒ ¬(A ⊢ areAlias x y)

A ⊢wf κ

A ⊢ areAlias x y

(A(x1), x1) ∩ (A(x2), x2) 6= ∅

A ⊢ areAlias x1 x2

Fig. 4. Compatibility and well-formedness judgments.

On the other hand, several proposed solutions to the same

problem are based not on a type system but on static analysis.

Sastry et al. [14] present a static analysis approach for first-

order linearized strict languages with flat arrays, based on

abstract interpretation. Liveness analysis determines which

updates can be done destructively, using reference counts for

abstract locations. Based on this work, Wand and Clinger [19]

present a compiler optimization for destructive array updates,

focusing on a first-order strict functional language with flat

arrays; their approach is based on interprocedural aliasing and

liveness analysis, using set constraints. Dimoulas and Wand

extend this to an untyped higher-order language [4]. A similar

approach is followed by Shankar [15].

V. CONCLUDING REMARKS

We have presented a type and effect system for a purely

functional linearized language that implements array updates

destructively. We expect this type system to play an important

role in the optimizer of a purely functional language with

arrays, deciding whether an array update can be performed

destructively. In case it cannot, the update will have to be

implemented in a slower way. We have developed a prototyp-

ical compiler and type checker for this language.1 As future

1Available from http://www.softlab.ntua.gr/∼gkorf/src/puredest.tar.gz.

work, we plan to extend this prototype implementation to a

fuller functional language, such as ML and to eliminate the

existing restrictions (e.g., the lack of support for aggregate data

structures, such as tuples, and for arrays of non-ground types).

Moving to a full programming language will also require

a type inference algorithm that is aware of our effects, as

well as effect polymorphism. A different line of research is

to investigate how this technique works with lazy functional

languages, such as Haskell. Also, we are working on a formal

proof of type safety.
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