
Implementation of Movie-based Matrix Algorithms

on OpenMP Platform

Dmitry Vazhenin

Graduate School Department of Information Systems

University of Aizu

Tsuruga, Ikki-machi, Aizu-Wakamatsu, Japan

Email: d8052102@u-aizu.ac.jp

Alexander Vazhenin

Graduate School Department of Information Systems

University of Aizu

Tsuruga, Ikki-machi, Aizu-Wakamatsu, Japan

Email: vazhenin@u-aizu.ac.jp

Abstract—The convenience and programmer’s productivity are
the main point of visual programming systems and languages.
From the other side, the parallel programming is mainly focused
on reaching the high performance by optimization of executable
code. The Movie-based Programming is based not only on

the introduction of special symbols and images with semantic
support, but also on a series of images that can present dynamical
features of algorithms. The presented paper describes a technique
of OpenMP parallelization of Movie-based algorithms in order
to obtain the suitable program performance. The results of nu-
merical experiments are also presented showing applicability of
the proposed technique including implementation, code validity
checking and performance testing.

Index Terms—Visual Programming, Movie-based program-
ming, Matrix Computing, Parallel Programming, OpenMP Plat-
form.

I. INTRODUCTION

O
RIGINALLY, the Visual Programming Languages (VPL)

are oriented to increase mainly the programmer’s pro-

ductivity by operating with visual expressions, direct manip-

ulating visual information as well as supporting visual inter-

actions. The most of modern applications of this kind include

a big variety of attractive multimedia functions with icons,

pictures, animations, sound and other multimedia components

allowing reliable understanding as well as effective dialogue

with the complex objects. Visual programming languages and

tools may be classified according to the type and extent

of visual expression used, into icon-based languages, form-

based languages and diagram languages as shown in reviews

[1], [2]. They provide graphical or iconic elements which can

be manipulated by the user in an interactive way according to

some specific spatial grammar for program.

Usually, the parallel programming and algorithm design

are focused on reaching the high performance by optimiza-

tion of executable code as shown, for example, in [3]-[4].

This may contradict with the VPLs in which convenience

and programmer’s produtivity are the main point of system

requirements. For example, a graphical tooltkit is described

in [5] consisting of exploratory tools and estimation tools

which allow the programmer to navigate through complex

distributions and to obtain graphical ratings with respect to

load distribution and communication. The toolkit has been

implemented in a mapping design and visualization tool which

is coupled with a compilation system for the HPF [6] prede-

cessor Vienna Fortran. Since this language covers a superset

of HPFs facilities, the tool may also be used for visualization

of HPF data structures. The GASPARD (Graphical Array

Specification for PARallel and Distributed computing) is a

visual programming environment devoted to the development

of parallel applications [7]. Task and data parallelism paradigm

are mixed in GASPARD to achieve a simple programming

interface based on the printed circuit metaphor.

The Movie-based Programming is our approach for

promoting high-level language constructs introducting not

only special symbols and images with semantic support, but

also on a series of images that can present dynamical features

of algorithms. The usage of this approach for numerical

solution of some linear algebra problems allows to generate

automatically rather effective sequential executable C-

code [8]-[10]. OpenMP, a portable programming interface for

shared memory parallel computers, was adopted as an informal

standard in 1997 by computer scientists who wanted a unified

model on which to base programs for shared memory systems

[11]. The usage of OpenMP offers a comprehensive introduc-

tion to parallel programming concepts. The goal of this work

is to develop a technique of OpenMP parallelization of Movie-

based algorithms in order to obtain their high performance.

The rest of the paper is organized as follows. In Section 2,

we discuss a concept of the Movie-based Programming includ-

ing component description and definitions. The third section

describes code generation process and adaptaion it to the

OpenMP environment. In Section 4, demonstrates the least-

squares polynomial curve fitting as an example of the usage

of our approach. The last section contains conclusion.

II. MOVIE-BASED COMPONENTS AND DEFINITIONS

The Movie-based representation of computational methods

and algorithms is based on a correspondence between algo-

rithmic movie frames and problem solution steps. Accordingly,

each frame should visualize/animate a corresponding step of a

program/algorithm execution. Within the frame, structures are

shown as a statical images representing parameterized sets of

nodes which can be connected by links in 4D space-time. The

structure is any geometrical construction in a 3D space. Let us

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 491–494

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 491



consider the programming process as a specification of the fol-

lowing statements: WHEN-statement, WHERE-statement and

WHAT-statement.

WHEN-statement. As was mentioned above, a frame is

an image representing dynamical features of an algorithm at a

particular time step. So, sequences of frames are observable as

an animation and can be composed and visually debugged. A

computational step is visualized as a combination of visual

symbols within a frame. A set of frames joined into an

animated sequence – i.e. a visualization of a computation on

a structure according to the traversal schemes and the com-

putational formulas for the frame – is called an “algorithmic

film” or just “film” that is a combination of S as a collection

of spatial structures, D as a set of variable declarations, M,

a collection of metaframes.

A metaframe is a special object representing a set of rules

and parameters which are meant to specify how frames should

be produced (visualized) in a film, and, how they should be

implemented in an executable program. The two main types

of metaframes, single and episode, are used to specify single

or multiple algorithmic steps respectively. Any metaframe is

a combination of T as a set of traversal schemes for node

activation on structures in S; C as a set of control-flow

formulas exploited in the frame-generation process, and F as

a set of computational formulas to be performed on nodes

affected by schemes in T ;

WHERE-statement. Rather often, the data structures

in applications can be regular ordered sets of elements

presented as 1D, 2D or 3D structures where structure nodes

contain operable objects. So, sets of elements involved in

computations can be related to the sub-domain nodes of these

structures. Any structure has the attributes shown in (Figure 1)

including Name, Dimension, Parameters to define structure

sizes (N ,M for rows and columns respectively), Structure

Nodes as well as a set of Structure Variables (Ã) declared

to store instances of data in nodes, a set of sub-domain

variables (R̃) and domain variables (R∆). It includes also

a set of Control Lines which are used to refer to spatial

placements and domains.

A sub-domain is a set of nodes which coordinates are

satisfying to a system of constraints Ω = {(i, j)|H1 ≤ i <

H2 ∧ V1 ≤ j < V2 ∧ P1(i, j) ∧ P2(i, j) ∧ . . . ∧ Pn(i, j)},
where (i, j) - coordinates of nodes, H1,H2,V1,V2 - positions

of appropriate control lines or structure bounds and predicates

Pk(i, j) - special conditions (they are used to specify the sub-

domain shape). Accordingly, a domain∆ = Ω1

⋃
Ω2 . . .

⋃
Ωn

can also be defined as a composition of sub-domains Ωi.

Any domain needs to have a special attribute to be visually

distinguishable from other domains. This attribute marks all

domain elements by color, shape, size, etc. Usually, we are

using a color attribute that allows the user to operate with

parametric relation-based specification.

WHAT-statement. All frame attributes can change their

parameters by assigment operations on them. To specify these

changes, the user should assign operators on a metaframe at-

tributes that have to be implemented during frame processing.

Matrix (N=9,M=9): A

I1

J1

Structure name (size): variables

domaindomainSub-domain
(rectangular shape)

N

M
0,0

control line

control line

Sub-domain
(band shape)

node

bounds

Fig. 1. Attributes and features of matrix structure and its sub-domains.

We distinguish two types of these operators: 1) Computational

formulas to specify operations on node domains, 2) Control-

flow formulas to define frame transitions (control line move-

ments and episode conditions).

III. MP-TEMPLATES AND CODE GENERATION

As was shown in previous section, a domain ∆ consists

of elementary traversal schemes that parametrically enumerate

elements arranged in a particular shape (dot, row, column,

rectangle, triangle, band, etc). These schemes are called

Movie/Program template or MP-templates each of which is

a set of structure nodes which coordinates are satisfying to a

system of constraints ∆, and considered as a complete subpart

of MP-program if it has C-formula attached. C-formula is

defined as a subprogram containing a sequence of arithmetical

and/or logical expressions.

By using appropriate types of metaframes, domain configu-

rations and corresponding formulas, it is possible to specify an

algorithm visually on a defined structure. Such an algorithm

can be debugged on a structure of a small size appropriate for

understanding algorithmic steps; however, the resulting code

will be operable on a structure with a potentially unlimited size

defined by corresponding parameters. The code generation is

based on special template code snippets performing scanning

steps on predefined elementary sub-domains: row, column,

diagonal, triangle, etc, which are combined into scanning

templates of an arbitrary complex domain. These template

programs are used both 1) for visual demonstration of effected

structure nodes within domains on a movie frame, and 2) for

computation by applying formulas to appropriate elements.

The generation of executable code is realized using relation-

based parameterized specifications of metaframes with do-

mains, control lines and formulas as well as embedded trans-

formation rules as shown in [10]. To obtain the parallel

executable code, a set of template samples in C language for

an OpenMP target platform was developed. This development

was realized by embedding OpenMP Directives into original

templates with authomatic substitution of the metaframe at-

tributes. As it is demonstrated below, this simple transforma-

tions allowed to obtain relatively effective parallel code.

492 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011



IV. IMPLEMENTATION ON OPENMP ENVIRONMENT

A. Movie-based Least-Squares Optimization Method

The Least-Squares Optimization method is a mathematical

procedure for finding the best-fitting polynomial curve f(x) =
a0 + a1x + a2x

2 + . . . + amxm along a given set of points

(x1, y2), (x2, y2) . . . (xn, yn) by minimizing the sum of the

squares of the differences between a curve and points. The

coefficients of a curve a0, a1, . . . , am are found by solving

the following SLAE A~x = ~b:

a0

n∑
i=1

1+a1

n∑
i=1

xi+...+am

n∑
i=1

xm

i
=

n∑
i=1

yi

a0

n∑
i=1

xi+a1

n∑
i=1

x2
i
+...+am

n∑
i=1

x
m+1

i
=

n∑
i=1

xiyi

. . .

a0

n∑
i=1

xm

i
+a1

n∑
i=1

x
m+1

i
+...+am

n∑
i=1

x2m
i

=
n∑

i=1

xm

i
yi

(1)

To generate the SLAE (1) it is necessary to calculate co-

efficients as sums that have arguments with degree parameter

related to the position of a corresponding sum operation. Fig. 2

demonstrates a part of this algorithm related to the matrix

builder. This episode is to fill up the matrix elements with the

corresponding numbers from the left part of the SLAE.

There are three 2D grid structures defined. Structures “vec-

tor1” and “vector2” have a colored domain with the single sub-

domain of row type defined to emphasize the first row which

corresponds to the x coordinate of all points. Matrix structure

“Matrix” has a colored domain with the single sub-domain of

the minor-diagonal type moving from the top-left corner to the

bottom-right corner. According to corresponding transitional

expressions this frame-to-frame movement is controlled by

two control lines attached: I1 and J1. This episode is continued

until I1 has reached the bottom border acoording to the

specified conditional expression (I1 < N ).

This specification allows the generation of executable source

code which is presented at the bottom of Fig. 2. It is possible to

see how the OpenMP operators are embedded into the C code

generated. The rest of the algorithm includes vector~b building

and SLAE solving metaframes which have been omitted due

to the space limitations.

B. Numerical Experiments

The first type of experiments were implemented in order

evaluate the quality of the generated source code text in

comparison with a sample solution taken from the tutorial [12]

by the automatic code validator “splint” [13]. The other ex-

periments evaluated the resulting code performance. The same

code from the previous test have been used as a sequential

sample to run on the single CPU. Then, OpenMP templates

have been used to generate parallel sample codes. Example

of results achieved in this experiment are demonstrated on

Figure 3 with a dataset for n=10,000,000.

The left-side graphs in each dataset shows dependence

between the time elapsed by each running code and the matrix

size m (1). The right-side graphs in each dataset show speedup

of parallel code in respect to the sequential one. Testing

platform: SMP server with four Intel Xeon 4-core X5550

2.67GHz (16 cores totally), with 12GB of memory, running

Ubuntu 10.04 x86 64 (server edition). The results demonstrate

that both generated sequential and parallel programs can reach

a suitable performance.

V. CONCLUSION

The Movie-based programming environment is presented

using a concept of metaframes controllable by a special

interface panels for specifying algorithmic movie-frames and

spawning the automatic code generation. This includes the

design of new visual symbols and the introduction of an

automatic template generation technique supporting compact

specification of computational expressions, and allowing an

essential advance of the library of templates oriented to specify

a variety of numerical matrix algorithms as well as parallel

programming platforms. Visual semantic and syntactic rules

have been presented defining domains with various shapes

on computational structures, and various operations on those

structures. The adaptation of a Movie-based program to par-

allel mode is implemented by modifying the shape-scanning

templates according to the OpenMP programming rules. This

simple modification allowed to generate a parallel code with

relatively good quality. Applicability of the technique and

environment has been demonstrated through the Least-squares

Curve Fitting Method including implementation, code validity

checking and performance testing.

REFERENCES

[1] M. Burnett, Visual Programming, Wiley Encyclopedia of Computer Sci-

ence and Engineering, John Wiley & Sons Inc., Hoboken, 1999.
[2] , Ph. T. Cox, Visual Programming Languages, Wiley Encyclopedia of

Computer Science and Engineering, John Wiley & Sons Inc., Hoboken,
2008.

[3] R. Rabenseifner, Optimization of collective reduction operations, LNCS,
Springer-Verlag, Vol. 3036, 2004, 1-9.

[4] J. Pjesivac-Grbovic, and T. Angskun, and G. Bosilca, and G. E. Fagg,
and E. Gabriel and J. Dongarra, Performance analysis of MPI collective
operations, Cluster Computing, Kluwer Acad. Publ., Vol. 10, No. 2,
2007, 168-179.

[5] S, Grabner, and R. Koppler and J. Volkert, Visualization of Distributed

Data Structures for HPF-like Languages, Technical Report, Johannes
Kepler University Linz, 2005.

[6] High Performance Fortran (HPF), http://www.netlib.org/hpf/.
[7] Fl. Devin, and P. Boulet, and J. L. Dekeyser and Ph. Marquet, ”GASPARD

- a Visual Parallel Programming Environment”, Proc. of the Int. Conf. on
Parallel Computing in Electrical Engineering (PARELEC’02), 2002,
145-150.

[8] D. Vazhenin, A. Vazhenin and N. Mirenkov, “Movie-based Multime-
dia Environment for Programming and Algorithms Design”, LNCS,
Springer-Verlag, Vol. 3333, No. 3, 2004, 533-541.

[9] D. Vazhenin, A. Vazhenin and N. Mirenkov, “Movie-based templates for
linear algebra problems”, Int. Jour. of Comp. Sci. and Network Security,
Vol. 7, No. 1, 2007, 378-385.

[10] D. Vazhenin, A. Vazhenin, “MP-templates Operating Toolkit in Movie-
based Programming”, Proc. of Japan-China Workshop on Frontier of
Computer Science and Technology, Nagasaki, Japan, 2008, 67-73.

[11] OpenMP: Simple, Portable, Scalable SMP Programming,
http://www.openmp.org.

[12] T. Veerarajan, and T. Ramachandran Numerical Methods: With Programs
In C, Tata McGraw-Hill, 2005.

[13] Splint: statical C code validator http://www.splint.org.

DMITRY VAZHENIN, ALEXANDER VAZHENIN: IMPLEMENTATION OF MOVIE-BASED MATRIX ALGORITHMS ON OPENMP PLATFORM 493



Fig. 2. Movie-based program of least-squares method and an excerpt of generated code

Fig. 3. Movie-based program of least-squares method and an excerpt of generated code

494 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011


