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Abstract—Optimal control problem for state-constrained
differential-algebraic (DAE) systems is considered. Such prob-
lems can be attacked by the multiple shooting approach well
suited to unstable and ill-conditioned dynamic systems. Accord-
ing to this approach the control interval is partitioned into
shorter intervals allowing the parallelization of computations
with the reliable using of DAE solvers. A new modified method
of this kind is proposed, which converts the partitioned problem
with mixed equality and inequality constraints into the purely
inequality constrained problem. An algorithm for obtaining a
feasible initial solution of the converted problem is described.
A feasible-SQP algorithm based on an active set strategy is
applied to the converted problem. It avoids the inconsistency
of the constraints of the QP subproblems (versus the infeasible
path SQP methods) and delivers a locally optimal solution of
the basic problem preserving all its constraints (including the
equality ones), which is of a high practical meaning. Some
further developments concerning the regularization of suboptimal
solutions for large-scale DAE optimal control problems and
multilevel versions of the method proposed are also discussed.
The theoretical considerations are illustrated by a numerical
example of optimization of a complex DAE chemical engineering
system.

I. INTRODUCTION

THE DEVELOPMENT of advanced technologies is often

connected with the design of complex systems described

by large-scale differential-algebraic equations (DAE) subject

to the control and state path constraints, and to the termi-

nal state constraints [3],[4]. Many of such systems possess

unstable dynamic modes and high sensitivity to parameter

changes. This may lead to unbounded state profiles and to

ill-conditioning of the Jacobian and the Hessian matrices if

the single shooting method is used to optimize the system

performance. This also complicates the optimization of dy-

namic systems with boundary value conditions. The multiple

shooting (MS) method has been proposed to resolve the above

difficulties [11]. It discretizes the control interval into shorter

subintervals within which the dynamic model is integrated

independently and linked by the continuity constraints in the

discretized model. Such an approach is well suited to deal

with unstable and highly sensitive modes of nonlinear dynamic

systems. Moreover, it guarantees the full parallelization of the

data computations necessary for the application of advanced

second-order optimization methods such as the sequential

quadratic programming (SQP) method or the interior point

(IP) method [4]. Many further advantages of the MS method

concerning the exploitation of the problem sparse structure,

the computation of the state sensitivities by the specialized

algorithms, and the employment of the reduced or partially

reduced SQP algorithms are depicted in the literature [11].

However, the main elaborations on this subject are connected

with the iterative infeasible path approach, where all the

constraints may be violated on the current iteration, and

reached solely at the limit of the subsequence of convergent

iterations. This may complicate the SQP algorithm because

of the inconsistency of the constraints for the QP subprob-

lem, and the need of its regularization, for example, by the

homotopy approach [4]. Thus the current solution obtained

at the moderate computation time may be impractical for its

infeasibility.

In the present paper the feasible-SQP approach, known

in many variants as the nonlinear programming methods

guaranteeing the feasibility of the current solution at all the

optimization iterations [6],[10],[15], is developed as a method

specialized in the multiple shooting approach to the optimal

control of DAE systems [5]. One of the main difficulties in

the use of the feasible-SQP algorithms is the requirement of

the knowledge of an initial feasible solution satisfying all

the constraints. The problem of the determination of such

an solution may be as difficult as the basic optimization

problem. We show, however, that the exploitation of the

specific structure of the MS method enables us to conveniently

resolve this problem. To this end we apply the c-conversion

[10] of the partitioned shooting problem with mixed equality

and inequality constraints into the purely inequality problem.

We describe an algorithm, which determines a feasible initial

solution of the converted problem exploiting the results of

the consecutive shots. Next we present a modified algorithm

for the choice of the conversion coefficient, which employs

the MATLAB R2010b feasible-SQP active set procedure.

It avoids the inconsistency of the constraints of the QP

subproblems and allows the full parallelization of the opti-

mization computations. We verify the algorithms developed

by a numerical example of optimization of a complex DAE

chemical engineering system. Finally we discuss the regular-

ization of suboptimal solutions for large-scale DAE optimal

control problems with the help of bound constrained Newton
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method [2], [14], and multilevel versions of the method

proposed [7].

Notation: Ln
∞(t0, tf ), W 1,n

∞ (t0, tf ) and PCn(t0, tf ) the

spaces of n-dimensional essentially bounded, essentially

bounded derivative, and piecewise continuous functions de-

fined on the interval [t0, tf ], respectively; Sn
r (t0, tf ) the space

of n-dimensional r-step functions defined on the interval

[t0, tf ], nx the dimension of a vector x, |x|∞
.
= max{|xn| :

n = 1, 2, ..., nx}.

II. OPTIMAL CONTROL PROBLEM FOR DAE SYSTEMS

Consider the following optimal control problem for DAE

systems (the D problem): minimize the objective function

J (x, z, u, p)
.
= h(x(1), z(1), p) (1)

subject to a system of differential-algebraic equations of index

one

ẋ(t) = f(x(t), z(t), u(t), p, t), t ∈ [0, 1], (2)

0 = g(x(t), z(t), u(t), p, t), t ∈ [0, 1], (3)

to the terminal constraint

~(x(1), z(1), p) = 0, (4)

to the bound constraints

x(t) ∈ X, z(t) ∈ Z, u(t) ∈ U, t ∈ [0, 1], p ∈ P, (5)

and to the physical realizability condition for the control

u ∈ PCnu(0, 1), (6)

where x ∈ W 1,nx
∞ (0, 1) is the differential state trajectory of

the DAE system, z ∈ Lnz
∞ (0, 1) is its algebraic state trajectory,

u ∈ Lnu
∞ (0, 1) is its control, p ∈ Rnp is its global parameter,

and X
.
= [x−, x+], Z

.
= [z−, z+], U

.
= [u−, u+], and P

.
=

[p−, p+] are parallelepipeds with the bounds x± ∈ Rnx , z± ∈
Rnz , u± ∈ Rnu and p± ∈ Rnp , and the functions

h : Rnx ×Rnz ×Rnp → R, ~ : Rnx ×Rnz ×Rnp → Rn~ ,

f : Rnx ×Rnz ×Rnu ×Rp ×R → Rnx ,

g : Rnx ×Rnz ×Rnu ×Rnp ×R → Rnz

are twice continuously differentiable in all their arguments.

We normalize the nonunit control interval [0, τ ], τ 6= 1 by

the time scaling t := t/τ . We include the variable process du-

ration τ into the global parameter p. The latter parameter may

also concern the design variables (such as the level of the fixed

bed catalyst or the reactor volume) and the slack variables

converting the terminal inequality constraints into the equality

ones. We reduce the general control and state inequality path

constraints q(x(t), z(t), u(t), t) ≤ 0 to the equality form (3)

with the help of the slack control ũ(t) ≥ 0 satisfying the

condition q(x(t), z(t), u(t), t) + ũ(t) = 0, t ∈ [0, τ ]. Thus

the formulation (1)-(6) encompasses a wide class of optimal

control problems for DAE systems.

III. MODIFIED MULTIPOINT SHOOTING FEASIBLE-SQP

METHOD

We use the discretized time tk = k/l (k = 0, 1, ..., l).
We connect with the time interval [tk, tk+1] its shooting

initial differential state xk ∈ Rnx , its shooting initial al-

gebraic state zk ∈ Rnz , its shooting control parameters

uk
.
= (uT

k1, u
T
k2, ..., u

T
krk

)T ∈ Rnuk (nuk

.
= nurk, rl =

0, ul1
.
= ul−1,rl−1

) , its shooting global parameter pk ∈
Rnp , and its shooting solution wk

.
= (xT

k , z
T
k , u

T
k , p

T
k )

T ∈
Rwk (nwk

.
= nx + nz + nuk

+ np), its differential state tra-

jectory x̃k ∈ W 1,nx
∞ (tk, tk+1) determined by wk, its algebraic

state trajectory z̃k ∈ Lnz
∞ (tk, tk+1) determined by wk, and its

control ũk ∈ Snu
rk

(tk, tk+1) determined by uk. We reformulate

the D problem as the multipoint shooting problem for DAE

systems (the MSD problem): minimize the objective function

J(w)
.
= h(xl, zl, p l) (7)

subject to the continuity conditions for the differential state

trajectory and the discretized parameters

x̃k(tk+1, wk)−xk+1 = 0, pk−pk+1 = 0 (k = 0, 1, ..., l−1),
(8)

to the consistency conditions for the algebraic states

g(xk, zk, uk1, pk, tk) = 0 (k = 0, 1, ..., l), (9)

to the terminal equality constraints

~(xl, zl, p l) = 0, (10)

and to the bound constraints

xk ∈ X, zk ∈ Z, uk ∈ Uk, pk ∈ P (k = 0, 1, ..., l), (11)

where w
.
= (wT

1 , w
T
2 , ..., w

T
l )

T ∈ Rnw (nw
.
= nw1

+ nw2
+

... + nwl
) is the solution of the MSD problem, and Uk

.
=

[uk−, uk+], uk±
.
= (uT

±, u
T
±, ..., u

T
±︸ ︷︷ ︸

rk times

)T .

Let Xε
.
= [ε + x−,−ε + x+] (ε ∈ Rnx

+ ) and

Zǫ
.
= [ǫ + z−,−ǫ + z+] (ǫ ∈ Rnz

+ ) be the restricted

bound sets for the differential and algebraic states,

and let εn, ǫn, x̃kn, xkn, pkn, xn−, xn+, zn−, zn+, gn
and ~n be the nth coordinates of the quantities

ε, ǫ, x̃k, xk, pk, x−, x+, z−, z+, g and ~.

Algorithm 1: The conversion of the MSD problem (7)-(11)

to the parametric MSDc problem with a known feasible initial

solution.

Step 0: Choose ε = 0.05(x+ − x−), ǫ = 0.05(z+ −
z−), x̆0 ∈ Xε, z̆0 ∈ Zǫ, ŭ0 ∈ U0 and p̆0 ∈ P , set w̆0

.
=

(x̆T
0 , z̆

T
0 , ŭ

T
0 , p̆

T
0 )

T and k = 0.

Step 1: If k = l go to Step 4. Else determine the differential

and algebraic state trajectories x̃k and z̃k by the shot in the

kth time interval.

Step 2: Using the results of the current shot determine

• the consecutive shooting differential state x̆k+1,n = εn +
xn− if x̃kn(tk+1) ≤ εn + xn−, and x̆k+1,n = x̃kn(tk+1) if

x̃kn(tk+1) ∈ (εn+xn−,−εn+xn+), and x̆k+1,n = −εn+xn+

if x̃kn(tk+1) ≥ −εn + xn+ (n = 1, 2, ..., nx),

2
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• the consecutive shooting algebraic state z̆k+1,n = ǫn+zn−
if z̃kn(tk+1) ≤ εn + zn−, and z̆k+1,n = z̃kn(tk+1) if

z̃kn(tk+1) ∈ (εn+zn−,−εn+zn+), and z̆k+1,n = −εn+zn+
if z̃kn(tk+1) ≥ −εn + zn+ (n = 1, 2, ..., nz), and

choose the consecutive shooting control ŭk+1 ∈ Uk+1, and

the consecutive shooting parameter p̆k+1 = p̆k, and denote

the solution found for the consecutive interval as w̆k+1

.
=

(x̆T
k+1

, z̆Tk+1
, ŭT

k+1
, p̆Tk+1

)T .

Step 3: Determine

• the defect functions for the shooting differential states

G1kn(w)
.
= x̃kn(tk+1) − xk+1,n if x̃kn(tk+1) ≤ εn + xn−

or x̃kn(tk+1) ∈ (εn + xn−,−εn + xn+), and G1kn(w)
.
=

−x̃kn(tk+1) + xk+1,n if x̃kn(tk+1) ≥ −εn + xn+ (n =
1, 2, ..., nx),
• the defect functions for the shooting algebraic states

G2kn(w)
.
= gn(xk, zk, uk1, pk, tk) if gn(xk, zk, uk1, pk, tk) ≤

0, and G2kn(w)
.
= −gn(xk, zk, uk1, pk, tk) in the opposite

case (n = 1, 2, ..., nz),
• the defect functions for the shooting parameter

G3kn(w)
.
= pk − pk+1. Set k = k + 1.

Step 4: Determine the defect functions for the termi-

nal constraints Gln(w)
.
= ~n(xl, zl, pl) if ~n(xl, zl, pl) ≤

0, and Gln(wl)
.
= −~n(xl, zl, pl) in the opposite case

(n = 1, 2, ..., n~). Save the solution found as w̆
.
=

(w̆T
1 , w̆

T
2 , ..., w̆

T
l )

T .
Step 5: Set up the functions required for the formulation

of the MSDc problem:

G1k(w)
.
= (G1kn(w))

nx

n=1, G2k(w)
.
= (G2kn(w))

nz

n=1,

G3k(w)
.
= (G3kn(w))

np

n=1,

Gk(w)
.
= (GT

1k(w), G
T
2k(w), G

T
3k(w))

T (k = 0, 1, ..., l − 1),

Gl(w)
.
= (Gln(w))

n~

n=1,

Gl+1+k(w)
.
= (−wT

k + wT
k−, w

T
k − wT

k+)
T ,

wk±
.
= (xT

±, z
T
±, u

T
k±, p

T
±)

T (k = 0, 1, .., l).

Step 6: State the MSDc: minimize the objective function

Jc(w)
.
= J(w)− c

l∑

k=0

Gk(wk) (12)

subject to the constraints

Gk(w) ≤ 0 (k = 0, 1, ..., 2l + 1). (13)

where c ∈ R+ is the cost coefficient of the problem conver-

sion.

If the coefficient c is sufficiently large the MSD prob-

lem and the MSDc problem have the same KKT points

[12],[8],[10],[15]. Algorithm 1 yields by its formulation a

feasible solution w̆ of the MSDc problem, which can be further

assumed as an initial solution w0 .
= w̆ for efficient feasible-

SQP type algorithms solving this problem. The issues concern-

ing a suitable choice of the coefficient c, and the verification

of the feasibility of the MSD problem (and eventually of the

D problem) by an optimal solution of the MSDc problem are

taken up by

Algorithm 2: The search for a locally optimal solution w∗

of the MSD problem and for a locally suboptimal solution

(x∗, z∗, u∗, p∗) of the D problem by the multipoint shooting

feasible-SQP (MSFSQP) method.

Step 0: Input the initial solution w0 found by Algorithm

1, a symmetric positive definite matrix H ∈ Rnw×nw , and

positive constants c, c̄ and ̺ > 1.

Step 1: Use the Matlab R2010b feasible-SQP active set

procedure to find a locally optimal solution w(c) of the MSDc

problem, and the Lagrange multipliers λk(c) associated with

the constraints Gk(w) (k = 0, 1, ..., l).
Step 2: If c < λ+(c)

.
= max{|λk(c)|∞, k = 0, 1, ..., l} set

c := λ+(c) + c̄ and return to Step 1.

Step 3: If
∑l

k=0
|Gk(w(c))|∞ = 0 set w∗ = w(c). Else set

c := c+ c̄.
Step 4: If the bound constraints (5) for the differential

states x̃k(t, w
∗) and for the algebraic states z̃k(t, w

∗), t ∈
[tk, tk+1], (k = 0, 1, ..., l−1) are satisfied determine a locally

suboptimal feasible solution of the D problem as x∗(t) =
x̃k(t, w

∗), z∗(t) = z̃k(t, w
∗), u∗(t) = ũk(t, w

∗), p∗(t) =
p̃k(t, w

∗), t ∈ [tk, tk+1], (k = 0, 1, ..., l−1). Else set ε := ̺ε
and ǫ := ̺ǫ and go to Step 0.

The algorithm exploits the equivalence of the KKT points of

the MSDc and MSD problems for sufficiently large c, which

should exceed the maximum modulus of the Lagrange mul-

tipliers for the converted constraints Gk(w) (k = 0, 1, ..., l)
(the c-condition). If this condition is violated the coefficient c
is increased (Step 2), and the optimization process is repeated.

Else the fulfilling of the equality constraints of the MSD

problem is verified. It can be violated even if the c-condition is

satisfied for numerical errors propagation in large-scale DAE

systems. Then some further increase of the coefficient c may

be helpful (Step 3). The violation of the bound constraints

for the differential and algebraic states can be removed by the

manipulation of the parameters ε and ǫ in view of the calmness

of the DAE systems under discussion [13]. This leads to a

locally suboptimal feasible solution of the basic D problem

(Step 4).

The regularization of the solution w(c) satisfying insuffi-

ciently accurately the equality constraints of the D problem

may concern the application of the bound-constrained trust-

region and inexact Newton method. In particular the consistent

algebraic states for large-scale DAE systems can be found with

the help of the superlinearly convergent trust-region approach

[1],[2]: minimize in δzk the quadratic model of the consistency

equations

1

2
|g(xk, zk, uk1, pk, tk) + g′zk(xk, zk, uk1, pk, tk)δzk|

2

subject to the trust-region constraints

|Dδzk| ≤ ∆,

where D is the scaling matrix and ∆ is the trust-region matrix.

This approach may be yet enhanced by the bound-constrained

3
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inexact Newton method [14] applied to the consistency equa-

tions (9) in zk

z+k = zk + αδzk, z+k ∈ Zk,

|g(xk, z
+

k , uk1, pk, tk) + g′zk(xk, zk, uk1, pk, tk)δzk|

< β|g(xk, zk, uk1, pk, tk)|,

where α, β ∈ (0, 1).
The feasibility of the solution obtained may facilitate the

incorporation of the fixed dimension l multiple shooting

method into the variable dimension l multiple shooting method

exploiting the multilevel feasible approach based on the con-

vergence of point-to-set mappings [7]. The imposition of the

lower dimension variations of the shooting controls on the

fine dimension shooting solution does not destroy the problem

feasibility because the zero solution is feasible in the lower

dimension problem.

A wide class of complex DAE systems is encountered in

chemical engineering. This concerns, for example, processes

of nonlinear chemical reactions performed in tank reactors or

multizone reactors, and processes of heat exchange, distillation

and separation [4]. A high practical meaning has the optimiza-

tion of integrated processes of such a kind, which leads to

the problems with complex DAE models requireing advanced

optimization methods. The application of the above described

algorithms to optimal control of some chemical engineering

systems is proposed with the use of the Matlab toolbox of the

parallel computations.

IV. NUMERICAL EXAMPLES

The new method, which we presented above, now we would

like to use to solve a certain D problem [9]. Before we solve

this task with the presented method and give results, we are

going to introduce this problem and its details. Then we are

going to be able to better understand the method presented in

this paper.

Y. J. Huang et all ([9]) described a model decomposi-

tion based method for solving general dynamic optimization

problems. The authors gave in their paper three interesting

examples from chemical engineering. There were catalyst mix-

ing problem, fed-batch penicillin fermentation and pressure-

constrained batch reactor. From our point of view the most

interesting is the 3rd problem.

In the reactor three reactions take place. A → 2B, with

reaction constant k1. There is a reverse reaction 2B → A, with

reaction constant k2. The last reaction is A + B → D, with

reaction constant k3. Description of the dynamic optimization

problem is as follows

minFJ = CD(tf ),

subject to

ĊA = −k1CA + k2CBCB +
F

V
− k3CACB ,

ĊB = k1CA − k2CBCB − k3CACB ,

ĊD = k3CACB .

There are the algebraic and state constraints too

N = V (CA + CB + CD),

PV = NRT,

P ≤ 340000[Pa],

0 ≤ F ≤ 8.5[
mol

h
],

together with initial conditions

[CA(0), CB(0), CD(0)] = [100, 0, 0].

We know, that tf = 2 hours.

To complete the description, there are values of another

magnitudes used in equations: k1 = 0.8[ 1
h
], k2 = 0.02[ m3

mol·h
],

k3 = [ m3

mol·h
], the volume V = 1.0[m3] and the temperature

T = 400[K].
For purposes of our presentation, we can rewrite the con-

straints equations. Because

N = V (CA + CB + CD)

and

PV = NRT,

so we have two eguations with two unknowns N and P . Then

we can write

PV = V (CA + CB + CD)RT.

Now, because V = 1 ⇒ V 6= 0, in the next step we can state,

that

P = (CA + CB + CD)RT.

We know, that the gas constant equals to R =
8.314472[ J

mol·K
] and in this situation the temperature is con-

stant too, so

P ≤ 340000 ⇒ (CA + CB + CD)RT ≤ 340000.

The last step is to compute the constraint explicite

(CA+CB+CD) ≤
340000

RT
⇒ (CA+CB+CD) ≤ 102.2314[

mol

m3
].

We can check our calculations

[
Pa

J
mol·K

·K
] = [

Pa ·mol ·K

J ·K
] = [

Pa ·mol

J
] =

= [
N
m2 ·mol
kg·m2

s2

] = [
kg·m
s2·m2 ·mol

kg·m2

s2

] = [
kg ·mol · s2

s2 ·m · kg ·m2
] = [

mol

m3
].

Now this problem has another constraints, which have the

same meaning: one state constraint and one constrained control

variable.

To better understand this problem, we made some easy

simulations for various constant control variable with using

single shooting method. All simulation were made in Matlab

R2010b, with settings RelTol = 10−7, AbsTol = 10−7 for

DAE solver ode15s, TolFun = 10−7, TolX = 10−7 and

4
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Table I
RESULTS FOR SINGLE SHOOTING METHOD

F CA(tf ) CB(tf ) CD(tf )
∑

i=A,B,D Ci(tf )

8.00 50.66 41.60 11.87 104.13
6.93 49.35 41.21 11.64 102.20
6.00 48.23 40.88 11.45 100.56
5.00 47.01 40.51 11.24 98.76
4.00 45.80 40.15 11.03 96.98
0.00 40.93 38.66 10.21 89.80

fin−diff−grads as Hessian update method for SQP active

set method optimization algorithm.

In the Table I, where the solutions are given, we observe

that for the problem stated in paper [9], the solution is F = 0.

When we would like to compare our results with results in

[9], we have to change the objective function

maxFJ = CD(tf ),

subject to the new constraints, which make in this situation

some difficulties.

Now we want to present our results and some steps, which

the algorithm made. We performed the study in this way. We

divided the time domain in 2, 4 and 10 parts. It means, that we

have to do 2, 4 and 10 shots, respectively. In every part we can

use one constant control function. Then we solved the same

problem with only 2 shots, but there were 2 and 5 piecewise

control functions in each time interval. Thus we considered 5

ways and in this situation we can compare methods with less

number of shots, but the same number of control functions,

4 and 10 , respectively. In examples we divided time domain

into equal parts.

A. 2 shots and 1 control function in each interval

We have two control functions u0 and u1 for first and second

time interval, respectively. Because the control functions are

constant, at the beginning of each interval they have to satisfy

the constraints

0 ≤ u0 ≤ 8.5

and

0 ≤ u1 ≤ 8.5.

State variables at the beginning of the second interval should

satisfy the inequalities

0 ≤ CA(0.5tf ) ≤ 100,

0 ≤ CB(0.5tf ) ≤ 70,

0 ≤ CD(0.5tf ) ≤ 20.

The above constraints are not very restrictive. They are

useful for shooting method, because now we can look for

solutions in a reasonable range. Next constraint is more

restrictive

CA(0.5tf ) + CB(0.5tf ) + CD(0.5tf ) ≤ 102.2314.

We have to converse this problem to the c-problem. The first

step is to form vectors, which would be able to describe the

Table II
SUCCESSIVE ITERATIONS FOR PROBLEM WITH 2 SHOTS AND 1 CONTROL

FUNCTION IN EACH INTERVAL

iter u0 CA0.5tf
CB0.5tf

CD0.5tf
u1 c-prob

0 8.5000 59.0719 38.8453 5.2914 8.5000 8.2166
1 8.5000 58.1862 37.9737 4.7914 8.0594 7.6820
2 6.8264 57.3532 37.1814 5.0910 6.7671 9.2803
3 5.9685 57.1764 37.0381 6.3927 6.2319 9.8480
4 5.7684 57.3315 37.2011 6.4248 6.1903 9.8829
5 5.6935 57.2165 37.7093 6.3056 6.2560 10.9499
6 5.9701 57.2828 38.1142 6.2759 6.3548 11.0845
7 6.1807 57.2784 38.4279 6.1808 6.4828 11.3588
8 6.1790 57.2763 38.4529 6.1687 6.4910 11.3766
9 6.2562 57.3946 38.4548 6.1249 6.5671 11.4592
10 6.2815 57.4468 38.4576 6.0859 6.6125 11.4756
11 6.2819 57.4646 38.4571 6.0607 6.6228 11.4872
12 6.3616 57.5148 38.4753 5.9604 6.6138 11.5295
13 6.5238 57.6393 38.5097 5.7744 6.6390 11.5597
14 7.0229 58.0028 38.6019 5.2676 6.7087 11.6343
15 7.0690 58.0363 38.6104 5.2196 6.7166 11.6414
16 7.0697 58.0367 38.6105 5.2182 6.7175 11.6416
17 7.0698 58.0368 38.6105 5.2182 6.7175 11.6416
18 7.0698 58.0368 38.6105 5.2181 6.7176 11.6416
19 7.0698 58.0368 38.6105 5.2181 6.7176 11.6416
20 7.0698 58.0368 38.6105 5.2181 6.7176 11.6416
21 7.0698 58.0368 38.6105 5.2181 6.7176 11.6416
22 7.0698 58.0368 38.6105 5.2181 6.7176 11.6416
23 7.0698 58.0368 38.6105 5.2181 6.7176 11.6416

parts of the problem. So, this vector, which represents results

of one part, can have a form

wi = (initial values of state variables, control variable).
We know, that each interval has one control variable. Then

we can write

w0 = (CA(0), CB(0), CD(0), u0),

w1 = (CA(0.5tf ), CB(0.5tf ), CD(0.5tf ), u1).

Because we want to keep state constraints, we have to check,

if the state variable are near from bounds. If they are, we use

the procedure described in paper. As the result we have

w̌ =

(
100.0000 0 0 8.5000
59.0719 38.8453 5.2914 8.5000

)

Now we have to introduce defect functions. This is the

main idea. From vector w0 we know, that we start from the

point (CA(0), CB(0), CD(0)) together with control function

u0. At the end of the first interval the process finishes

with some results. Then the optimization algorithm should

choose the variables (CA(0.5tf ), CB(0.5tf ), CD(0.5tf )), that

the differences between results from the first interval and the

initial points for second interval are minimized. Together with

the final condition we have 4 constraints. Now we can start

the optimization process with 5 variables: 3 discretized state

variables (CA(0.5tf ), CB(0.5tf ), CD(0.5tf )), and 2 control

variables u0 and u1. Because this example was quite easy, we

can give a Table II with all iterations (c = 1).
The solution we can see on the Figure 1.

When c is too small, for example c = 0.1, then we can have

an unuseful solution (Figure 2).
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Figure 1. Problem with 2 shots and 1 control function in each interval.

Figure 2. Problem with 2 shots and 1 control function in each interval, when
c is too small.

B. 4 shoots and 1 control function in each interval

We start to construct vectors wi

w0 = (CA(0), CB(0), CD(0), u0),

w1 = (CA(0.25tf ), CB(0.25tf ), CD(0.25tf ), u1),

w2 = (CA(0.5tf ), CB(0.5tf ), CD(0.5tf ), u2),

w3 = (CA(0.75tf ), CB(0.75tf ), CD(0.75tf ), u3).

Now we have 9 discretized state variables and 4 control

functions. Together there are 13 variables with 3 constraints

CA(0.25tf ), CB(0.25tf ), CD(0.25tf ) ≤ 102.2314,

CA(0.5tf ), CB(0.5tf ), CD(0.5tf ) ≤ 102.2314,

CA(0.75tf ), CB(0.75tf ), CD(0.75tf ) ≤ 102.2314,

and 10 defect functions: 9 for discretized state variables and

one defect function for final state.

Then the algorithm has to formulate the c-problem with a

startpoint matrix

w̌ =




100.000 0 0 8.5000
71.8132 28.5364 1.9502 8.5000
59.0719 38.8453 5.2914 8.5000
53.8719 41.4803 8.6989 8.5000




Table III
RESULTS FOR PROBLEM WITH 4 SHOOTS AND 1 CONTROL FUNCTION IN

EACH INTERVAL

time state variables control
CA CB CD function

[0, 0.25tf ) 100 0 0 7.1969
[0.25tf , 0.5tf ) 71.2741 28.4493 1.9381 7.7283
[0.5tf , 0.75tf ) 58.3454 38.6533 5.2325 6.6451
[0.75tf , tf ) 52.5205 41.1556 8.5552 6.2900

Figure 3. Problem with 4 shots and 1 control function in each interval.

Table IV
PROBLEM WITH 10 SHOTS AND 1 CONTROL FUNCTION IN EACH INTERVAL

time state variables control
CA CB CD function

[0, 0.1tf ) 100 0 0 7.8360
[0.1tf , 0.2tf ) 86.5555 14.2030 0.4044 7.7366
[0.2tf , 0.3tf ) 75.7938 24.6084 1.3562 7.6587
[0.3tf , 0.4tf ) 67.8853 31.6167 2.5723 7.3356
[0.4tf , 0.5tf ) 62.2766 36.0457 3.8956 6.8303
[0.5tf , 0.6tf ) 58.2879 38.6949 5.2485 6.7313
[0.6tf , 0.7tf ) 55.4486 40.1879 6.5948 6.6217
[0.7tf , 0.8tf ) 53.3526 40.9592 7.9195 6.4818
[0.8tf , 0.9tf ) 51.7257 41.2896 9.2160 6.3075
[0.9tf , tf ) 50.3911 41.3540 10.4855 6.1464

As the results we have values of control variables and

discretized state variables (Table III ).
The results we can see on the Figure 3.

C. 10 shots and 1 control function in each interval

This problem is bigger than the previous. We have 37

variables: 3 · 9 discretized state variables and 10 control

variables. Because we have 27 discretized state variables, at

the moment we need 27 defect functions. Together with one

defect function for final state, we have to consider problem

with 28 defect functions.

As the results we have values of control variables and

discretized state variables (Table IV). There are results on the

Figure 4.

D. 2 shots and 2 control functions in each interval

We considered this situation, because it is similar to problem

with 1 shot and 4 control functions. In both situations control

functions contribute 4 degrees of freedom. Now each control

6
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Figure 4. Problem with 10 shots and 1 control function in each interval.

Figure 5. Problem with 2 shots and 2 control functions in each interval.

function consists of two steps, so vector, which represents a

solution of each part can have a form

wi = (initial values of state variables, control functions). In

particular, there are

w0 = (CA(0), CB(0), CD(0), u01, u02),

and

w1 = (CA(0.5tf ), CB(0.5tf ), CD(0.5tf ), u11, u12).

Together there are 3 discretized control variables and 2
control functions. Each control function has two parameters.

In all there are 7 variables and 4 defect functions: 3 for

discretized state variables and one for the final state.

Now we can repeat the Betts’ question: What Can Go

Wrong? [3]. The algorithm can influence the selection of

discretized state variables and control variables. But we not

can be sure, that in each interval, when controls variables are

changing, the constraints are satisfied. The obtained solution,

which is feasible for c-problem, can violate the constraints

of basic discretized problem (Figure 5). Then it should be

regularized.

An important topic. We have less variables in this problem,

but we lose a possibility of parallel computations too.

Figure 6. Problem with 2 shots and 5 control function in each interval.

E. 2 shots and 5 control functions in each interval

In this problem we have 3 discretized state variables too.

But we have to consider situation with 10 control functions

and 4 defect functions: 3 for discretized state variables and

one for the final state. We can have the same problem like in

the previous example (Figure 6).
Methods, which have more than 1 control variable in each

time interval give good results for BVP’s.

F. Comparison of results

The results are summarized in Table V.

We can see, that methods, which have the same number of

time intervals as number of control functions give results more

similar to the results of the basic problem.

All experiments were performed on the processor Intel(R)
Core(TM) i5 CPU 2.67 GHz.

Important questions are the CPU performance time and

a parallel computing possiblity. Especially, when shooting

method is used, one is able to use more processors. Although

m processors were used, the computations performance time

would not be m times smaller. Before starting the parallel

computing one has to have in mind a communications over-

head. Running 2, 3 or 4 local workers as the clients on the

same machine needs about 0.35 CPU time.

When can we expect a performance time improvement? The

performance time depends on number of functions evaluations

and communications time with local workers. If we denote

x as CPU time processing on one processor, y - number of

function evaluations and n - number of local workers, one can

compute number of local workers are needed

1

n
· x+ 0.35 · y ≤ x.

If 0.35 · y ≤ x, then

x

x− 0.35 · y
≤ n.

In the presented example parallel computing should not

improve the performance time. It would be useful in more

complex applications.

7
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Table V
COMPARISON OF RESULTS

Problem Results
shots control CPU fun c-prob basic

functions time eval prob
2 1 14.2429 303 11.6416 11.6536
4 1 80.2313 1623 11.6998 11.6998
2 2 23.7434 522 11.7815 11.6867

10 1 701.6457 8148 11.7160 11.7160
2 5 104.8015 1391 11.8278 11.6885

V. CONCLUSION

Modified multiple shooting algorithms for the optimization

of complex DAE systems are proposed. They are aimed at

the determination of a suboptimal feasible solution of a high

practical meaning. To this end an initial feasible solution is

found by the c-conversion of the basic discretized multipoint

problem and the analysis of the results of the consecutive

shots of the system trajectory. The employment of the feasible-

SQP approach dealing with compatible QP subproblems is

quaranteed. The optimized solution can be regularized by the

bound-constrained trust-region and inexact Newton method to

ensure a high degree of its applicability.
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[14] M.J. Śmietański, ”Inexact quasi-Newton global convergent method
for solving constrained nonsmooth equations,” International Journal of

Computer Mathematics, vol. 84, pp.1757-1770, 2007.
[15] Z. Zhu, W. Zhang, and Z. Geng, ”A feasible SQP method for non-

linear programming,” Applied Mathematics and Computation, vol. 215,
pp.3956-3969, 2010

8

484 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011


