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Abstract—Adverse hospital patient outcomes due to deteriora-
tion are often preceded by periods of physiological deterioration
that is evident in the vital signs, such as heart rate, respiratory
rate, etc. Clinical practice currently relies on periodic, manual
observation of vital signs, which typically occurs every 2-to-4
hours in most hospital wards, and so patient deterioration may go
unidentified. While continuous patient monitoring systems exist
for those patients who are confined to a hospital bed, the false
alarm rate of conventional systems is typically so high that the
alarms generated by them are ignored. This paper explores the
use of machine learning methods for automatically identifying pa-
tient deterioration, using data acquired from continuous patient
monitors. We compare generative and discriminative techniques
(a probabilistic method using a mixture model, and a support
vector machine, respectively). It is well-known that parameter
tuning affects the performance of such methods, and we propose
a method to optimise parameter values using “partial AUC”. We
demonstrate the performance of the proposed method using both
synthetic data and patient vital-sign data collected from a recent
observational clinical study.

Index Terms—support vector machine, novelty detection, one-
class classification, parameter optimisation, partial AUC.

I. INTRODUCTION

A. Detecting Patient Deterioration

A
DVERSE events in acutely ill hospital patients may occur

when their physiological condition is not recognised or

acted upon early enough [1]. Clinical guidance in the UK

[2] recommends the regular observational recording of certain

vital signs (such as heart rate, HR, measured in beats per

minute; respiration rate, RR, measured in breaths per minute;

blood oxygen saturation, SpO2, measured as a percentage;

and systolic blood pressure, SysBP, measured in mmHg),

combined with the use of early warning score (EWS) systems.

The latter involve the clinician applying univariate scoring

criteria to each vital sign in turn (e.g., “score 3 if heart rate

exceeds 140 beats per minute”), and then escalating care to a

higher level if any of the scores assigned to individual vital

signs, or the sum of all such scores, exceed some threshold.

This current standard of care has a number of disadvantages.

(i) The early-warning scores assigned to each vital sign, and

the thresholds against which the scores are compared, are

mostly determined heuristically1. (ii) EWS systems are used

1However, a large evidence base of vital-sign data was used to construct
the EWS proposed in [3], which is currently undergoing clinical validation in
its own study.

with periodic observation of vital signs, which may be made

as infrequently as once every 12 hours in some wards. Patients

may deteriorate significantly between observations. (iii) There

is a significant error-rate associated with manual scoring,

especially in the high-workload setting of a high-dependency

clinical ward. (iv) Each vital sign is treated independently and

correlations between vital signs are not taken into account.

This paper addresses these four disadvantages by evaluating

automated systems, which use novelty detection algorithms.

B. Novelty Detection for Patient Monitoring

Novelty detection, or one-class classification, involves con-

struction of a model of normality using examples of “normal”

system behaviour, and which then classifies test data as

either “normal” or “abnormal” with respect to that model.

This technique is particularly applicable to the monitoring

of high-integrity systems, such as jet engines, manufacturing

processes, or human patients.

Monitoring high-integrity systems is difficult due to the

variability between individual systems of the same system

type (such as different human patients of the same demo-

graphic background). The few examples of “abnormal” sys-

tem behaviour that may exist for some population are often

inapplicable to the analysis of previously-unseen individuals.

For example, a heart rate of 50 beats per minute may be

indicative of considerable physiological abnormality in one

hospital patient, while it may be entirely normal for a fitter

patient of the same age and background.

Finally, high-integrity systems typically exhibit a high de-

gree of structural complexity, and can often comprise many

sub-systems that interact in a non-linear manner. Thus, the

potential space of “abnormality” is extremely large, and so

the large resultant number of failure modes is often poorly

understood. For example, the exact response of a particular

human’s physiology to a given failure mode (such as, for

example, deterioration leading to myocardial infarction) will

vary significantly between patients, and what data exist are

insufficient for constructing accurate models of these failure

states, typically being derived from a small number of patients,

with differing co-morbidities, lifestyles, etc.

Novelty detection avoids such problems by modelling the

“normal” mode of operation of the system, which is often

well-understood because most high-integrity systems function
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“normally” most of the time, and then looking for deviations

from that normal model.

This is appropriate for the monitoring of physiological con-

dition in patients, because sufficient data exist from “stable”

patients such that a model of the well-understood “normal”

state of these patients may be constructed. Physiological

deterioration may then be detected as being corresponding

departures in the vital signs from that “normal” state.

C. Overview

This paper considers the one-class support vector machine

(SVM), which is a commonly-used method of performing nov-

elty detection. Its formulation is briefly recapped in section II,

where disadvantages arising from the setting of its parameters

are discussed. Following discussion on the topic of evaluating

classifiers in section III, a method of optimising parameter

values in a one-class SVM is described in section IV, in

light of those evaluation methods. The method is illustrated

using simulated data in section V and patient vital-sign data,

collected from an observational clinical study, in section VI.

Limitations of the method, and potential future extensions, are

discussed in section VII.

II. ONE-CLASS SVMS

The one-class SVM is a frequently-employed method of

performing novelty detection, and it has been applied to many

such problems, including jet engine condition monitoring [4],

signal segmentation [5], and fMRI analysis [6], among many

others, a review of which may be found in [7].

A. Formulation

This paper considers the one-class SVM formulation pro-

posed by [8], in which a quantity l of d-dimensional data

{x1, . . . ,xl} ∈ R
d are mapped into a (potentially infinite-

dimensional) feature space F by some non-linear transforma-

tion Φ: Rd → F. A kernel function k provides the dot product

between pairs of transformed data in F:

k(xi,xj) = Φ(xi) ·Φ(xj) (1)

A Gaussian kernel allows any data-point to be separated from

the origin in F [8], hence is chosen for us in the work described

by this paper:

k(xi,xj) = exp (−‖xi − xj‖2/2σ2) (2)

where σ is the width parameter associated with the Gaussian

kernel.

The decision boundary is a hyperplane in feature space F,

found by minimising the weighted sum of a support vector-

type regulariser and an empirical error term depending on an

overall margin variable ρ and individual errors ξi,

min
w∈F, ξ∈Rl, ρ∈R

1

2
‖w‖2 + C

l∑

i=1

ξi − ρ (3)

subject to w ·Φ(xi) ≥ ρ− ξi, ξi ≥ 0 (4)

where w is a weight vector in the feature space, and C is a

user-specified penalty parameter, with a larger C correspond-

ing to a higher penalty to errors [9].

The decision function in feature space F is:

z(x) = wo ·Φ(x) − ρ0 (5)

with parameters

wo =

Ns∑

i=1

αiΦ(si) (6)

ρo =
1

Ns

Ns∑

j=1

Ns∑

i=1

αik(si, sj), (7)

where si are the support vectors, of which there are Ns, and

where k is the Gaussian kernel defined in (1). We note that

wo ∈ F, ρo ∈ R, and that αi are Lagrangian multipliers

used to solve the dual formulation, more details of which

may be found in [8] and which are not reproduced here.

The “abnormal” data (i.e., those outside the single, “normal”

training class) take negative values of z(x), while “normal”

data take positive values.

We note in passing that this approach is typically employed

in favour of the one-class formulation proposed in [10], [11],

in which a hypersphere of minimum radius is found to enclose

the data in F. The interested reader is directed to a useful

tutorial for this latter method in [12].

III. RECEIVER OPERATING CHARACTERISTIC (ROC)

CURVES

The performance of a two-class decision rule can be sum-

marised in a receiver operating characteristic (ROC) curve,

which plots the true-positive rate on the vertical axis against

the false-positive rate (FPR) on the horizontal axis, as the

decision threshold varies [13]. Although an ROC curve gives

a more thorough evaluation of classifier performance than a

confusion matrix, it is difficult to compare two ROC curves.

One possible comparison is to consider the area-under-the-

ROC-curve (AUC), which integrates the FPR over varying

thresholds. AUC is independent of a fixed decision thresh-

old, and is invariant to prior class probabilities [14]. AUC

represents the probability that a randomly chosen positive

observation is correctly classified, and therefore a higher value

of AUC indicates better separation between the two classes

[14], [15].

For the novelty detection approach taken by this work, we

label the “normal” data as ”negative” cases, for ROC analysis,

and the “abnormal” data as ”positive” cases. Most practical

novelty detection systems require low FPRs, and so we are

most interested in the ROC curve for low values of FPR when

evaluating the performance of a novelty detector. (Its perfor-

mance at higher FPRs is irrelevant, and possibly confounding,

because these represent choices of decision threshold that

would never be used in practice.)

We therefore consider partial AUC, to restrict evaluation of

the classifier only over those ranges of decision threshold that
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are likely to be used in practice. Partial AUC is defined as

the integral area between two false-positive rates [16]. Unlike

AUC, whose maximum value is always 1, partial AUC depends

on the two chosen false-positive rates, over which the ROC

curve is integrated. We will use this partial AUC metric for

optimisation of SVM parameters.

IV. PARAMETER OPTIMISATION FOR A ONE-CLASS SVM

A. Choosing appropriate parameter values

For the case of a Gaussian kernel k(xi,xj), it is important

to choose an appropriate value for the bandwidth parameter

σ. Larger values of σ result in smoother decision boundaries,

which therefore tend to exhibit lower variance (i.e., better

ability to generalise to previously-unseen data), at the expense

of increased bias (i.e., under-fitting the “normal” data space, as

represented by the “normal” training data). Conversely, smaller

values of σ provide decreased bias (i.e., a closer fit to the

“normal” data space, as represented by the “normal” training

data), but at the expense of increased variance (i.e., they are

less able to generalise successfully to previously-unseen data).

The “optimal” value for σ will depend on the distribution of

the particular dataset under consideration,and it is not usually

obvious how one should choose the value of σ. Typically,
a cross-validation exercise is performed, where one uses a

validation set as an estimation of how well the system will

perform in practice, when presented with previously-unseen

test data.

For a Gaussian kernel k(xi,xj), the quantity

− log k(xi,xj) is the Euclidean distance between two

observations scaled by a factor 1/2σ2. Based on this link

between σ and Euclidean distance, we propose the following

method to determine an appropriate value for σ in our

discriminative case, adapted from a similar method proposed

in [17] for selecting σ when estimating pdfs for probabilistic

inference within a generative framework:

1) First, we calculate the local average Euclidean distance

∆i of K nearest neighbours from each observation in

the training set, where K =
√
l,

∆i =
1

K

∑

j∈D

‖xi,xj‖, ∀i = 1 . . . l (8)

where D is the set of K nearest neighbours for xi.

2) Next, the global average distance ∆G is found by aver-

aging ∆i over all the training data, ∆G = l−1
∑

i ∆i.

The value of ∆G provides a guide for the range of σ,
where we define σ = κ × ∆G, where κ is a linking

constant between the value of σ and the global average

distance ∆G of any dataset. Therefore, κ provides a

guide for the appropriate value of σ, which is indepen-

dent of l. Once an appropriate value of κ is chosen for

one dataset, it provides a good starting point for another

dataset with similar dynamics (e.g., for another patient

vital-sign dataset, allowing the value of κ to be reused

from previous analyses, when the dataset has changed).

The other parameter to optimise in a one-class SVM is ν,
which will defined as follows. The support vector constraints

[9] in terms of the penalty parameter C from (3) are
∑

i

αi = 1, 0 ≤ αi ≤ C. (9)

allowing us to state2 that 1/l ≤ C ≤ 1. Also, C may be

written

C =
1

νl
(10)

so we have 1/l ≤ ν ≤ 1. Therefore, ν and C take values in

the same range.

The parameter ν serves as an upper bound on the proportion

of training observations that lie on the wrong side of the

hyperplane, and is also a lower bound on the fraction of

support vectors among normal training data [8]; i.e. ν ≤ Ns/l.
Parameter ν is used in this investigation instead of C, due to

its clear meaning, as described above; the value of C can be

easily recovered using (10).

Based on the above discussion, we will optimise parameters

(κ, ν) in section IV-B for the SVM approach taken in this

paper.

B. Parameter optimisation using partial AUC

Combining the suggestions of the previous two sections, we

take the following approach to optimising (κ, ν).
STEP 1: Choose a pair of parameter values (κ, ν).
STEP 2: Use the chosen (κ, ν) to train a one-class SVM,

which is dependent on a training set of “normal” data.

STEP 3: Use the resulting SVM to classify a validation

dataset, which comprises both “normal” and “abnormal” data

in equal quantity.

STEP 4: Compute partial AUC, using the validation results

obtained in the previous step.

STEP 5: Repeat STEP 1-4 using different values of (κ, ν),
typically using a grid search. Choose the (κ, ν) with the

maximum partial AUC.

We assume the presence of some examples of “abnormal”

behaviour, which are placed within the validation set for

the purposes of parameter optimisation. However, as noted

previously, these are likely to be small in quantity compared

with the number of “normal” observations, and hence the

training set is entirely comprised of “normal” data, and a one-

class approach is taken.

A commonly-employed alternative which uses only “nor-

mal” data [12], [18] is to vary the SVM parameters until

some fixed value of the false-positive classification rate is

achieved (e.g., 0.05) when presented with the training set

of “normal” examples. However, as demonstrated in [4], the

overall expected performance of the one-class SVM can be

improved by setting parameters by taking into account any

available examples of “abnormal” data that may be available,

even if they are few in comparison to the number of “normal”

2where the lower constraint arises because, in the worst case, we have all
training data as support vectors and Ns = l, and therefore C ≥ 1/l in order
for

∑
i
αi = 1. The upper constraint arises because αi ≤ C.
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training data. Therefore, we adopt the latter approach in our

formulation, and include any available “abnormal” data in our

validation set, described in the algorithm above.

V. ILLUSTRATION USING SYNTHETIC DATA

The optimisation method described in the previous section

is illustrated in this section using bivariate artificial data. We

compare results obtained with the SVM to a commonly-used

generative method of novelty, that of the Gaussian mixture

model (GMM). The latter technique has been used for nov-

elty detection in many applications, the details of which are

surveyed in [7]. It is of particular interest to the investigation

described by this paper, because previous work in performing

novelty detection in patient vital-signs has used a generative

approach, comprising a mixture of Gaussian kernels [19], [20].

A. Methodology

The dataset employed in this section comprises 200 “nor-

mal” and 200 “abnormal” data, with distributions that are

concave in support, as shown in figure 1. For the purposes of

evaluating novelty detection algorithms, 50% of both datasets

were held back for testing. 40% of the “normal” data are

used for training, with the remaining 10%, and all remaining

“abnormal” data, used for validation.

For the SVM, the training and validation procedures (in

which parameter optimisation occurs) proceed as described in

section IV-B.

The GMM is defined by the pdf

p(x) =
M∑

i=1

πi p(x|θi) (11)

which is comprised of M component distributions, each

of which has a prior probability πi and a likelihood

p(x|θi) = N (x|µi,Σi), where µi and Σi have their usual

meanings of the centre and covariance matrix for multivariate

Gaussian i, respectively. The training procedure finds appro-

priate values for the quantities shown in (11); in this case,

the maximum likelihood estimates were determined using

expectation maximisation [21].

Novelty detection with a GMM is typically performed by

setting a decision threshold on the pdf p(x), which, as with

the decision boundary of the SVM, may be set (i) using

only “normal” data, whereby one finds that threshold that

yields some pre-determined false-positive rate, or (ii) using a

validation set that contains any available “abnormal” examples.

In order to allow a direct comparison with the SVM, the latter

approach was taken for setting the GMM decision threshold,

and partial AUC was again used as the optimisation metric, the

minimum of which (with respect to the validation set) yields

the “optimal” value of the decision threshold on the pdf p(x).

B. Results

Figure 1 shows the output of both GMM and SVM nov-

elty detectors when presented with the previously-unseen test

dataset. The upper plot shows p(x) for the GMM, where the

decision threshold on the pdf is shown as a black contour
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Fig. 1. (a) GMM output p(x) using the “optimal” parameter values
determined using validation; “normal” training data are shown by white {·},
and “normal” and “abnormal” test data are shown by white {+} and black
{+}, respectively. (b) SVM output z(x) using the “optimal” parameter values
determined using validation; labelling scheme as above, with support vectors
circled.

on the pdf, which describes the locus of the “normal” training

data (shown as white dots). The test data are shown as crosses

in white and black for “normal” and “abnormal” classes,

respectively. It may be seen that the training and validation

procedure resulted in M = 3 component distributions being

used, where these distributions were constrained to have

isotropic covariance matrices (although each may be assigned

a different determinant during training).

The lower plot shows z(x) for the SVM, as defined in (5),

where the decision threshold (which occurs at z(x) = 0 for

a SVM) is shown as a black contour. The symbols used are

the same as those for the GMM plot, described above, where

training examples that are support vectors (αi > 0) are circled
in white.

Table I shows results obtained from both GMM and SVM

when applied to the previously-unseen test data. Defining true-
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TABLE I
NOVELTY DETECTION PERFORMANCE OF GMM AND SVM APPLIED TO

TEST DATA, AT “OPTIMAL” THRESHOLD. ONE STANDARD DEVIATION ON

THE RESULT IS SHOWN FOR EACH, USING THE RESULTS OF 50
EXPERIMENTS, IN WHICH EACH EXPERIMENT INVOLVES RANDOM

SELECTION OF NEW TEST DATA FROM THOSE AVAILABLE, WITH EQUAL

NUMBERS OF TEST DATA DRAWN FROM THE “NORMAL” AND

“ABNORMAL” CLASSES.

Classifier Accuracy Partial AUC Sensitivity Specificity

GMM 0.95 ± 0.01 0.28 ± 0.01 0.95 ± 0.01 0.93 ± 0.03
SVM 0.96 ± 0.01 0.30 ± 0.01 0.99 ± 0.01 0.88 ± 0.01
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Fig. 2. ROC curve for results obtained using GMM and SVM to classify
previously-unseen artificial test data, shown in blue and red, respectively. The
mean of 50 experiments has been shown at each point on the ROC curve,
where each experiment involves random selection of new test data from those
available, with equal numbers of test data drawn from the “normal” and
“abnormal” classes.

positive, true-negative, false-positive, and false-negative to be

TP, TN, FP, and FN, respectively, then accuracy is defined to

be (TP + TN) / (TP + TN + FP + FN), sensitivity is TP / (TP +

FN), and specificity is TN / (TN + FP). It may be seen that both

methods perform similarly with this simple bivariate example,

with the SVM performing marginally better overall, as shown

by slightly higher accuracy and AUC results. It achieves this

with a higher sensitivity, at its “optimal” threshold, at the cost

of a lower specificity. This is confirmed in figure 2, which

shows an overall higher ROC curve for the SVM than the

GMM.

We conclude that the training and optimising procedures

for both techniques result in stable, usable parameter config-

urations, and hence we now extend our analysis to consider

higher-dimensional patient vital-sign data, as acquired from a

recent clinical study.

VI. PATIENT VITAL-SIGN MONITORING

This section reports results obtained from evaluating both

GMM and the proposed SVM method for patient vital-sign

monitoring.

TABLE II
NUMBER OF CLINICAL OBSERVATIONS IN THE TRAINING, VALIDATION,

AND TEST SETS

Train Validate Test

Normal 1,240 65 65
Abnormal 0 65 65

A. Dataset

We consider vital-sign data acquired from patients in a

“step-down unit” (SDU), which is a level of acuity lower than

that of the intensive care unit (ICU). There is a significant

need for effective novelty detection systems in such wards,

because patient deterioration can go unnoticed by clinical staff,

leading to adverse patient outcomes. Existing patient monitors

generated univariate alarms whenever vital signs exceed some

pre-defined threshold, and often go unheeded due to the high

false-positive rate of such alarms, where [22] reported results

of a study in which it was deemed that 84% of alarms from

conventional continuous patient monitors were false alarms.

The dataset used for the work described by this section

comprises measurements of heart rate, respiratory rate, blood

oxygen saturation, and systolic blood pressure, acquired once

every four hours by ward staff (as is common practice in most

SDU-level wards in the UK and the US) at the Oxford Cancer

Hospital, Oxford, UK. 1,500 such clinical observations xi ∈
R

4 were acquired from 19 patients, who were recovering from

upper gastro-intestinal surgery.

B. Methodology

130 of the clinical observations were deemed by clinicians

to be sufficiently “abnormal” that the patient would require

clinical review. The remaining 1,370 were thus classified as

being “normal”. The available “abnormal” data are insufficient

to train a multi-class classifier, being small in comparison

with the number of “normal” data, and therefore the novelty

detection approach is justified for this clinical application.

Table II shows how the 1,500 observations may be assigned

to each of the training, validation, and test sets. The available

examples of abnormality must be split between the validation

set (to enable parameter optimisation, as described in sec-

tion IV-B) and the test set (to allow evaluation of the results);

therefore, the 130 examples of abnormality are split equally

between validation and test data. Similar numbers of “normal”

data are required for each of the validation and test sets; the

remainder of the “normal” data are placed into the training

set, as shown in the table.

The split between the training, validation, and test sets

was performed randomly. In order to test the variability of

the results to this random partitioning, 50 experiments were

performed, each experiment containing a different random par-

tition of the data between the three sets, and each experiment

requiring retraining, revalidation, and retesting, in order to

obtain fully independent results for each experiment.
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Fig. 3. The upper plot shows time-series of vital signs for an exemplar
patient, showing HR, BR, SpO2, and BP in green, purple, blue, and red,
respectively, with time (in hours) shown on the horizontal axis. The lower
plot shows novelty scores derived from GMM output − log p(x) and SVM
output z(x) on the same time-base, in blue and red, respectively. Horizontal
lines in the lower plot show the decision thresholds for the GMM and SVM
in blue and red, respectively.

C. Results

An example of the application of the techniques to patient

vital-sign data is shown in figures 3 and 4.

The first example shows a patient who enters the ward,

following surgery, in a state of physiological derangement,

as shown by elevated BP (at around 180 mmHg). The

patient begins to stabilise, but, after 10 days, episodes of

tachycardia (elevated HR, reaching 150 bpm) may be seen,

with a corresponding increase in RR from 10 breaths/min

to 20 breaths/min. The patient then stabilises again, but

deteriorates significantly after 45 days, showing periods of

prolonged hypotension (decreases in BP below 60 mmHg),

with corresponding tachycardia (HR reaching 160 bpm), and

desaturations (SpO2 decreasing to 84%).

The output of the GMM and SVM are shown beneath,

along with their decision thresholds. For the purposes of

visualisation, the output of the GMM, which is a density p(x),
has been scaled into a novelty score − log p(x) such that it

takes high values for data with low density; i.e., “abnormal”

data will take high novelty scores. The SVM output needs no

such transformation, as it takes positive values when data on

the “non-normal” side of the decision boundary are presented.

It may be seen from the figure that both the SVM and the

GMM increase in value during the initial post-surgical period

of abnormality, during the transient period around 10 days, and

in the final period of deterioration. The similarity of the GMM

and SVM output is not accidental, as the − log p(x) scaling

of the GMM output makes it a comparable score to the SVM,

because the SVM asymptotically approaches the level sets on

the pdf in its tails [23].

The second example shows a patient who is similarly

unstable at the start of their admission to the Cancer Hospital

ward, following surgery. This patient exhibits bradycardia (low

HR, decreasing to 40 bpm). After 5 days, periods of apnoea
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Fig. 4. The upper plot shows time-series of vital signs for a second
exemplar patient, showing vital signs and novelty detection output as in the
first example.

TABLE III
NOVELTY DETECTION PERFORMANCE OF GMM AND SVM APPLIED TO

TEST CLINICAL DATA, AT “OPTIMAL” THRESHOLD. ONE STANDARD

DEVIATION ON THE RESULT IS SHOWN FOR EACH.

Classifier Accuracy Partial AUC Sensitivity Specificity

GMM 0.92 ± 0.03 0.25 ± 0.02 0.92 ± 0.04 0.92 ± 0.04
SVM 0.95 ± 0.01 0.28 ± 0.02 0.98 ± 0.01 0.92 ± 0.03

are evident (low BR, decreasing below 10 breaths/min) with

corresponding decreases in SpO2. Periods of abnormal physi-

ology occur after around 15 days, with transient hypertension

(increases in BP over 160 mmHg). Finally, a period of extreme

deterioration may be seen at the end of the patient stay,

with extreme hypertension (BP exceeding 200 mmHg) and

corresponding extreme desaturation (SpO2 decreasing below

82%).

It may be seen that, again, both the GMM and SVM scores

increase above their respective decision thresholds for these

periods of abnormality.

Table III shows the overall results for both GMM and SVM

after 50 experiments. Unlike the bivariate case considered in

section V, there is a significant difference between the results

obtained from each method. The SVM achieves higher accu-

racy and partial AUC, as before, but matches the specificity

of the GMM (0.92) while improving on the sensitivity (from

0.92 to 0.98).

This is confirmed by the ROC plots shown in figure 5, in

which it may be seen that the ROC curve for the SVM is

higher than that for the GMM throughout most of the interval

on the horizontal axis.

VII. CONCLUSIONS AND DISCUSSION

We have proposed a method for optimising SVM parameters

in a natural manner, considering ν and κ, which, we have ar-

gued, have a more intuitive interpretation that the conventional

C and σ parameters (assuming that a Gaussian kernel is used).
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Fig. 5. ROC curve for results obtained using GMM and SVM to classify
previously-unseen clinical test data, shown in blue and red, respectively. The
mean of 50 experiments has been shown at each point on the ROC curve,
where each experiment involves random selection of new test data from those
available, with equal numbers of test data drawn from the “normal” and
“abnormal” classes.

While we have demonstrated the method for one-class SVMs,

they are equally applicable to two- and multi-class SVMS.

Clinical data acquired from a recent observational study

of Cancer Hospital patients have been used to demonstrate

that automated methods can be used to identify patient de-

terioration. Existing methods, based on generative mixture

distributions have been shown to be outperformed by SVM-

based novelty detection on the preliminary data considered so

far in this study. This is perhaps unsurprising, given that the

SVM minimises its objective function so as to result in a small

number of misclassifications in the high-dimensional space

of the vital signs. In comparison, generative methods, while

offering more functionality than a discriminative method,

typically exhibit higher misclassification rates.

The on-going clinical study will result in further data on

which to confirm these preliminary findings.
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