
An Analysis of mOSAIC ontology for Cloud

Resources annotation

Francesco Moscato

Second University of Naples

Dep of European and Mediterranean Studies

Caserta, Italy

Email: francesco.moscato@unina2.it

Rocco Aversa

Second University of Naples

Dep of Information Engineering

Aversa, Italy

Email: rocco.aversa@unina2.it

Beniamino Di Martino

Second University of Naples

Dep of Information Engineering

Aversa, Italy

Email: beniamino.dimartino@unina.it

Teodor-Florin Fortiş

Institute e-Austria, Timişoara, Romania, and

West University of Timişoara, Romania

Email: fortis@info.uvt.ro

Victor Munteanu

Institute e-Austria

Timişoara, Romania

Email: vmunteanu@info.uvt.ro

Abstract—The easiness of managing and configuring resources
and the low cost needed for setup and maintaining Cloud services
have made Cloud Computing widespread. Several commercial
vendors now offer solutions based on Cloud architectures. More
and more providers offer new different services every month,
following their customers needs. Anyway, it is very hard to find
a single provider which offers all services needed by end users.
Furthermore, different vendors propose different architectures
for their Cloud systems and usually these are not compatible.
Very few efforts have been done in order to propose a unified
standard for Cloud Computing. This is a problem, since different
Cloud systems and vendors have different ways to describe and
invoke their services, to specify requirements and to communi-
cate. Hence a way to provide a common access to Cloud services
and to discover and use required services in Cloud federations is
appealing. mOSAIC project addresses these problems by defining
a common ontology and it aims at developing an open-source
platform that enables applications to negotiate Cloud services as
requested by users. The main problem in defining the mOSAIC
ontology is in the heterogeneity of terms used by Clouds vendors,
and in the number of standards which refer to Cloud Systems
with different terminology. In this work the mOSAIC Cloud
Ontology is described. It has been built by analysing Cloud
standards and proposals. The Ontology has been then refined
by introducing individuals from real Cloud systems.

I. INTRODUCTION

C
LOUD Computing is an emerging model for distributed

systems. It refers both to applications delivered as ser-

vices and to hardware, middleware and other software systems

needed to provide them. Nowadays the Cloud is drawing the

attention from the Information and Communication Technol-

ogy (ICT) thanks to the appearance of a set of services with

common characteristics which are provided by industrial ven-

dors. Even if Cloud is a new concept, it is based upon several

technologies and models which are not new and are built

upon decades of research in virtualization, service oriented

architecture, grid computing, utility computing or distributed

computing ([26], [34], [42]). The variety of technologies

and architectures makes the Cloud overall picture confusing

[26]. Cloud service providers make resources accessible from

Internet to users presenting them as a service. The computing

resources (like processing units or data storages) are provided

through virtualization. Ad-hoc systems can be built based on

users requests and presented as services (Infrastructure as

a Service, IaaS). An additional abstraction level is offered

for supplying software platforms on virtualized infrastructure

(Platform as a Service, PaaS). Finally software services can

be executed on distributed platforms of the previous level

(Software as a Service, SaaS). Except from these concepts,

several definitions of Cloud Computing exist ([41], [19],

[27], [24], [37], [33]), but each definition focuses only on

particular aspects of the technology. Cloud computing can play

a significant role in a variety of areas including innovations,

virtual worlds, e-business, social networks, or search engines

but it is actually still in its early stages, with consistent

experimentation to come and standardization actions to effort.

In this scenario, vendors provide different Cloud services at

different levels usually providing their own interfaces to users

and Application Programming Interfaces (APIs) to developers.

This results in several problems for end-users that perform

different operations for requesting Cloud services provided

by different vendors, using different interfaces, languages and

APIs. Since it is usually difficult to find providers which fully

address all users needs, interoperability among services of

different vendors is appealing.

Cloud computing solutions are currently used in settings

where they have been developed without addressing a common

programming model, open standard interfaces or adequate ser-

vice level agreements or portability of applications. Neglecting

these issues current Cloud computing forces people to be

stranded into locked, proprietary systems. Developers making

an effort in Cloudifying their applications cannot port them

elsewhere.

In this scenario the mOSAIC project (EU FP7-ICT pro-

gramme, project under grant #256910) aims at improving

state of the art in Cloud computing by creating, promoting

and exploiting an open-source Cloud application programming

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 973–980

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 973

interface and a platform targeted for developing multi-Cloud

oriented applications. One of the main goal is that of obtaining

transparent and simple access to heterogeneous Cloud comput-

ing resources and to avoid locked-in proprietary solutions.

In order to attain this objective a common interface for users

has to be designed and implemented, which should be able to

wrap existing services, and also to enable intelligent service

discovery. The keystone to fulfil this goal in mOSAIC is the

definition of an ontology able to describe services and their

(wrapped) interfaces.

Ontologies offer the means of explicit representation of the

meaning of different terms or concepts, together with their

relationships. They are directed to represent semantic informa-

tion, instead of content. Different languages can be considered

for the specification of ontologies, including DAML, OIL,

RDF and RDFS, OWL or WSML.

The Web Ontology Language (OWL) is a standard from

[32], [18], based on XML, RDF and RDFS. With OWL

complex relationships and constraints can be represented in

ontologies. With important revisions to the language, OWL 2

became the W3C recommendation in 2009, introducing fea-

tures to improve scalability in applications. [25]

Different efforts to formalize Semantic Web developments

exist. Web Service Modeling Ontology (WSMO) [14] “pro-

vides the conceptual underpinning and a formal language for

semantically describing all relevant aspects of Web services

in order to facilitate the automatization of discovering, com-

bining and invoking electronic services over the Web” [40].

WSML was offered as a companion language to WSMO,

for representing modelled ontologies by a common terminol-

ogy for Web Services interactions [22], [40]. The Semantic

Web Services Framework (SWSF) offers a similar approach,

with its two major components, the Semantic Web Services

Language (SWSL) and the Semantic Web Services Ontology

(SWSO) [17].

Semantically-enabled services offer the means for in-

telligent selection of services, with automation of differ-

ent tasks, including service discovery, mediation, invoca-

tion, or composition. Current research efforts are enhanc-

ing typical web services technologies in order to provide a

semantically-enhanced behaviour in developments like OWL-

S [30], WSDL-S and METEOR-S [38], [36], WSML [22],

WSMO [40], or SWSF [17].

II. MOSAIC PROJECT

The Open Cloud Manifesto [10] identifies five main chal-

lenges for Cloud: data and application interoperability; data

and application portability; governance and management; me-

tering and monitoring; security.

Actually, the main problem in Cloud computing is the lack

of unified standards. Market needs drive commercial vendors

to offer Cloud services with their own interfaces since no

standards were available at the moment. Vendors solutions

have arisen as commonly used interface for Cloud services but

interoperability remains an hard challenge, like portability of

developed services on different platforms. In addition vendors

and open Cloud initiatives spent few efforts in offering services

with negotiated quality level.

The mOSAIC project tries to fully address the first two

challenges and partially addresses the next two ones by

providing a platform which:

• enables interoperability among different Cloud services,

• eases the portability of developed services on different

platforms,

• enables intelligent discovery of services,

• enables services composition,

• allows for management of Service Levels Agreement

(SLA).

The architecture of mOSAIC platform is depicted in Fig.1:

it provides facilities both for end-users (at the left of Fig.1)

and for services developers and managers (depicted on the

right side of Fig.1)

From the end-users’ point of view, the main component

is the Cloud Agency. This consists in a core set of software

agents which implement the basic services of this component.

They include:

• negotiation of SLAs;

• deployment of Cloud services;

• discovery and brokering of Cloud services.

In particular, Client Agent is responsible for collecting

users’ application requirements, for creating and updating the

SLAs in order to grant always to best QoS. The Negotiator

manages SLAs and mediates between the user and the broker;

it selects protocols for agreements, negotiates SLA creation,

and it handles fulfilment and violation. The Mediator selects

vendor agents able to deploy services with the specified user

requirements; it also interfaces with services deployed on

different vendors’ providers. The Provider Agent interacts with

virtual or physical resources at provider side. In mOSAIC the

Cloud Agency was built upon the MAGDA [16] toolset, which

provides all the facilities to design, develop and deploy agent-

based services. The semantic engine uses information in the

Cloud Ontology to implement a semantic-based Cloud services

discovery exploiting semantic, syntactic and structural schema

matching for searches.

In the Cloud developers and managers perspective, the main

components of mOSAIC Architecture are the API execution

engine and the Resource Manager. The first one offers a

unique API to use Cloud Services from different vendors

when using and developing other services. The API execution

engine is able to wrap storage, communication and monitoring

features of Cloud platforms. In particular, Virtual Clusters

(VC) [23] are used as resource management facility. They

are configured by software agents in order to let users to

configure required services. A Resource contract will grant

user’s requirements and the Resource Manager will assign

physical resources to VC on the basis of the contract.

In this architecture, the bonding element which allows for

interoperability and resources description is the Cloud Ontol-

ogy. It is the base for Cloud services and resources description

and it contains all information needed to characterize API also

from a semantic point of view.

974 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 1: mOSAIC Architecture

The Cloud Ontology is based on several Cloud taxonomies

proposed in literature [15], [4], [28], [20], [29]. It is developed

in OWL [32] and OWL-S languages [30]. The benefit of

using an ontology language is that it acts as a general method

for the conceptual description or modelling of information

that is implemented by actual resources [3]. mOSAIC aims

at developing ontologies that would offer the main building

block to describe services at the three delivery models of Cloud

Computing (i.e. IaaS, PaaS, SaaS).

III. CLOUD STANDARDS AND MOSAIC

Nowadays several Cloud computing systems are available,

both from commercial and open source communities. Some

example are Amazon EC2 [1], Google’s App Engine [6], Mi-

crosoft Azure [21], GoGrid [5], 3Tera [7], Open Nebula [12],

Eucalyptus [35] and Nimbus [2]. Cloud systems and services

offered by various vendors differ and overlap in complicated

ways. Each solution provides different services. For example

Amazon EC2, GoGrid, 3Tera, Open Nebula and Eucalyptus

are basically IaaS Clouds offering entire instances of virtual

machines to customers; Google’s Apps and Microsoft Azure

offer SaaS applications also providing API for development

and monitoring, offering a PaaS Cloud. Nimbus was developed

as an IaaS for scientific applications. Main vendors platforms

and services have become standards de facto for Cloud com-

puting, but several different solutions exist at different Cloud

layers and interoperability is still a distant goal. In this scenario

some attempts have been done to make order in the chaos of

Cloud systems trying to propose standards for them.

Anyway the need for a good, complete definition of Cloud

components is really felt by scientific community. In particular,

in [43]the need for an Ontology defining Cloud- related

concepts and relationships is outlined. In the paper an ontology

for Cloud is proposed in natural language. Cloud layers have

been defined and organized in an architectural view. The

ontology starts with firmware and hardware as its foundation,

eventually delivering to Cloud applications. The paper also de-

fines elements which belongs to different layers, like resources,

virtual machines etc. Anyway no formal representation of the

Ontology is reported in the paper.

Another similar taxonomy for Cloud Systems has been

presented in [39], where only Cloud layers and some require-

ments like fault tolerance and security have been discussed.

A more detailed Taxonomy has been described in [20].

It is a simple taxonomy, with only main concepts related to

Cloud Computing defined in a graphical schema. This work

in progress is anyway more complete then the previous ones.

One of the few attempts to provide a formal ontology for

Cloud System comes from Unified Cloud Interface (UCI)

Initiative that have released a very simple OWL ontology [13]

for Cloud Systems but it consist only of few concepts.

Cloud Computing Interoperability Forum (CCIF) [9] aims

at defining an open, vendor neutral and standardized Cloud

interface for the unification of various Cloud APIs. This

should be done creating an API wrapping other existent APIs.

CCIF proposes to define an OWL/RDF ontology to describe a

semantic Cloud data model in order to address Cloud resources

uniquely. The ontology is still under development and no draft

version are available at the moment.

Similarly, Open Grid Forum (OGF) [11] is another open

initiative which aims at the creation of a practical solution

to interface existing Cloud IaaS. OGF is defining interfaces

(the Open Cloud Computing Interface: OCCI [11]) to provide

unified access to existing IaaS resources. The main goal of

OCCI is the creation of hybrid Clouds operating environments

independent from vendors and middlewares. The main formal-

ism used to define Cloud models is UML and the work is

still in a preliminary stage. OCCI’s documents defines speci-

fications for cloud core elements and interfaces to resources,

including a model using a RESTful API to access, use and

manage them. In OCCI core model, everything is a resource.

The main elements of the base OCCI model are: Entity,

Resource, Link and Action. The Entity is an abstract type for

FRANCESCO MOSCATO ET AL.: AN ANALYSIS OF MOSAIC ONTOLOGY FOR CLOUD RESOURCES ANNOTATION 975

Resource and Link type; Resources identify object in cloud

environment, while Link are used to specify relationships

among Resources. Actions define operations applicable to

Entities. The OCCI model is developed in UML, but the main

elements of the model are used to describe a graph structure

that is similar to an OWL ontology definition. The model is not

yet complete and several properties and relationships between

Entities cannot be described.

The National Institute of Standards and Technology (NIST)

is also working at Cloud standards definitions. NIST main

aim in defining cloud standards is to provide specifications

about interoperability, portability and security requirements,

standards and guidance. As part of the NIST plan, a reference

Architecture and Taxonomy standards have been proposed. In

addition, a roadmap to address security in Cloud systems has

been formalized. The NIST definition of cloud computing ar-

chitecture, includes basically five essential characteristics (on-

demand self-service, broad network access, resource pooling,

rapid elasticity, measured Service), three service models (IaaS,

PaaS, SaaS) and four deployment models (public, private,

community and hybrid cloud). Furthermore NIST proposes

a taxonomy, organized in layers, where main cloud concepts

are organized. In the first level roles for cloud are identified:

service provider, consumer, broker, auditors and carriers are

listed. They are related to usage scenarios analysed by NIST

that focuses on interoperability of federating cloud providers.

At second level, activities that actors in the first level enact

are defined, while components are addressed in the last two

levels. The mOSAIC Ontology, which will be described in

detail in Section IV inherits most of the elements defined

in other proposals, in order to maintain an high degree of

compatibility with them. Anyway, in the NIST taxonomy,

too much Roles (Actors in mOSAIC) have been reported

and some of them are not easily distinguishable. In addition

The taxonomy proposed by NIST is not really a hierarchy

since elements in lower layers are not always specialization of

upper layer elements. For this reason, mOSAIC inherits only

the main actors definition from NIST proposal, and does not

maintain the taxonomy proposed by NIST when no subclass

relationship exists between classes.

Distributed Management Task Force (DTMF) proposes a

standards incubators in order define a set of architectural se-

mantics that unify the interoperable management of enterprise

and cloud computing. DTMF mainly addresses use cases and

cloud reference architecture, analysing the interfaces between

cloud service providers and consumers. In use case definition,

a key role has the definition of Service Level Agreement

(SLA). The interactions between services consumers and

providers are detailed. Actors in DTMS proposals are similar

to Roles for NIST definition. DTMS also addresses interfaces

and data artefacts as a mean for interfacing actors.

Recently IBM [31] has provided a draft document describ-

ing a reference architecture for Cloud systems. It recalls the

NIST and OCCI standards, integrating some parts with new

elements. In particular, the IBM architecture adds Business

processes as element of Cloud Architecture. Business Process

Fig. 2: Top Level Concepts in mOSAIC Ontology

has been introduced as Cloud architecture layer and as new

class of actors that can use them in order to create composed

services. Proper Business Support Services (BSS) have been

defined in order to support business process definition and

execution. Furthermore, IBM architecture inherits NIST actors

taxonomy, maintaining three main types of actors: services

Consumer, Provider and Creator. It also addresses the problem

of defining Quality of Services and SLA.

Microsoft Azure [21] and Google APP Engine [6] provide

an environment for developing and deploying services and

applications following the Cloud philosophy. Azure offers a

Platform as a Service (PaaS) and an Infrastructure as a Service

(IaaS) hybrid platform on which developers implements and

deploy their services. A similar approach is adopted by Google

APP Engine. They provide almost no attempt at standardiza-

tion, except for a small OWL ontology (no more supported)

developed by Google. Amazon with its Amazon Web Services

(AWS) offers IaaS and SaaS services. It provides, a set of API

for creating virtual machines and resources, and to access its

services. mOSAIC ontology is able to describe these APIs as

will be shown in Section IV-A

IV. MOSAIC ONTOLOGY

The top level of the mOSAIC Ontology is shown in Fig.2

which reports the main concepts of the mOSAIC ontology.

Concepts have been identified analysing standards and pro-

posals from literature. In the following its main concepts will

be listed and described.

The Language class contains instances of languages used

for APIs implementation (for example, Java and Python).

Abstraction class contains the abstraction level at which

services are provided as described in[43]. Here, Cloud services

belong to the same layer if they have equivalent level of ab-

straction. Deployment Model class includes concepts required

by Cloud NIST [43] standard for what deployment model

of Cloud services concerns. Essential Characteristics class

includes individuals which are defined by NIST. Framework

class contains individuals that identify programming frame-

work supporting API programming Languages. Actor contains

subclasses where actors interacting with Cloud systems are

divided. Property subclasses contain all elements needed for

describing characteristics of Cloud resources. These are also

976 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 3: Deployment Model

Fig. 4: Essential Characteristics

used to specify SLA requirements. ComponentState includes

all concepts for defining the states which Cloud compo-

nents and resources may assume. SLA class defines concepts

for SLA definitions. Protocol class contains individuals for

protocols used in communication among Cloud components.

Layers class distinguishes firmware, hardware and software

infrastructures for Cloud platforms. Service Models class in-

cludes all kinds of services provided by Cloud Systems. Pred-

icate contains classes used for description of the behaviours

of statefull Cloud components. CloudSystemVisibility class

allows for specification of Cloud systems visibility, like private

and public clouds. Component is the main class of mOSAIC

ontology. All cloud elements (resources, services, infrastruc-

tures etc.) are its subclasses. Technology class contains all

concepts related to technology involved in Cloud services

provisioning, like virtualization.

Fig.3 shows the Deployment−Model subclasses.

They include several types of deployment models for Cloud

Systems: PublicCloud contains all individuals providing public

or world wide access to their resources, like MicrosoftAzure,

Amazon and Google. PrivateCloud instead is related to De-

ployment Models of framework that can provide access to

private Cloud resources, like Eucaliptus.

Essential−Characteristics are defined in the NIST standards

as the features that each Cloud system must provide. They are

shown in Fig. 4.

This Class contains subclasses related to the characteristics

described into NIST document about Cloud features (Mainte-

nance, On demand self service, Rapid Elasticity, Metering,

Broad Network Access, Measured Services and Resource

pooling). For further description of this properties, refer to

NIST [8] and IBM [31] standards documents.

The Actor class identifies cloud actors, that can be divided

as in Fig.5.

Provider, Consumer and Creator subclasses follow the IBM

cloud computing reference Architecture [31]. Administrator

manages cloud infrastructure; Orchestrator composes Cloud

Services in order to provide value added services; Developer

implements new Cloud Services. Notice that the difference

between Developer and Creator, is in the way they interact

with cloud Providers. Developers use offline resources (tools

and frameworks) in order to implement new Cloud Service. A

Creator instead builds cloud services by using functionalities

exposed by a Cloud Service Provider. Consumer Actors can

be further divided as shown in Fig. 5b.

Some Property’s subclasses are shown in Fig.6. They are

divided into NonFunctionalProperties and FunctionalProper-

ties that respectively define the sets of non functional and

functional properties of a Cloud Component. Properties can be

used to characterize Cloud Components (services, infrastruc-

ture etc.) and to request given characteristics for components

when dealing with SLA.

The main non-functional properties for cloud components

are: Scalability; Autonomy; Availability; QoS; Performance;

Consistency; Security; Reliability.

Computing Non Functional properties can be divided into

CPU and Memory related properties. A deeper division identi-

fies: CPUSpeedProperty; CPUNumberOfCores; CPUArchitec-

ture; CPUTypeProperty and CPUFlopsProperty. These proper-

ties are used to specify the clock frequency, the number of

cores, the architecture, the model and the FLOPS of CPUs

respectively. The properties follow the OCCI [11] standard

and API. A Data Property is defined for each of them in

order to specify the value of the property for the related

individuals. Properties for memory are divided into: Memo-

ryAllocationProperty and MemorySize. The first property is

used to specify memory allocation policies while the second

one is used to declare (or require) the amount of memory in

a Cloud infrastructure.

Subclasses of this Network Non Functional element are:

NetworkLatencyProperty, NetworkDelayProperty, Network-

BandwidthProperty. The first class is used to define the mean

latency of a network, the second one the mean, the maximum

and the minimum delay for packets and the last one is

used to define the mean and the maximum bandwidth of a

network. The values for individuals are defined by specifying

proper data properties defined on these classes. Data non

functional properties are related to disk size (DiskSpaceProp-

erty), transfer rate (DiskTransferRateProperty) and bandwidth

(DiskBandwidthProperty).

The main functional properties are: Replication (for the

definition of the type of replication policies of resources);

Encryption (it specifies the encryption policies of resources);

BackupAndRecovery (it is used to describe the back up

and recovery strategies used for a Cloud Component); Ac-

counting (its individuals define the accounting policies for

FRANCESCO MOSCATO ET AL.: AN ANALYSIS OF MOSAIC ONTOLOGY FOR CLOUD RESOURCES ANNOTATION 977

(a) Actor (b) Consumer

Fig. 5: Actors

(a) Non Functional Properties (b) Functional Properties

Fig. 6: Properties

Fig. 7: Layer

resources); Monitoring (this class allows for the specification

of monitoring policies for resources); Identification (it contains

individuals that can specify the algorithms and policies for

users identification); VMDescription (used to describe virtual

machines technologies and configuration eventually used in

cloud infrastructure); Management (it defines the management

policies for cloud resources).

Management contains the following subclasses: ImageMan-

agement, NetworkManagement and StorageManagement. The

first one is used to define the management policies of a VM

image, the second one to define network management policies

in a cloud infrastructure, while the third one is used to define

storage management policies for cloud resources.

Layers are organized as in Fig.7.

The classes OperationalLayer, ServiceLayer, BusinessLayer,

and ConsumerLayer are defined in the IBM Cloud Comput-

ing Reference Architecture. They respectively represent: the

operational infrastructure layer of cloud systems; the services

Fig. 8: Component

layer in clouds; the business processes that participate in

Cloud solutions; the layer with cloud services and resources

consumers.

Furthermore, other layers are derived from OCCI and NIST

definitions. They are: Application (the layer where applica-

tions lie); Firmware and Hardware (the layers with hardware

and firmware of cloud infrastructures); Software kernel (the

software kernel for operating systems and middlewares used

in cloud infrastructures); Software infrastructure (the layer of

computational, storage and communication infrastructures).

Service−Models subclasses includes all models for services

in Cloud. Infrastructure as a Service (IaaS), Platform as a

Service (PaaS) and Service as a Service (SaaS) are the classical

models defined in the NIST standard, while the last, BPaaS

(Business Process as a Service) is defined in the IBM Cloud

Computing Reference Architecture.

Component Subclasses are reported in Fig.8.

They are divided into: Tool (this contains all tools used for

978 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 9: Stateless Component

Fig. 10: Resource and Services

Cloud services development or cloud resources management);

RunTimeComponent (this class contains the elements for

defining mOSAIC run-time components); Environment (used

to define individuals concerning the cloud environment used

by cloud services); Infrastructure (describes the component in

the cloud infrastructure); StatefullComponent and Stateless-

Component; Resource (it collects all resource classes in the

cloud ontology).

StatelessComponent class is expanded in Fig.9. Basically

stateless component in the ontology are Services and Inter-

faces. Services will be described later and a general taxonomy

for APIs is reported in the figure.

Stateful component are omitted for brevity.

The Resource class is the most complex in the mOSAIC,

since, following the OCCI documentation, in Cloud Systems

everything is a cloud Resource. Hence this is a super class for

other main cloud components as shown in Fig.10.

Service is a Resource. Platform as a Service (PaaS),

Computing as a Service (CaaS), Data as a Service (DaaS),

infrastructure as a Service (IaaS), Hardware as a Service

(HaaS) and other service models (Simulation, services which

offers some functionalities, admin, data input and output

services) are subclasses of Services. For example, in Fig-

ure, DataStorage is provided as an IaaS. Key-valueStores,

ReplicatedRelationalDatabeses and DistributedFileSystems are

examples of DataStorage services. Cloud Component are also

considered as Cloud Resources, like Hosts, Computational and

Communication resources or InfrastructureSoftware.

A. DataStorage Example

In this section a brief example is shown where the mOSAIC

ontology is used to describe a simple data-storage service

implemented with Google App Engine.

TABLE I: ObjectProperties for Individuals

Domain ObjectProperty Range

mOSAICDataStore developedWithLanguage JAVA

mOSAICDataStore fulfils HighReplication

mOSAICDataStore fulfils HighConsistency

mOSAICDataStore hasServiceProvidedby Google

mOSAICDataStore isOfferedByProvider Google

mOSAICDataStore isOwnedBy Google

Google guarantee HighReplication

Google guarantee HighConsistency

Google guarantee LowConsistency

Google offersAPI GoogleAppAPI

Google own mOSAICDataStore

GoogleAppAPI developedwithLanguage JAVA

GoogleAppAPI developedwithLanguiage Python

GoogleAppAPI developedwithLanguiage Go

Fig. 11: mOSAICDataStore main Individuals and Relation-

ships

The name of the realized service is mOSAICDataStore and it

implements a key-based data store by using the JAVA Google

APP SDK. As described in the Google App documentation,

Google Data Stores offer Replication functionalities. In partic-

ular, they allow for the use of Master-Slave and High Replica-

tion techniques. In addition Consistency on replicas is assured

in most cases, although full consistency is not assured. Google

offers a framework for development of cloud applications,

which is based on an Eclipse Plug-in. The mOSAICDataStore

was developed by using this plug-in.

First of all, Google has been defined as individual of In-

frastructureProvider, DeveloperProvider, ServiceProvider and

ResourceProvider; GooglePluginForEclipse has been added as

a Framework’s individual. GoogleApps has been included as

PaaS and SaaS service Model; GoogleAppAPI, an individual

representing the Google APP API has been inserted into API,

and GoogleAPPSDK as Library.

Table I reports some of the objectProperties defined on

individuals.

In Fig.11 some of the individuals and the relationships

reported in Tab. I are depicted.

V. CONCLUSIONS

In this work we propose a detailed ontology for Cloud

systems that can be used to improve interoperability among

existing Cloud Solutions, platforms and services, both from

end-user and developer side. The ontology has been developed

in OWL and can be used for semantic retrieval and com-

position of Cloud services in the mOSAIC project. Several

attempts have been done in the past to introduce a Cloud

ontology. The ontology presented in this paper also maintains

compatibility with previous works because it is built upon

FRANCESCO MOSCATO ET AL.: AN ANALYSIS OF MOSAIC ONTOLOGY FOR CLOUD RESOURCES ANNOTATION 979

existing standards and proposals analysis and it results in a

more comprehensive description of all Cloud-related aspects.

The Ontology has been populated with individuals from real

Cloud Systems services and APIs and new individuals and

elements are going to be included in the ontology with an

incremental design approach.

ACKNOWLEDGMENT

This work has been supported by the mOSAIC project (EU

FP7-ICT programme, project under grant #256910). We want

to thank Daniel Bove for his role in developing the ontology.

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2): http://aws.amazon.
com/ec2/.

[2] Cloud Computing Interoperability Forum: http://www.cloudforum.org.
[3] Cloud Computing Interoperability Forum, Unified Cloud Computing:

http://code.google.com/p/unifiedcloud/.
[4] Cloud Computing Interoperability Forum,Cloud taxonomy : http://

groups.google.com/group/cloudforum/web/ccif-cloud-taxonomy.
[5] GoGrid: Scalable Load-Balanced Windows and Linux Cloud-Server

Hosting: http://www.gogrid.com/.
[6] Google App Engine: http://code.google.com/appengine/.
[7] Grid Computer Operating System For Web Applications—AppLogic,

3tera.: http://www.3tera.com/AppLogic/.
[8] National Institute of Standards and Technology (NIST), Cloud Stan-

dards: http://csrc.nist.gov/groups/SNS/cloud-computing/.
[9] Nimbus Science Cloud: http://workspace.globus.org/clouds/nimbus.

html.
[10] Open Cloud Manifesto, Spring 2009: http://www.opencloudmanifesto.

org.
[11] Open Grid Forum: Open Cloud Computing Interface (OCCI): http://

forge.ogf.org/sf/projects/occi-wg.
[12] OpenNebula, the Open Source Toolkit for Cloud Computing: http:

//www.opennebula.org.
[13] UCI Cloud OWL Ontology: http://code.google.com/p/

unifiedcloud/source/browse/trunk/ontologies/cloud.owl?r=14.
[14] Web Service Modelling Ontology (WSMO): http://www.wsmo.org.
[15] Appistry. Cloud Taxonomy: Applications, Platform, Infras-

tructure: http://www.appistry.com/blogs/sam/cloud-taxonomy\
-applications-platform-infrastructure, 2008.

[16] R. Aversa, B. Di Martino, N. Mazzocca, and S. Venticinque. A skeleton
based programming paradigm for mobile multi-agents on distributed
systems and its realization within the magda mobile agents platform.
Mob. Inf. Syst., 4:131–146, April 2008.

[17] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof,
Michael Gruninger, Richard Hull, Michael Kifer, David Martin, Sheila
McIlraith, Deborah McGuinness, Jianwen Su, and Said Tabet. Semantic
web services framework, September 2005.

[18] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. Mcguinness, Peter F. Patel-Schneider, and Lynn A. Stein.
Owl web ontology language reference. Technical report, W3C, 2004.

[19] Rajkumar Buyya, Chee S. Yeo, and Srikumar Venugopal. Market-
Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT
Services as Computing Utilities. In HPCC ’08: Proceedings of the 2008

10th IEEE International Conference on High Performance Computing

and Communications, pages 5–13. IEEE Computer Society, September
2008.

[20] C. Hoff. Cloud Taxonomy and Ontology: http://rationalsecurity.typepad.
com/blog/2009/01/cloud-computing-taxonomy-ontology.html, 2009.

[21] David Chappell. Introducing the Azure Services Platform.
David Chappel and Associates Whitepaper (Sponsored by
Microsoft Corporation): http://www.davidchappell.com/blog/2008/
10/introducing-azure-services-platform.html, 2008.

[22] Jos De Bruijn, Holger Lausen, Reto Krummenacher, Axel Polleres, Livia
Predoiu, Michael Kifer, and Dieter Fensel. The web service modeling
language wsml. Technical report, DERI, October 2005.

[23] U. Villano E. P. Mancini, M. Rak. PerfCloud: GRID Services for
Performance-oriented Development of Cloud Computing Applications.
In Proceedings of WETICE. IEEE Computer Society, July 2009.

[24] Galen Gruman and Eric Knorr. What cloud computing re-
ally means. InfoWorld : http://www.infoworld.com/article/08/04/07/
15FE-cloud-computing-reality1.html, 2008.

[25] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter
Patel-Schneider, and Ulrike Sattler. Owl 2: The next step for owl. Web
Semant., 6:309–322, November 2008.

[26] Kai Hwang. Massively distributed systems: From grids and p2p to
clouds. In Proceedings of The 3rd International Conference on Grid

and Pervasive Computing—gpc-workshops, page xxii, 2008.
[27] Jeremy Geelan. Twenty one experts define cloud computing. Virtualiza-

tion : http://virtualization.sys-con.com/node/612375, 2008.
[28] P. Lairds. Cloud Computing Taxonomy. In Procs. Interop09, pages

201–206. IEEE Computer Society, May 2009.
[29] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and Thomas

Sandholm. What’s inside the cloud? an architectural map of the cloud
landscape. In Proceedings of the 2009 ICSE Workshop on Software

Engineering Challenges of Cloud Computing, CLOUD ’09, pages 23–
31, Washington, DC, USA, 2009. IEEE Computer Society.

[30] David Martin, Massimo Paolucci, Sheila Mcilraith, Mark Burstein, Drew
Mcdermott, Deborah Mcguinness, Bijan Parsia, Terry Payne, Marta
Sabou, Monika Solanki, Naveen Srinivasan, and Katia Sycara. Bringing
Semantics to Web Services: The OWL-S Approach. In J. Cardoso and
A. Sheth, editors, SWSWPC 2004, volume 3387 of LNCS, pages 26–42.
Springer, 2004.

[31] P.Kopp R.Dieckmann G.Breiter S.Pappe H.Kreger A. Arsanjani
M.Behrendt, B. Glasner. Introduction and Architecture
Overview, IBM Cloud Computing Reference Architecture 2.0:
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.
IBMSubmission.02282011.doc, 2011.

[32] McGuinness, D. L., van Harmelen, F. OWL Web Ontology Lan-
guage Overview. W3C Recommendation: http://www.w3.org/TR/2004/
REC-owl-features-20040210/, 2004.

[33] Members of EGEE-II. An egee comparative study: Grids and clouds -
evolution or revolution. Technical report, Enabling Grids for E-sciencE
Project : https://edms.cern.ch/document/925013/, 2008.

[34] Dejan Milojicic. Cloud computing: Interview with russ daniels and
franco travostino. IEEE Internet Computing, (5):7–9, 2008.

[35] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli,
Sunil Soman, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus
open-source cloud-computing system. In Proceedings of the 2009 9th

IEEE/ACM International Symposium on Cluster Computing and the

Grid, CCGRID ’09, pages 124–131, Washington, DC, USA, 2009. IEEE
Computer Society.

[36] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma.
Meteor-s web service annotation framework. In Proceedings of the 13th

international conference on World Wide Web, WWW ’04, pages 553–
562, New York, NY, USA, 2004. ACM.

[37] Paul McFedries. The cloud is the computer. IEEE Spectrum Online:
http://www.spectrum.ieee.org/aug08/6490, 2008.

[38] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth,
K. Verma. Web Service Semantics WSDL-S. A joint UGA-IBM
Technical Note, version 1.0: http://lsdis.cs.uga.edu/projects/METEOR-S/
WSDL, 2005.

[39] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy
and survey of cloud computing systems. Networked Computing and

Advanced Information Management, International Conference on, 0:44–
51, 2009.

[40] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubn Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and
Dieter Fensel. Wsmo - web service modeling ontology. In DERI

Working Draft 14, volume 1, pages 77–106, BG Amsterdam, 2005.
Digital Enterprise Research Institute (DERI), IOS Press.

[41] Roy Bragg. Cloud computing: When computers really rule: http://www.
technewsworld.com/story/63954.html, 2008.

[42] Aaron Weiss. Computing in the clouds. netWorker, 11:16–25, December
2007.

[43] Lamia Youseff, Maria Butrico, and Dilma Da Silva. Towards a
unified ontology of cloud computing. In Grid Computing Environments

Workshop, 2008. GCE ’08, pages 1–10, Nov 2008.

980 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

