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Abstract—Conjoint Analysis is heavily used in many different
areas: from mathematical psychology, economics and marketing
to sociology, transportation and medicine trying to understand
how individuals evaluate products/services and as well as on
predicting behavioral outcomes by using statistical methods and
techniques. Nowadays is not much agreement about best practice,
which in turn has led to many flavors of CA being proposed and
applied. The goal of this paper is to offer a solution to perform
Adaptive Conjoint Analysis inside CQQL, a quantum logic based
information framework. We describe an algorithm to compute a
logical CQQL formula capturing user preferences and use this
formula to derive decision rules.

I. INTRODUCTION AND MOTIVATION

NOWADAYS, the term Conjoint Analysis (CA) is used in

many different ways. While in the past it was mostly on

the interest of marketers and psychologists, today’s variants are

used in many fields including applied economics, sociology,

transportation and medicine. The origins of Conjoint Analysis

come from developments in several disciplines, most notably

economics ([27], [26]) and mathematical psychology ([30],

[31], [2]).

Much of the Conjoint Analysis work was used trying to

understand how individuals evaluate products/services and

form preferences (see, [18], [22], [33] and possibly others).

In the last thirty years the CA literature focused more on

predicting behavioral outcomes by using statistical methods

and techniques ([3]) and this resulted in a widespread variation

in CA practice. Recently, applications in innovation market

were developed ([4]). The result today is that there is not

much agreement about best practice, which in turn has led to

many flavors of CA being proposed and applied.

The regular case involves a compositional model (see [17],

[20], [16]) where the respondents provide the necessary infor-

mation to be able to compute local utilities. Various ACA

interpretations define a conjoint(or utility) function U that

aggregates the local utilities to an overall utility i.e., if o is
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a product representation then U(o) denotes the overall utility

of this product. The main condition for such a function is to

be monotonic with respect of preferences i.e., U(o1) ≥ U(o2)
whenever o1 � o2 (see [17], [8], [9]). There is a large literature

concerning the way the overall score of a product should be

computed (see [3], [13], [17], [19], [16], [20], and many other).

A well known model for such a utility function is the additive

linear model (see [3] for a survey of models). Basically,

the overall utility is an additive linear combination on local

utilities adjusted with attribute weights and compensated with

a constant depending on interview:

Up(oj) = µ+

n∑

k=1

nk∑

l=1

βkl · xjkl + ej

where µ is the mean preference value across all profiles,

Up(oj) – is the total score on product profile oj with respect

to respondent p, βkl – is the weight of value akl of attribute

Ak, xjkl =

{
1, if oj .Ak = akl
0, otherwise

and ej is the measurement

error.

Therefore the problem reduces to find all βkl and µ. We need

estimates and not crisp values because we cannot offer all

possible product profiles in a user interview simply because

they can be too many([22]). Traditional conjoint uses full pro-

files (complete product descriptions) as basis for user surveys,

but such an approach suffers by description complexity in

the presence of many attributes ([22], [23], [24] and [25]),

the adaptive conjoint introduces a ”partial evaluation” i.e.,

requesting respondents to evaluate only partial profiles, named

stimuli by using trade-off matrix approaches, with emphasis on

pair comparisons.

A solution of the above model will entitle experts to com-

pute a measure of acceptance of a product by the consumer.

However, such a solution is not able to provide explanations

on product features and how they may influence the consumer

final decision. Logical languages offers qualitative and sym-

bolic methods to complement these standard approaches of

economic decision theory.

The goal of this paper is to offer a heuristic to per-

form Adaptive Conjoint Analysis inside a logic based frame-

work. We use the Commuting Quantum Logic Language,
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TABLE I
PRODUCT ATTRIBUTES AND USER RATINGS

AttrId Attr Weight Attr. Name Attr. Value ValueId Value Weight
Operating Android 1 7

1 6 system Windows Phone 2 6
other(proprietary) 3 3

2 7 WiFi yes 1 6
no 2 3

Screen less than 3.5” 1 3
3 7 size 3.5”-4.0” 2 7

greater than 4.0” 3 8
Battery 12 hours 1 9

4 5 life 6 hours 2 6
4 hours 3 5
2 hours 4 1

PriceLevel less than 150 EUR 1 9
5 8 150 EUR - 250 EUR 2 8

250 EUR - 500 EUR 3 5
greater than 500 EUR 4 0

CQQL([35]), to learn a logical formula U such that the CQQL

evaluation of this formula against a specific set of database

objects (product profiles) should monotonically correlate with

the user preferences on objects i.e. if o1 and o2 are two product

profiles eval(U, o1) ≥ eval(U, o2) ⇔ o1 � o2. Next section

shows an illustrating example of our approach.

A. A simple scenario: Which smartphone they may prefer?

Example 1 (Which smartphone do you prefer?): A smart-

phone manufacturer aims understanding which smartphone

is preferred by a specific target group. It performs adaptive

conjoint analysis with CQQL using a product decomposition

and user scores to compute a logical formula fulfilling the user

preferences. This formula can be easily interpreted towards

obtaining design decisions.

The initial data consists of a product decomposition into a set

attribute values (e.g., ”Operating System” is a product attribute

with three possible values: ”Android”, ”Windows Phone” and

”other(proprietary)”) and an initial user rating of attributes and

values (e.g., attribute ”WiFi” has score 7 and value ”Android”

has score 7) as shown in the Table I.

Product decomposition is an important stage in conjoint

analysis. Many papers emphasize that the decomposition

should be chosen carefully to satisfy a property known as pref-

erential independence. Preferential independence is extremely

important because if each set of attributes is preferentially

independent of its complement set, then the attribute utility can

be represented by an additive or multiplicative decomposition

([26]). If the attributes are not independent, according to [14],

[15], and [5], the utility is more difficult to be estimated. It

is not the goal of this paper to analyze methodologies and

techniques for product decomposition, therefore we assume an

initial a set of attributes together with their possible values.

The last step of our ACA-CQQL learning process yields the

following DNF formula1:

U = (A1 ∧A2 ∧A3 ∧A4 ∧A5)∨ (A1 ∧A2 ∧A3 ∧A4 ∧A5)

1for sake of simplicity, in this example, U covers the two most important
minterms.

After logical transformations such as distributivity, double

negation, transforming to implication and dual implication

the following set of decision rules are produced:

R1 : A2 ∨ A5 → A1; R2 : A2 → A1; R3 : A1 ∨ A2 → A5;

R4 : A2 → A5;

R5 : A2 ∨ A5 → A1; R6 : A2 → A1 ∧ A5; R7 : A5 → A1;

R8 : A2 → A1 ∧A5;

R9 : A3, R10 : A4

These rules are interpreted according with the user’s level of

importance of attribute values, e.g., R9 and R10 requests that

your product should definitely have a high level of A3 (i.e.

”large screen”) and may have a low level of A4 (”2 hour”).

R1 means ”whenever you have a low level of A2 and a high

level of A5, you should have a high level of A1 too” that is

”if the phone has no WIFI and a low price then it should

have OS Android”.

In addition, each minterm of the the learned formula U
defines a logical interpretation satisfying U . Each such

interpretation recommends product profiles. For example,

I = {A1, A2, A3, A4, A5} (introduced by the second minterm

in our example) recommends

(”proprietary OS”, ”WIFI”, ” > 4.0′′”, ”2 hours”, ”high price”)

While these rules are suitable to be processed by rule engines,

we can also derive logically equivalent representations tailored

to human interpretation:

F1 : A3 ∧A4;

F2 : A1 ⊕A2;

F3 : A1 ↔ A5;

F4 : A2 ⊕A5;

II. OVERVIEW OF OUR APPROACH

Let A = {A1, . . . , An} be a set of mutually independent

attributes. Let dom(Ai) the value space of attribute Ai. Let

O = {(a1, ..., an)|ak ∈ dom(Ak), k = 1, ..., n} a set

of possible objects built over A. Let S be a finite set of

incomplete objects or stimuli i.e. s ∈ S is a database tuple with

nulls. The null interpretation related to these objects is in the

sense of missing information, e.g., considering 6 attributes a
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possible stimuli is the tuple s = (a1, null, null, a4, null, null)
where ai are specific attribute values. S is built by extracting

incomplete objects from O. Let P be a set of respondents.

The ACA-CQQL conjoint representation is the weighted full

DNF2, U =
∨

wk
mk where mk denotes the k-minterm and

wk ∈ [0, 1] is the weight of minterm mk. Each minterm is a

conjunction of exactly n literals (positive attribute occurrence

or negative attribute occurrence) each corresponding to one of

the n attributes of ACA-CQQL problem.

The overall approach we use is briefly described below:

1) For each respondent p ∈ P , use an interview to derive

a preference relation

PS,p : S × S −→ {0, 1, unknown};

2) Use a stimuli preference relation PS,p to compute a rank

ρS,p on S . A stimuli s is better ranked by ρS,p when the

user likes s better than other one (with a lower rank);

3) Derive an induced rank on O, ρO,p; This step computes

a rank on full objects by considering the computed rank

in Step 2.

4) Use CQQL evaluation to obtain PM,p a preference

relation on minterms of U ; This step allows to express a

respondent preference relation on minterms and by con-

sequence to compute an overall preference as described

in Step 5.

5) Compute an overall minterm preference PM by aggre-

gation of all PM,p;

6) Use PM to compute, ρM, a rank on CQQL formula

minterms; This is one of the core steps of our solution.

Ranking minterms of the full DNF allows to select sig-

nificant minterms and as such to derive an approximation

of interests.

7) Create and interpret decision rules considering the best

ranked minterms.

Methods for learning and predicting preferences are addressed

by the machine learning community [21] and recommender

systems [1]. These communities provides solutions such as

approximating the scoring function by using interviews (pref-

erence elicitation) to collaborative filtering, where the user

preferences are estimated from the preferences of other users.

The steps 1–3 are described in Section III while steps 4–7 are

described in Section V.

III. ORDERING FROM PREFERENCES ON INCOMPLETE

INFORMATION

Conjoint Analysis associates each respondent p ∈ P , with

a set of pairwise comparisons (2–stimuli questions), each

comparison being rated on a Likert scale [28]. Each question

may have its own scale. Likert scales are bipolar scaling

methods therefore we can straightforward derive a preference

from ratings.

Let p ∈ P be a respondent. Let (si, sj) be a comparison rated

2Any logical formula can be converted to a disjunctive normal form (DNF)
by using logical equivalences, such as the double complement elimination, De
Morgan’s laws, and the distributive law. Recall that CQQL provides rewriting
rules to translate from weighted operations to into CQQL Boolean calculus.
Therefore we are going to learn a formula directly in the DNF form.

Fig. 1. Graph of preferences

with r on a Likert scale 1..Kp, Kp ∈ N. One traditional scale

is 1..9 but other choices can be used too (e.g. 1..5). On scale

1..9, r = 1 means ”I like very much si” , r = 5 is neutral (”I

equally like both si and sj”) while r = 9 means ”I like very

much sj”. Then

P (si, sj) =





0, r < ⌊Kp/2⌋+ 1, (si ≻ sj)
unknown, r = ⌊Kp/2⌋+ 1
1, r < ⌊Kp/2⌋+ 1, (sj ≻ si)

The first step is to use the given initial preference PS to learn

an ordering function ρS . We use the Algorithm 1, a greedy

ordering introduced by [6].

This algorithm is based on viewing preferences as a directed

Data: S , binary preference PS

Result: ρS
Let V = S;

foreach v ∈ V do

π(v) =
∑

u∈V PS(v, u)−
∑

u∈V PS(u, v);
end

while V 6= ∅ do

Let t = argmaxu∈V π(u);
Let ρS(t) = |V |;
V = V − {t};

foreach v ∈ V do

π(v) = π(v) + PS(t, v)− PS(v, t);
end

end
Algorithm 1: orderByPrefs(S, P ), [6]

weighted graph where the initial set of vertices V is equal of

set of stimuli S and each edge u → v has weight PS(u, v) = 1
(v is preferred to u). Each vertex v gets a ”potential” π(v)
which is the sum of the incoming edges minus the sum of

outgoing edges. The Algorithm 1 picks some node t that has

a maximum potential, assigns it a rank ρS(t) = |V | and then

ordering in the same way the remaining nodes, after updating

the nodes potentials.

The potentials define a stratification of the directed weighted

graph into node sets of the same potential. The stratum
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with the highest potential is processed first. However when

processing the nodes in the same stratum all of them have the

same potential, therefore the algorithm must choose between

them. For example, considering the preferences as in Figure

1 (the initial potential of each stratum is shown too) it is

easy to see that node 5 will be processed first (it gets a rank

of 4) but then we have a nondeterministic selection because

either 4 or 3 can be a choice (both will have the same

updated potential). Therefore the output ordering provided

by Algorithm 1 depends on the argmax implementation3.

Among others, orderings {0, 1, 2, 3, 4, 5} and {0, 2, 1, 4, 3, 5}
can be produced.

Definition 1 (Incomplete Objects Equality and Membership):

Two incomplete objects s1, s2 ∈ S are equal, and we write

s1 = s2, when all their correspondent values are the same

i.e. if s1 = (a1, ..., an) and s2 = (b1, ..., bn) then s1 = s2
iff ak = bk for all k = 1, . . . , n. The values equality

interpretation is defined as in the below table:
= v null
v true false

null false true
Let s = (a′1, ..., a

′
n) ∈ S and o = (a1, ..., an) ∈ O. We say

that s is contained by o (or o contains s) and we denote s ⊆ o
iff a′k 6= null implies a′k = ak for all k = 1, . . . , n. Therefore

an incomplete object is contained by an object when its non-

null values are the same in the related object.

The following definition introduces an extension from an order

on incomplete objects to an order on complete objects.

Definition 2 (Ordering Extension): Let O be a set of com-

plete objects, S be a set of incomplete objects and PS a

binary preference. Let ρS obtained by Algorithm 1. Then, the

ordering ρO defines the extension of ρS from S to O:

ρO(o) =
∑

si∈S, si⊆o

usiρS(si)

where usi is the stimuli utility. If no stimuli belong to object

o then ρO(o) = 0.

Stimuli utility is an additive linear combination of attribute

value weight i.e. if ms is the number of distinct attribute values

of s ∈ S , then us = 1
ms

∑N
i=1 θi · (

∑ni

k=1 θik · xik) where

xik = 1 when Ai is present (with value aik) in stimuli s,

otherwise is 0 (null values are ignored). θi ∈ [0, 1] is the

weight of attribute Ai and θik ∈ [0, 1] is the weight of value

aik ∈ dom(Ai). The reader may notice that θi and θik are

obtained from the respondent initial ratings of attributes and

attribute values as requested by traditional ACA typically by

using a [0, 1] mapping from ratings on Likert scales.

Proposition 1: Let o1, o2 ∈ O such that s1, ..., sk ⊆ o1 and

s1, ..., sk, sk+1 ⊆ o2. Then ρO(o2) > ρO(o1).
Proof: Easy to see that ρO(o2) = ρO(o1) +

usk+1
ρS(sk+1).

3While Algorithm 1 successfully applies when we have a binary preference
as input (see [7] for an optimality proof), in practical cases we work with non
binary preferences i.e., there are pairwise comparisons (x, y) which are rated
neutral, therefore PS(x, y) = unknown. In this work we will ignore neutral
rated questions.

Any ordering induce a preference as below:

Pρ(x, y) =





1, ρ(x) < ρ(y)
0, ρ(x) > ρ(y)

unknown, ρ(x) = ρ(y)

When ρ is strict then, Pρ is binary (the unknown case does

not occur).

In the rest of the paper we assume as given ρO and PO.

The next step is to use CQQL minterm evaluation to obtain a

preference on formula minterms. The goal of the next section

is to give basic information about CQQL language, particularly

on CQQL evaluation rules.

IV. COMMUTING QUANTUM QUERY LANGUAGE (CQQL)

Introduced in [35], CQQL is an extension of the relational

calculus using quantum logic paradigm which defines met-

ric(or similarity) predicates, weighted conjunction (∧θ1,θ2 ),

weighted disjunction (∨θ1,θ2 ) and quantum negation. CQQL

extends relational calculus by allowing for complex logical

formulas mixing classical first-order logic predicates with

metric predicates. Score values from [0, 1] results from the

evaluation of metric predicates on data objects. On the other

hand, traditional database predicates (non-metric predicates)

provide 1 for true and 0 for false. A significant advantage

of the language derives from the capabilities of quantum

measurement results to be interpreted as probability values.

Therefore conjunction, disjunction and negation conforms with

the probability calculus. As a consequence, many concepts of

information retrieval, already embedded into linear algebra and

probability theory, can be addressed.

Processing non-metric attributes i.e. attributes not requiring

any degree of neighborhood between their values, therefore

we follow the classical database query processing. When pro-

cessing metric attributes i.e. data for which we are interested

in distinguishing comparisons between two values which are

close neighbors from those which lie far away from each

other we follow the CQQL approach of similarity evaluation

based on quantum measurement. An example of a non-metric

attribute (or database attribute) is ”Operating System” as

shown in Section I-A.

Attributes such as ”Price” comes naturally as metric attributes

(or similarity attributes) because the users are definitely inter-

ested in low prices, therefore they are evaluated by means

of similarity predicates: it becomes easy to derive an order

of the values of these attributes and to use a continuous,

and monotonic predicate pPrice : dom(Price) −→ [0, 1] to

associate their values with truth degrees.
Definition 3 (Database Values Evaluation): Let o be a

database object. If A is a non-metric attribute such that

o.A = a, then

eval(A = v, o) =

{
1, if v = a
0, otherwise

whenever a = null or v = null we take

eval(A = v, o) = unknown.
Let A be a metric attribute. Any value a ∈ dom(A), is mapped

by quantum encoding into a vector state a. This give the
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user a means to assign its own semantics to the resulting

proximity values. The CQQL framework allows evaluation of

similarity values by using any similarity measure s satisfying

the following conditions:

1) for all a, b ∈ dom(A), s(a, b) ∈ [0, 1].
2) for all a, b ∈ dom(A), s(a, b) = 1 ⇔ a = b.
3) for all a, b ∈ dom(A), s(a, b) = s(b, a).

A widely used such similarity measure is the cosine similarity

s(a, b) = a·b
‖a‖‖b‖

.

Definition 4 (Retrieval Values Evaluation):

eval(A ≈ v, o) =





s(v, o.a), ifv 6= null and a 6= null

unknown, otherwise
(1)

Before a CQQL formula can be evaluated it has to be

normalized. The normalization requires a special syntactical

form starting with a formula that is in the prenex and dis-

junctive normal form. Then all common atoms ϕ are removed

by applying the rule (ϕ ∧ ϕ1) ∨ (ϕ ∧ ϕ2) = ϕ ∧ (ϕ1 ∨ ϕ2)
(derived from distributivity and absorbtion).The normalization

algorithm is based on Boolean transformation rules and is

described in [35].

Definition 5 (Formula Evaluation): Let ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2

and ϕ normalized formulas. Then

eval(ϕ1 ∧ ϕ2, o) = eval(ϕ1, o) ∗ eval(ϕ2, o)
eval(ϕ1 ∨ ϕ2, o) = eval(ϕ1, o) + eval(ϕ2, o)−
eval(ϕ1, o) ∗ eval(ϕ2, o)
eval(¬ϕ, o) = 1− eval(ϕ, o)

Applying CQQL evaluation against a set of database objects

we get a rank of all objects according to their score value.

Integrating weights into CQQL can be achieved simply.

The core idea is the direct transformation of a weighted

conjunction or disjunction into a logical expression in which

weight values are converted into 0-ary predicates using the

rewriting rules below:

ϕ1 ∧θ1,θ2 ϕ2 ⇒ (ϕ1 ∨ ¬θ1) ∧ (ϕ2 ∨ ¬θ2)
ϕ1 ∨θ1,θ2 ϕ2 ⇒ (ϕ1 ∧ θ1) ∨ (ϕ2 ∧ θ2)

These rules provide a way to transform weighted conjunction,

weighted disjunctions into CQQL Boolean calculus. More

technical details on these transformations and examples can

be found in [37]. An intuitive interpretation of rewriting rules

when considering only Boolean weights (0 and 1)is described

in the below table.

θ1 θ2 ϕ1 ∧θ1,θ2 ϕ2 ϕ1 ∨θ1,θ2 ϕ2 Explanation

0 0 1 0 none of ϕ1 and

ϕ2 counts

0 1 ϕ2 ϕ2 only ϕ2

counts

1 0 ϕ1 ϕ1 only ϕ1

counts

1 1 ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 both ϕ1 and

ϕ2 counts

Existential quantification and universal quantification in a

CQQL query are evaluated by computing maximum respec-

tively minimum of the weight values of the appropriate objects.

V. CONJOINT ANALYSIS WITH CQQL

This scenario is centered on a weight learning algorithm, an

adaptation of the weighted majority algorithm proposed in [29]

and discussed in [6] and [7]. The main assumption, introduced

by [29] and conforming with conjoint analysis principles ([22],

[23]) is the compositional approach to overall preference as a

weighted sum of individual preferences.

Let A = {A1, . . . , An} be a set of mutually independent

attributes. Let dom(Ai) the value space of attribute Ai. Let

O = {(a1, ..., an)|ak ∈ dom(Ak), k = 1, ..., n} a set of

possible objects built over A. Let S be a set of stimuli and

M be the set of all minterms over A. The overall idea of the

conjoint process is to obtain an aggregated preference on pos-

sible minterms and use this preference to compute an ordering

on M. Given minterm preferences PM,p for all respondents

p ∈ P the algorithm learn optimal {wp ∈ [0, 1]|p ∈ P} such

that

PM(m1,m2) =
∑

p∈P

wp · PM,p(m1,m2), m1,m2 ∈ M

such that a specific loss function is minimized. This solution

uses a loss function defined as the [0,1] normalization of the

number of discordant preferences between P̂M – a preference

function computed from experts evaluations, and PM – the

preference computed by the learner:

Loss(PM, P̂M) =

∑
P̂M(x,y)=1(1− PM(x, y))

|P̂M|

As largely discussed in [6] and [7], this loss function has a

probabilistic interpretation: if PM(x, y) is interpreted as the

probability that y is preferred to x then Loss(PM, P̂M) is

the probability of disagreement of PM with the feedback on

(x, y) from P̂M.

As we use this algorithm on minterm preferences, at first,

we need a mechanism to compute minterm preferences from

object preferences.

Recall that the goal is to learn a formula as a disjunction of

most important minterms. It defines a logical representation

of the respondent interests and offers an explanation on user’s

interests. To compute it we compute a ranking of formula

minterms from preferences on database objects and take the

most dominant minterms.
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Fig. 2. Geometric Interpretation of Rule 1 on minterm preferences

A. Computing Minterm Preferences

Definition 6 (Minterm Preference): Let PO be a

preference. Let M be the set of minterms of U . Let

o1, o2 ∈ O and mi,mj ∈ M. The minterms preference PM

is computed according with the following rules:

PO(o1, o2) = 0
eval(mi, o1) > eval(mj , o2)
eval(mi, o1) > eval(mj , o1)



 ⇒ PM(mi,mj) = 0

PO(o1, o2) = 0
eval(mj , o1) > eval(mi, o2)
eval(mj , o1) > eval(mi, o1)



 ⇒ PM(mi,mj) = 1

All remaining unassigned preferences are considered

unknown.

Basically, ”minterms that are more similar in CQQL evalu-

ation against preferred objects are preferred”. This heuristic

has a geometric interpretation. Figure 2 shows minterms mi

and mj such that PM(mi,mj) = 0. We consider only the

regions were the CQQL minterm evaluation of the preferred

object (o1 in Figure 2) is better that minterm evaluation on the

less preferred object (o2) and inside these regions we compute

preferences induced by the the ordering produced by CQQL

minterm evaluation.

Proposition 2: The minterm preference and object prefer-

ence are monotonic with respect of CQQL evaluation i.e.,

PO(o1, o2) = PM(mi,mj) = 0 iff

eval(mi, o1) > eval(mj , o2)
and

PO(o1, o2) = PM(mi,mj) = 1 iff

eval(mj , o2) > eval(mi, o1).
Proof: The first relation yields directly using the first

rule from Definition 6. The second comes from the preference

symmetry (P (x, y) = 0 ⇔ P (y, x) = 1) and second rule.

B. Performing Conjoint Analysis

The conjoint process takes place in a sequence of rounds,

one for each interview question and for all respondents. The

complete description is depicted in Algorithm 2. Basically, on

the q-th iteration we have M the set of minterms and P
(q)
M,p

the (computed) respondents preferences on M. Then, the

learner receives feedback from the environment. We assume

that this feedback comes as a preference function on minterms,

previously computed using the same techniques from experts

Data: O, S , Q interview

Data: r ∈ [0, 1]. Initial w(1) ∈ [0, 1]|P| with∑|P|
j=1 w

(1)
j = 1

Result: U , R1, ..., Rl

foreach q ∈ Q do

Update preferences {P
(q)
S,p|p ∈ P};

Compute minterm preferences {P
(q)
M,p|p ∈ P};

Aggregate

PM(mi,mj) =
∑

p∈P w
(q)
p · P

(q)
M,p(mi,mj);

L(q) = Loss(P
(q)
M , P̂M);

Update w
(next(q))
p = 1

C(q)w
(q)
p · rL(q) , for all p ∈ P;

end

Compute k means Lloyd(PM, [0, 1],
{0, 1, unknown});
Compute ordering ρM = orderByPrefs(M, PM);
Compute U as a disjunction of the first k minterms

ordered by ρM;

Compute decision rules R1, ..., Rl;
Algorithm 2: CA inside a Logical Framework

inputs. At each step we update the new weight vector as

w
(next(q))
p = 1

C(q)w
(q)
p · rLoss(P

(q)
M

,P̂M) for all p ∈ P where

r ∈ [0, 1] is a calibration constant and C(q) is an normalization

constant chosen so that
∑

p∈P w
(next(q))
p = 1.

The ”majority weighted” solution for preference aggregation

is largely used by machine learning community. It obtains

a partial preference PM : M × M −→ [0, 1]. However,

Algorithm 1 works with binary preferences, therefore we

have to perform a clustering from PM(m1,m2) ∈ [0, 1] to

PM(m1,m2) ∈ {0, 1, unknown}. There is large literature on

clustering methods ([34] is a recent survey). By now, because

our clustering space is Euclidean and one dimensional we

considered standard k-means clustering procedure (Lloyd’s

algorithm) to produce three clusters: ”0”, ”0.5”(”unknown”)

and ”1”.

C. Creating and Interpreting Decision Rules

Following the above learning process we get a formula

U as a disjunction of the most K dominant minterms,

mi1 , . . . ,miK . To obtain a ruleset based on U :

1) Compute a conjunctive normal form. Applying the dis-

tributivity laws to U , then eliminate duplicates (L∨L ⇒
L) and tautology (delete L∨L). As a result of this step

we obtain U in the CNF form.

2) Find unit clauses. (i.e. the clauses containing only one

literal). All these unit clauses (or facts) are mandatory

rules of our ruleset.

3) Simplify unit clauses. All unit clauses must be true

therefore we replace the corresponding literals from U ,

then apply the usual Boolean computation. As a result

all clauses of U do not contain any literals from unit

clauses. Let C be the set of all clauses of U .

4) Transform each clause to a rule. For each C ∈ C, let

C = L1∨. . .∨Lj and let L1 be the desired conclusion of
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the rule4. Then the rule corresponding to C is obtained

by simple transformation to implication i.e.(
(L2 ∨ . . . ∨ Lj)

)
∨ L1 ⇒

(
L2 ∧ . . . ∧ Lj

)
∨ L1 ⇒

RC : L2 ∧ . . . ∧ Lj → L1.

Eliminate possible double negation of the rule literals

(apply L ⇒ L).

VI. EXPERIMENTAL RESULTS

Our experiments were related to an use case considering

15 attributes. We considered one scale (1..9) for all attribute

ratings and the experiment uses a slightly modified variant of

logistic function f(n) = 1
(1+e−n+5) for rating mapping. This

maps the scale 1..9 into 0.0179, 0.0474, 0.1192, 0.2689, 0.5,

0.7310, 0.8808, 0.9525, 0.9820.

The training data had 16 objects previously ranked by experts,

from which we derived 32 stimuli. Each interview had 15

pairwise comparisons containing stimuli of similar utility, i.e.,

a pair comparison (s1, s2) was generated iff |us1 − us2 | < εp
where εp is a threshold depending on the respondent.All

questions used the same evaluation scale, 1..9. We computed

a CQQL formula based on 1,2,3,5, and 10 most dominant

minterms. The respondents scores and preferences were set

up at random and we performed 100 simulations.

The result quality was measured by using Spearman’s corre-

lation, to compare the training data rank obtained by CQQL

evaluation with the experts evaluation as shown in the below

table:

No. of Best Worse Average

minterms Spearman Spearman

1 0.4814 0.1231 0.4002

2 0.7871 0.3612 0.72

3 0.91 0.7713 0.8724

5 0.9159 0.7023 0.8813

10 0.9921 0.7718 0.8763

The actual results show that using the first 3 or 5 dominant

minterms give a correlation comparable with the case when

the first 10 most dominant minterms were used. When creating

decision rules the main complexity parameter is the number

of minterms to be used: using the first two dominant minterms

as a starting base will produce the simplest rules, as the ones

described in Section I-A5. Such rules can be easily interpreted

both by a human expert or a rule engine. However, when four

or more dominant minterms were used then a much larger

ruleset is computed and the complexity of each rule increase

too. Typically such a ruleset will be processed by means of a

rule engine although if a human expert is interested only in

partial decisions he can use only a subset of these rules ([12]).

The settings of the decision rules creation process considered

4This choice is related to the human expert interests on one or other
attribute. Other solutions may consider the user’s high rated attributes as a
choice.

5Notice that the rules produced as described in Section V-C can also be
grouped by head towards a much compact writing. This is easy when two or
three minterms were used in the CQQL formula, but becomes not so much
useful when more minterms were considered.

the first two dominant minterms of the obtained full DNF

formula and the first three user high rated attributes as rule

conclusions.

VII. CONCLUSIONS AND FUTURE RESEARCH

This article has shown how conjoint analysis can be

modeled using the tools offered by CQQL, a logic-based

similarity query language. The advantage of the approach lies

in the expressive power and flexibility of logic to encode the

conjoint model. We obtained an ACA-CQQL interpretation as

ranking of potential products according with some preexistent

pattern (CQQL query) and used some learning algorithms

to compute the solution. Doing conjoint analysis inside a

logic-based framework creates opportunities to apply such

data analysis strategy to other kind of problems such as

delivering recommendations inside social networks, and

deriving user’s profiles from mining social activities.

We plan to extend our approach. The model formulation offers

the opportunity to tune the conjoint problem by performing a

choice on a number of parameter as discussing below.

Attribute classification and preferences normalization. CQQL

supports both metric and non-metric attributes therefore both

crisp and non-crisp data can be handled. In addition, each

metric attribute may come with his own rating scale. The

length of the scale might have to be considered while creates

much more granularity of weights. The actual experiment

uses classical exponential utility but other normalization

approach should be considered in the future research.

Stimuli and pairwise comparisons. While in our experiments

we’ve extracted stimuli on a heuristic base, possibly a more

systematic approach (using techniques already provided in

economics research) may yield to better results. Stimuli

with two conjuncts are very easy to be understood by

respondents, but using 3 or more conjuncts in the stimuli

will improve the quality of the extended ordering on the

training objects (see Definition 2). Secondly, CA also

considers questions with more than 2 stimuli choices: in this

case, we cannot use bipolar scales, therefore the preference

order induced by question rating is not unique6. Finally,

in the present work we ignore neutral rated comparisons

but we aim to investigate other approaches in further research.

The interview creation. This work does not impose any

restrictions on the interview creation, therefore the list of

questions composing the respondent interview may support

various orderings such as ”by question importance” or ”by

question difficulty”. In all cases a strategy should not violate

the transitivity property of preferences: non-transitive pairs

creates inconsistent problems (not all preferences can be

simultaneously satisfied). An interview creation strategy

6Receiving a question q = (s1, s2, s3) after scoring r1 < r2 < r3 we
get s1 � s2 � s3 but we have to understand how to derive ratings for pairs
such as s1 � s2.
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should detect this issue in the interview creation stage

(immediately after the user rated a new pair comparison )

and not during the learning stage. In addition, because during

an interview, traditional ACA may also ask respondents to

rate individual products(complete objects) on a purchase

likelihood scale, we aim to generate these by considering

intermediary learned formulas for tuning the preferences set

towards fasten the convergence to an acceptable solution.

The learning strategy. Actually, the algorithm uses a

loss function previously tested by other research. However we

intend to investigate the performance of other loss functions

such as

Loss(P, P̂ ) =

∑
(x,y)∈X×X(P̂ (x, y)− P (x, y))

|X ×X|

which is similar with Kendall’s τ rank correlation coefficient.

The learning strategy implementation supports parallelization

by distributing processing on persons or person groups,

therefore an ACA-CQQL application should be able to offer

fast answers. We also intend to investigate other learning

algorithm such as ones described by [21]. Obtaining various

ACA-CQQL conjoint representation that can be interpreted

and explained is one of the powerful achievements of

the proposed solution. We get explanations both in terms

of user’s most preferred attributes/values, and preferred

products/services. In future research alternative solutions to

derive minterm preferences have to be examined.

Decision rules. The obtained rule set can be subject of

interpretation in various ways from simpler (as seen in

Example 1) to solutions involving different semantics such as

incomplete/imprecise information, [36], probabilistic models

[32], or plausibility-based models [10], [11]). We plan to

address some of these alternatives in subsequent research.
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