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I. ON THE FAMILIES OF DIRECTED GRAPHS OF LARGE

GIRTH

T
HE READER can find the missing theoretical definitions

on directed graphs in [8]. Let Φ be an irreflexive binary

relation over the set V , i.e., Φ ⊂ V × V and for each v the

pair (v, v) is not an element of Φ.
We say that u is the neighbour of v and write v → u if

(v, u) ∈ Φ. We use the term balanced binary relation graph

for the graph Γ of an irreflexive binary relation φ over a finite

set V such that for each v ∈ V the sets {x|(x, v) ∈ φ} and

{x|(v, x) ∈ φ} have the same cardinality. It is a directed graph

without loops and multiple edges. We say that a balanced

graph Γ is k-regular if for each vertex v ∈ Γ the cardinality

of {x|(v, x) ∈ φ} is k.
Let Γ be the graph of binary relation. The path between

vertices a and b is the sequence a = x0 → x1 → . . . xs = b
of length s, where xi, i = 0, 1, . . . s are distinct vertices.

We say that the pair of paths a = x0 → x1 → · · · → xs =
b, s ≥ 1 and a = y0 → y1 → · · · → yt = b, t ≥ 1 form an

(s, t)- commutative diagram Os,t if xi 6= yj for 0 < i < s,
0 < j < t. Without loss of generality we assume that s ≥ t.
We refer to the number max(s, t) as the rank of Os,t. It is

greater than or equal to 2, because the graph does not contain

multiple edges.

Notice that the graph of antireflexive binary relation may

have a directed cycle Os = Os,0: v0 → v1 → . . . vs−1 → v0,
where vi, i = 0, 1, . . . , s− 1, s ≥ 2 are distinct vertices.

We will count directed cycles as commutative diagrams.

For the investigation of commutative diagrams we introduce

the girth indicator gi, which is the minimal value formax(s, t)
for parameters s, t of a commutative diagram Os,t, s+ t ≥ 3.
The minimum is taken over all pairs of vertices (a, b) in the

digraph. Notice that two vertices v and u at distance is less

than gi are connected by the unique path from u to v of length

is less than gi.
We assume that the girth g(Γ) of a directed graph Γ with

the girth indicator d+1 is 2d+1 if it contains a commutative
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diagram Od+1,d. If there are no such diagrams we assume that

g(Γ) is 2d+ 2.
In case of a symmetric binary relation gi = d implies that

the girth of the graph is 2d or 2d − 1. It does not contain

an even cycle 2d − 2. In the general case gi = d implies

that g ≥ d + 1. So in the case of the family of graphs with

unbounded girth indicator, the girth is also unbounded. We

also have gi ≥ g/2.
In the case of symmetric irreflexive relations the above

mentioned general definition of the girth agrees with the

standard definition of the girth of a simple graph, i.e., the

length of its minimal cycle.

We will use the term the family of graphs of large girth for

the family of balanced directed regular graphs Γi of degree

ki and order vi such that gi(Γi)≥ clogki
(vi), where c is a

constant independent of i.
It follows from the definition that g(Γi) ≥ clogki

(vi) for

an appropriate constant c. So, it agrees with the well known

definition for the case of simple graphs.

The diameter of the strongly connected digraph [8] is the

minimal length d of the shortest directed path a = x0 → x1 →
x2 → · · · → xd = b between two vertices a and b. Recall that
a graph is k-regular, if each vertex of G has exactly k edges.

Let F be the infinite family of ki regular graphs Gi of order

vi and diameter di. We say that F is a family of small world

graphs if di ≤ Clogki
(vi), i = 1, . . . for some constant C

independent of i. The reader can find the definition of small

world simple graphs and related explicit constructions in [4].

For the studies of small world simple graphs without small

cycles see [12], [16].

II. ON THE K -THEORY OF AFFINE GRAPHS WITH

INCREASING GIRTH INDICATOR AND ITS

CRYPTOGRAPHICAL MOTIVATIONS

We use the concepts of [19] here, where the reader can find

additional examples of affine graphs over rings or fields.

Let K be a commutative ring. A directed algebraic graph

φ over K consists of two things, such as the vertex set Q
being a quasiprojective variety over K of nonzero dimension

and the edge set being a quasiprojective variety φ in Q ×Q.

We assume that (xφy means (x, y) ∈ φ).
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The graph φ is balanced if for each vertex v ∈ Q
the sets Im(v) = {x | vφx} and Out(v) = {x |xφv} are

quasiprojective varieties over K of the same dimension.

The graph φ is homogeneous (or (r, s)-homogeneous) if

for each vertex v ∈ Q the sets Im(v) = {x|vφx} and

Out(v) = {x|xφv} are quasiprojective varieties over F of

fixed nonzero dimensions r and s, respectively.
In the case of balanced homogeneous algebraic graphs for

which r = s we will use the term r-homogeneous graph.

Finally, a regular algebraic graph is a balanced homogeneous

algebraic graph over the ring K if each pair of vertices v1 and

v2 is a pair of isomorphic algebraic varieties.

Let Reg(K) be the totality of regular elements (or nonzero

divisors) of K , i.e., nonzero elements x ∈ K such that for

each nonzero y ∈ K the product xy is different from 0. We

assume that Reg(K) contains at least 3 elements. We assume

here that K is finite, thus the vertex set and the edge set are

finite and we get a usual finite directed graph.

We apply the term affine graph for the regular algebraic

graph such that its vertex set is an affine variety in the Zarisski

topology.

Let G be an r-regular affine graph with vertex set V (G),
such that Outv, v ∈ V (G) is isomorphic to the variety R(K).
Let the variety E(G) be its arrow set (a binary relation in

V (G) × V (G)). We use the standard term perfect algebraic

colouring of edges for the polynomial map ρ from E(G) onto
the set R(K) (the set of colours) if for each vertex v different

output arrows e1 ∈ Out(v) and e2 ∈ Out(v) have distinct

colours ρ(e1) and ρ(e2) and the operator Nα(v) of taking the

neighbour u of vertex v (v → u) is a polynomial map of the

variety V (G) into itself.

We will use the term rainbow-like colouring in the case

when the perfect algebraic colouring is a bijection. Let

dirg(G) be a directed girth of the graph G, i.e., the min-

imal length of a directed cycle in the graph. Obviously

gi(G) ≤ dirg(G).
Studies of infinite families of directed affine algebraic

digraphs over commutative rings K of large girth with the

rainbow-like colouring is a nice but difficult mathematical

problem. Good news is that such families do exist. In the next

section we consider an example of such a family for each

commutative ring with more than 2 regular elements.

At the end of section we consider cryptographical motiva-

tions for studies of such families.

1) Let G be a finite group and g ∈ G. The discrete logarithm

problem for G is about finding a solution for the equation

gx = b where x is an unknown positive integer. If the order

|g| = n is known we can replace G with a cyclic group Cn.

So we may assume that the order of g is sufficiently large to

make the computation of n unfeasible. For many finite groups

the discrete logarithm problem is NP complete.

Let K be a finite commutative ring and M be an affine vari-

ety over K . Then the Cremona group C(M) of all polynomial

automorphisms of the variety M can be large. For example,

if K is a finite prime field Fp and M = Fp
n then C(M) is a

symmetric group Spn .

Let us consider the family of affine graphs Gi(K),
i = 1, 2, . . . with the rainbow-like algebraic colouring of edges
such that V (Gi(K)) = Vi(K), where K is a commutative

ring, and the colour sets are algebraic varieties Ri(K). Let us
choose a constant k. The operator Nα(v) of taking the neigh-

bour of a vertex v corresponding to the output arrow of colour

α are elements of Ci = C(Vi(K)) . We can choose a relatively

small number k to generate h = hi = Nα1
Nα2

. . . Nαk
in each

group Ci, i = 1, 2, . . .
Let us assume that the family of graphs Gi(K) is the family

of graphs of increasing girth. It means that the girth indicator

gii = gi(Gi(K)) and the parameter dirgi = dirg(Gi(K))
are growing with the growth of i. Notice that |hi| is bounded
below by dirgi/k. So there is a j such that for i ≥ j the

computation of |hi| is impossible. In fact, the fastest grow of

girth indicator will be in the case of a family of large girth.

Finally we can take the base g = T−1hjT where T is a

chosen element of Cj to hide the graph up to conjugation. We

may use some package of symbolic computations to express

the polynomial map g via the list of polynomials in many

unknowns. For example, if Vj(K) is a free module Kn then

we can write g in a public mode fashion

x1 → g1(x1, x2, . . . , xn), x2 → g2(x1, x2, . . . , xn), . . . ,
xn → gn(x1, x2, . . . , xn).
The symbolic map g can be used for the Diffie - Hellman

key exchange protocol (see [4] for the details). Let Alice and

Bob be correspondents. Alice computes the symbolic map g
and send it to Bob via an open channel. So the variety and

the map are known for the adversary (Cezar).

Let Alice and Bob choose natural numbers nA and nB ,

respectively.

Bob computes gnB and sends it to Alice, who computes

(gnB )nA , while Alice computes gnA and sends it to Bob, who

is getting (gnA)nB . The common information is gnAnB given

in ”public mode fashion”.

Bob can be just a public user (no information on the

way in which the map g was created) , so he and Cezar

make computations much slower than Alice who has the

decomposition g = T−1Nα1
Nα2

. . . Nαk
T .

We may modify slightly the Diffie - Hellman protocol using

the action of the group on the variety. Alice chooses a rather

short password α1, α2, . . . , αk, computes the public rules for

the encryption map g and sends them to Bob via an open

channel together with some vertex v ∈ Vj(K). Then Alice

and Bob choose natural numbers nA and nB , respectively.

Bob computes vB = gnB (v) and sends it openly to Alice,

who computes (gnA)(vB), while Alice computes vA = gnA(v)
and sends it to Bob, who receives (gnB )(vA).
The common information is the vertex gnA×nB (v).
In both cases Cezar has to solve one of the equations

EnB (uA) = z or EnA(uB) = w for unknowns nB or nA,

where z and w are known points of the variety.

2) We can construct the public key map in the following

manner:

The key holder (Alice) chooses the variety Vj(K) and the

sequence α1, α2, . . . , αt of length t = t(j) to determine the
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encryption map g as above. Let dim(Vj(K)) = n = n(j)
and each element of the variety be determined by independent

parameters x1, x2, . . . , xn. Alice presents the map in the form

of public rules, such as

x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn), . . . ,
xn → fn(x1, x2, . . . , xn).

We can assume (at least theoretically) that the public rule

depending on parameter j is applicable to the encryption of

a potentially infinite text (the parameter t is a linear function

on j now).

For the computation she may use the Gröbner base tech-

nique or alternative methods, special packages for the sym-

bolic computation (popular ”Mathematica” or ”Maple”, pack-

age ”Galois” for ”Java” as well special fast symbolic software).

So Alice can use the decomposition of the encryption map

into T−1, maps of kind Nα and T to encrypt fast. For the

decryption she can use the inverse graph Gj(K)
−1

for which

V Gj(K)
−1

= V Gj(K) and vertices w1 and w2 are connected

by an arrow if and only if w2 and w1 are connected by an

arrow in Gj(K). Let us assume that colours of w1 → w2

in Gj(K)
−1

and w2 → w1 in Gj(K) are of the same

colour. Let N ′

α(x) be the operator taking the neighbour of

vertex x in Gj(K)−1
of colour α. Then Alice can decrypt

applying sequentially T,N ′

αt
, N ′

αt−1
, . . . , N ′

α1
and T−1 to the

ciphertext. So the decryption and the encryption for Alice take

the same time. She can use a numerical program to implement

her symmetric algorithm.

Bob can encrypt with the public rule but for a decryp-

tion he needs to invert the map. Let us consider the case

tj = kl, where k is a small number and the sequence

α1, α2, . . . , αtj has the period k, and the transformation

h = T−1Nα1
Nα2

. . .Nαk
T is known for Bob in the form of

public key mode. In such a case a problem to find the inverse

for g is equivalent to a discrete logarithm problem with the

base h in the related Cremona group of all polynomial bijective

transformations.

Of course for further cryptanalysis we need to study the

information on possible divisors of the order of the base of

the related discrete logarithm problem, alternative methods to

break the encryption. In the next section the family of digraphs

REn(K) will be described.

3) We may study the security of the private key algorithm

used by Alice in the algorithm of the previous paragraph but

with a parameter t bounded by the girth indicator of graph

Gj(K). In this case different keys produce distinct ciphertexts

from the chosen plaintext. We prove that if the adversary has

no access to plaintexts then he can break the encryption via

the brute-force search via all keys from the key space. The

encryption map has no fixed points.

III. ON THE FAMILY OF AFFINE DIGRAPH OF INCREASING

GIRTH OVER COMMUTATIVE RINGS

E. Moore used the term tactical configuration of order (s, t)
for biregular bipartite simple graphs with bidegrees s+1 and

r+ 1. It corresponds to the incidence structure with the point

set P , the line set L and the symmetric incidence relation I .
Its size can be computed as |P |(s+ 1) or |L|(t+ 1).
Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags

for the tactical configuration with partition sets P (point set)

and L (line set) and an incidence relation I . We define the

following irreflexive binary relation φ on the set F :

Let (P,L, I) be the incidence structure corresponding to

regular tactical configuration of order t.
Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈

L, p ∈ P, lIp} be two copies of the totality of flags for

(P,L, I). Brackets and parentheses allow us to distinguish

elements from F1 and F2. Let DF (I) be the directed graph

(double directed flag graph) on the disjoint union of F1 with

F2 defined by the following rules:

(l1, p1) → [l2, p2] if and only if p1 = p2 and l1 6= l2,
[l2, p2] → (l1, p1) if and only if l1 = l2 and p1 6= p2.
Below we consider the family of graphs A(k,K), where

k > 5 is a positive integer and K is a commutative ring. Such

graphs are disconnected and their connected components were

investigated in [17] (for the case when K is a finite field Fq

see [7]).

Let P and L be two copies of Cartesian power KN , where

K is the commutative ring and N is the set of positive integer

numbers. Elements of P will be called points and those of L
lines.

To distinguish points from lines we use parentheses and

brackets. If x ∈ V , then (x) ∈ P and [x] ∈ L. It will

also be advantageous to adopt the notation for co-ordinates

of points and lines introduced in [20] for the case of a general

commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .),

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .].

The elements of P and L can be thought of as infinite

ordered tuples of elements from K , such that only a finite

number of components are different from zero.

We now define an incidence structure (P,L, I) as follows.
We say that the point (p) is incident with the line [l], and
we write (p)I[l], if the following relations between their co-

ordinates hold:

li,i − pi,i = l1,0pi−1,i

li,i+1 − pi,i+1 = li,ip0,1

This incidence structure (P,L, I) we denote as A(K). We

identify it with the bipartite incidence graph of (P,L, I),
which has the vertex set P ∪L and the edge set consisting of

all pairs {(p), [l]} for which (p)I[l].
For each positive integer k ≥ 2 we obtain an incidence

structure (Pk, Lk, Ik) as follows. First, Pk and Lk are obtained

from P and L respectively by simply projecting each vector

onto its k initial coordinates with respect to the above order.

The incidence Ik is then defined by imposing the first k−1
incidence equations and ignoring all others. The incidence

graph corresponding to the structure (Pk, Lk, Ik) is denoted

by A(k,K).
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For each positive integer k ≥ 2 we consider the

standard graph homomorphism φk of (Pk, Lk, Ik) onto

(Pk−1, Lk−1, Ik−1) defined on Lk by simply projection of

each vector from Pk and Lk onto its k− 1 initial coordinates

with respect to the above order.

Let DAn(K) (DA(K)) be the double directed graph of

the bipartite graph A(n,K) (A(K), respectively). Remember,

that we have the arc e of kind (l1, p1) → [l2, p2] if and only

if p1 = p2 and l1 6= l2. Let us assume that the colour ρ(e) of
the arc e is l11,0 − l21,0.
Recall, that we have the arc e′ of kind [l2, p2] → (l1, p1)

if and only if l1 = l2 and p1 6= p2. Let us assume that the

colour ρ(e′) of arc e′ is p11,0 − p21,0. It is easy to see that ρ is

a perfect algebraic colouring.

If K is finite, then the cardinality of the colour set is

(|K| − 1). Let RegK be the totality of regular elements,

i.e., not zero divisors. Let us delete all arrows with colour,

which are zero divisors. We will obtain a new graph RAn(K)
(RA(K)) with the induced colouring into colours from the

alphabet Reg(K). The vertex set for the graph DAn(K)
consists of two copies F1 and F2 of the edge set for A(n,K).
If K is finite, then the cardinality of the colour set is

(|K| − 1). Let RegK be the totality of regular elements,

i.e., non-zero divisors. Let us delete all arrows with colour,

which are zero divisors. We can show that a new infinite affine

graph A(K) does not contain cycles (see [9]). This means

that the directed graph RA(K) does not contain commutative

diagrams and the digraphs RAn(K) form a family of digraphs

with increasing girth indicator. In fact computer simulations

support the following assertion.

CONJECTURE: GraphsRAn(K) form a family of digraphs

of large girth.

IV. ON THE IMPLEMENTATION OF THE STREAM CIPHER

BASED ON RAt(K)

The set of vertices of the graph RAn(K) is a union of

two copies of a free module Kn+1. So the Cremona group

of the variety is the direct product of C(Kn+1) with itself,

expanded by polarity π. In the simplest case of a finite field

Fp, where p is a prime number, C(Fp) is a symmetric group

Spn+1 . The Cremona group C(Kn+1) contains the group of all
affine invertible transformations, i.e., transformation of kind

x → xA + b, where x = (x1, x2, . . . , xn+1) ∈ C(Kn+1),
b = (b1, b2, . . . , bn+1) is a chosen vector from C(Kn+1) and
A is a matrix of a linear invertible transformation of Kn+1.

The graphRAn(K) is a bipartite directed graph. We assume

that the plaintext Kn+1 is a point (p1, p2, . . . , pn+1). We

choose two affine transformations T1 and T2 as linear transfor-

mation of kind p1 → p1+a1p2+a2p3+· · ·+anpn+1. We will

follow a general scheme, so Alice and Bob compute chosen

T1 and T2, and choose a string (β1, β2, . . . , βl) of colours

for REn(K), such that βi 6= −βi+1 for i = 1, 2, . . . , l − 1.
They will use Nl = Nβ1

× Nβ2
· · · × Nβl

. Recall that Nα,

α ∈ Reg(K) is the operator of taking the neighbour of the

vertex v alongside the arrow with the colouur α in the graph

RAn(K).

Alice and Bob keep chosen parameters T1,(β1, β2, . . . , βl)
and T2 secret and use the encryption map g which is the

composition of T1, Nl and T2.

In the case of RAn(K) the degree of transformation Nl

is 3, independent of the choice of length l like in the case

of graphs D(n,K) [9]. We can prove that for arbitrary key

the encryption map is a cubical polynomial map of the free

module Kn+1 onto itself.

In our computer implementations we used T1 and T2 of

kind p1 → p1 + a1p2 + a2p3 + · · ·+ anpn+1, where all ai are
not zero divisors.

V. ON THE COMPARISON OF PRIVATE KEYS BASED ON

A(n,K) AND D(n,K)

In the paper [5] we have implemented the stream cipher

based on graphs D(n,K) with vertex set the union of two

copies of the free module Kn. The time of execution of

the encryption map and its mixing properties and comparison

with other private keys (DES and RC4 are considered in [5]

for cases of rings Z8
2 , Z16

2 and Z32
2 . The reader can find

speedy evaluation for cases of rings Z8
2 , Z

16
2 and Z32

2 in [16].

Recently, private keys based onD(n, Fq), q = 28, q = 216 and
q = 232 were implemented (see [13], where time evaluation

is presented).

The mixing properties of D(n, Zm
2 ), m = 8, 16, 32 based

encryption in combination with special affine transformations

were investigated in [20]. If we change one character of the

string α1, α2, . . . , αs (the graphical part of the key related to

the pass of the graph) then at least 97 percent of characters of

the ciphertext will be changed . If we change one character of

the plaintext then again at least 97 percent of the characters

of the ciphertext will be changed.

We present at the conference similar results of statistics for

mixing properties of an A(m,Zq) based stream cipher.

We can see that graphs the A(n,K) and D(n,K) are given
by equations which use n − 1 additions (or subtractions)

and multiplications. So algorithms based on these graphs or

corresponding digraphs have the same speed evaluations.

Graphs A(n, Zm), m > 2 are connected but D(n,K) are

not. It means that if we fixed affine maps, then for each

pair of vectors v1 an v2 from the plainspace there is a

string α1, α2, . . . , αs such the corresponding A(n, Zm) based
encryption map converts the plaintext v1 into the ciphertext

v2. The reader can find some theoretical results on A(n,K)
in [17].

A. Evaluation of the order of encryption map

We assume that the product of our affine transformations is

the identity. So the order of the encryption map is the same

with N = Nα1
Nα2

. . . Nαs
. We assume that s is even and

our string is obtained by repetition of the word α1, α2, where

α1+α2 ∈ Reg(K). So the security of our encryption is related

to the discrete logarithm problem with base b = Nα1
Nα2

. It

turns out that in cases of K = Zn, n > 2 the order of b does

not depend on the choice of α1 and α2.
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B. Case of primes

We have run computer tests, to measure the length of the

cycles generated by powers of b for graphs A(n,K) with

different n, and different K (cycles of permutation b acting

on Kn). Table I shows these results for the first few prime

numbers p (K = Zp). Each test was repeated at least 20 times,

every time with a random start point, and random (α1, α2)
parameter.

TABLE I
CYCLE LENGHT FOR K = Zq , WHERE q IS PRIME

p \ n 4 10 30 50 100 200 400 600 1000

3 9 27 81 81 243 243 729 729 2187

5 5 25 125 125 125 625 625 625 3125

7 7 49 49 343 343 343 2041 2041 2041

11 11 11 121 123 121 1331 1331 1331 1331

It is easy to see that the cycle length is always a power

of the prime number p. Another property is that cycle length

does not depend on starting point, nor parameters (α1, α2).
This property does not hold for p = 2. In that case the cycle

length is always a power of 2, but for the same n we have

different results depending on start point x, and (α1, α2).

C. Case of composite numbers

TABLE II
CYCLE LENGTH FOR SOME COMPOSITE NUMBERS q

q \ n 4 10 30 50 100 200 400

4 16 32 64 128 256 512 1024

6 72 432 2592 5184 31104 62208

8 32 64 128 256 512 1024 2048

9 27 81 243 243 729 729 2187

15 45 675 10125 10125 30375 151875 455625

TABLE III
CYCLE LENGTH FOR q = 15, CASE OF THE A(n,Zq)

nMIN nMAX cycle length

4 4 45

5 8 225

9 24 675

25 26 3375

27 80 10125

81 120 30375

140 240 151875

260 620 455625

640 720 2278125

760 6834375

The comparison of cycles in cases A(n,K) and D(n,K) encryption
demonstrates big advantage of A(n,K). The typical example is below.

VI. CONCLUSION, ON THE IMPORTANCE OF NUMERICAL

ALGORITHM FOR EVALUATION OF SYMBOLIC

CRYPTOGRAPHICAL TOOLS

As we mentioned above the private key algorithm based

on graphs A(n,K) turns out to be good stream cipher. It

compares well with D(n,K) based encryption.

TABLE IV
CYCLE LENGTH FOR q = 15, CASE OF D(n,Z15) ENCRYPTION

nMIN nMAX cycle length

4 7 45

8 17 225

18 53 675

54 65 3375

150 249 10125

250 299 30375

300 649 151875

650 1000 455625

On another hand this algorithm is a private decryption tool

for corresponding symbolic public key algorithms. Encryption

map g with arbitrarily chosen password is a cubic polynomial

map. All powers of g are cubic maps, so cyclic group gener-

ated by g can be used for the synbolic key exchange protocol.

Studies of the properties of the stream cipher are crucial for

the evaluation of the main parameters of symbolic algorithms

because the speed of symbolic computations is much slower

in comparison with our numerical algorithm.

Usually the order of nonlinear polynomial map gk from

Cremona group (composition of g with itself, corresponding

to permutation πk) is growing with the growth of k. The

computation of the order t of "pseudorandom" g is a difficult

task. Really, if t is known then the inverse map for g is gt−1,

but the best known algorithm of finding g−1 has complexity

dO(n), where d is the degree of g. The efficient general

algorithm of finding g−1 is known only in the case when

degree of g is one, i. e. g is affine map xA + b, where x
and b are row vectors from V and A is nonsingular square

matrix. So there is a serious complexity gap between linearity

and nonlinearity.

The discrete logarithm problem (dlp) for the cyclic group

generated by "pseudorandom" polynomial map g, i. e. problem
of finding solution for equation gx = b looks very hard. If x
is known, then gt−x = b−1, but the computation of b−1 takes

dO(n). So in the case of "pseudorandom" polynomial base g we
can use the term hidden symbolic discrete logarithm problem,

word hidden is used because the order t of cyclic group is

unknown, symbolic is used because generation of polynomial

maps g and b can be done via tools of symbolic computations

(popular "Maple" or "Mathematica" operating on polyomial

maps or special fast programs of Computer Algebra). Certainly

the choice of the nonlinear base g for the dlp for C(Kn) is an
important heuristic problem. Obviously one needs to find g of

very large order. If the degree of gx is growing linearly with

the growth of g: deg(g(x))= ax + b then x can be obtained

from the linear equation ax + d = deg(b(x)). This fact is a

motivation of the following concept.

The sequence of subgroupsGl of C(K l), l → ∞ is a family

of stable groups if degree of each g. g ∈ Gl is bounded by

constant c independent on l. The construction of large stable

subgroups Gl with c ≥ 2 of Cremona group is an interesting

mathematical task.
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There is an easy way to construct stable subgroups via

conjugation of AGLl(K) (subgroup of all automorphisms

of Kn of degree 1) with the nonlinear polynomial maps

fl ∈ C(K l). Let us refer to members of such families as

pseudolinear groups. Degrees of fl and fl
−1 are at least 2.

So in case of the use "pseudorandom" polynomials, fi such

that max(fl, fl
−1) is bounded by constant, we obtain a stable

family with c ≥ 4. Let τ be a Singer cycle from AGLl(Fq)
of order qn − 1 (K = Fq), fl and fl

−1 are nonlinear maps.

Then g = fl
−1τfl looks as appropriate base for the hidden

symbolic discrete logarithm problem. Certainly one may use

other linear transformations of large order instead of Singer

cycle.

So the case of families of stable degree with c ∈ {2, 3} is

the most interesting one.

The new family of large stable subgroups of C(K l) over

general commutative ring K containing at least 3 regular

elements (non zero divisors). with c = 3 is presented in our

paper.

New transformations gn of Kn also form stable subgroups

with c = 3. Computer simulations demonstrate the faster

growth of order in comparison with previously known family.

Remark. The map of kind h = f1gnf2, where f1, f2 ∈
C(Kn) of bounded degree can be used as a public key

algorithm with public rules h1 = h1(x1, x2, . . . , xn), h2 =
h2(x1, x2, . . . , xn), . . . , hn = h1(x1, x2, . . . , xn).
Computer simulations show that even in the case of distinct

affine transformations f1, f2
−1

the powers δk of cubic map

δ = f1g(n)f2 have rather sophisticated degrees t(n, k) which
are growing with the growth of parameters n and k. In practice
the computation of order for δ (or its inverse) are much

harder in comparison with studies of order for conjugates

of gn. Notice that in the case of field Fp invertible affine

transformations and g(n) generate entire group Spn (Cremona

group of the vector space Fp
n).

So we do hope that our method of generation of public

key maps produces good approximation of random maps of

degree 3 of large order (see [22] for the results of symbolic

computations).
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