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Abstract—Negotiation with interdependent issues and nonlin-
ear, non-monotonic utility functions is difficult because it is hard
to efficiently explore the contract space. This paper presents a
new result in automated negotiations with interdependent issues,
complete information and time constraints. We consider that
agents express their preferences using constraints defined as one
interval per issue and that we represent their constraint sets as
intersection graphs. We model negotiations as a bargaining game
and we show that the equilibrium solution is one of the maximal
cliques of the constraint graph. Consequently, we find that the
problem of computing the equilibrium solution has polynomial-
time complexity when the number of issues is fixed.

I. Introduction

MOST of the research in negotiation has considered that

the negotiation issues are independent, i.e. the value

of one issue does not depend on the values of the other

issues. In this case the utility functions are typically linear

and monotonic. As the agents often have to make concessions

to the other agents, while also maximizing their utility, they

must determine contracts that, depending on a given situation,

will either increase or decrease the utility values. If the utility

functions are monotonic, it is computationally easy to decide

for either increasing or decreasing the value of an issue in

a potential contract in such a way that the value of the

utility function will be increased or decreased. But, if there

are multiple possible trade-offs between issues, computing the

agreement is computationally more expensive.

Real-world applications may require negotiation with inter-

dependent issues which are typically aggregated in a more

complex way than simple linear utility functions. Examples

can be given in areas as meeting scheduling [1], [2], cooper-

ative design [3], and energy markets [4]. In these cases utility

functions are nonlinear and non-monotonic, so searching the

contract space for contracts that score above a given utility

value requires an efficient exploration method because the

number of contracts is exponential.

The interdependencies between issues can be represented

in several ways: utility graphs [5], [6], interval constraints

[7]–[9] and influence matrices [10]. Most of the approaches

for finding the optimal outcome of the negotiation implement

simulated annealing algorithms [6]–[10]. This approach has

the disadvantage that agents may accept contracts of a lower

utility value, rather than accepting only contracts of a higher

utility value as with the hill-climbing method. Thus, an agent

employing a simulated annealing strategy will get a lower

outcome from a negotiation with an agent employing a hill-

climbing strategy [10]. The simulated annealing approach was

implemented using a mediator for computing contracts and

most of the time it determines near-optimal solutions because

computing an optimal contract is time expensive.

In our work we focus on bargaining with complete infor-

mation, under time constraints, about interdependent issues.

When modelling such negotiations, one of the most impor-

tant things is to study the equilibrium solution. A general

framework for finding the equilibrium solution for this class of

problems has already been proposed in the literature [11]. The

application of this framework produced a series of interesting

results, under certain conditions regarding the negotiation

configuration [11]–[13].

We build our work on the same framework for finding the

equilibrium solution of our negotiation problem. By using a

preference model suited for interdependent issues [8] and mod-

elling negotiation as a bargaining game under time constraints,

we define and solve a problem that leads us to the equilibrium

solution. But probably the most important aspect is that we

prove that this problem can be solved in polynomial time when

the number of negotiation issues is fixed.

According to our literature review, there is no other work

that gives the same important results in the context of bar-

gaining. However, the preference model that we use here has

been already considered in previous works [8], although in

different negotiation settings. Here we are studying negotiation

as bargaining game with complete information, differently

from the mediated, auction-based mechanisms used in other

works [8]. Moreover, our results can be successfully applied

to other negotiation settings.

The paper is structured as follows. We start in Section II

with an analysis of the preference model with interdependent

issues. We briefly describe in Section III the negotiation

protocol and the structuring of the offers. In Section IV we

model negotiation as a bargaining game of alternating offers

and we prove that the equilibrium solution can be computed

in polynomial time. Section V provides an overview of related

research on negotiation with interdependent issues. In Section

VI we draw conclusions and we point to future work.
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II. Preferences and utility

There is a set of m negotiation issues X = {x1, x2, . . . xm}.

Issues can be assigned values only from their domain. There

are m domains, D1, D2, . . . Dm. A contract is an m-dimensional

variable defined over D1 × D2 × · · · × Dm, i.e. a combination

of issue values. The set of possible contracts is therefore D1×

D2 × · · · × Dm.

Agents have preferences over the issues in the form of

constraints.

Definition 1: Let X = {x1, x2, . . . xm} be the set of issues

under negotiation and D1, D2, . . . Dm their domains. A con-

straint C is a boolean function defined over the set of possible

contracts, i.e. C : D1 × D2 × · · · × Dm → {0, 1}. We say that

an arbitrary constraint C is satisfied by a contract x when

C(x) = 1.

A constraint restricts the domains of the issues to smaller

sets of values and introduces a set of contracts Dom(C) =

{x ∈ D1 × · · · × Dm|C(x) = 1}. We refer to Dom(C), i.e. the set

of contracts x for which C(x) = 1, as the domain of constraint

C.

But as agents usually have complex preferences that are

modeled by combining several constraints, we need to know

if these constraints are compatible.

Definition 2: A constraint set C is consistent if ∃x ∈ D1 ×

D2 × · · · × Dm such that C(x) = 1,∀C ∈ C.

A consistent constraint set defines a domain equal to the

intersection of the individual domains defined by each con-

straint of the set. For example, if we have a constraint set

C = {C1,C2,C3}, then the domain of constraint set C is

Dom(C) = Dom(C1) ∩ Dom(C2) ∩ Dom(C3). An inconsistent

constraint set defines an empty domain that contains no

contracts.

We can associate an intersection graph to the constraint set

of an agent. We associate a vertex to each constraint. Two

vertices are connected by an edge if the domains of their

associated constraints intersect. If C is the set of constraints

then the associated constraint graph is denoted by GC .

In what follows we will refer to this intersection graph as the

constraint graph. If we assume that each agent is expressing his

preferences using a constraint set (which might be consistent

or not as a whole), he will have such a constraint graph.

Please note that a constraint graph, say G = (V, E), is

composed by intersecting m graphs Gi = (V, Ei), 1 ≤ i ≤ m,

one for each issue, which share the same vertex set, but not

the edges. A vertex in graph Gi corresponding to constraint C

is assigned the domain of issue i which is part of constraint

C. The constraint graph G has the same vertex set as Gi,

1 ≤ i ≤ m. Two vertices in graph G are connected by an

edge if the two vertices are connected in all graphs Gi, i.e.

(x, y) ∈ E if and only if (x, y) ∈ Ei, ∀x, y ∈ V , ∀1 ≤ i ≤ m. We

refer to graphs Gi as issue graphs.

The following proposition describes how a consistent con-

straint set looks like in the constraint graph.

Proposition 1: Any consistent constraint subset defines a

clique in the constraint graph.

Proof: Let {C1,C2, ...,Ck} be a consistent constraint sub-

set. It follows that Dom(C1)∩Dom(C2)∩ ...∩Dom(Ck) is non

empty. Then for each i , j, Dom(Ci) ∩ Dom(C j) , ∅, so the

constraint graph associated to the constraint set {C1,C2, ...,Ck}

is a clique. Therefore, a consistent constraint subset defines a

subgraph of the constraint graph in which all the vertices are

connected with each other, i.e. a clique.

The reverse is not always true, i.e. not every clique corre-

sponds to a consistent constraint set. Note that as a consistent

constraint set defines a non-empty domain, we can say that a

clique in a constraint graph also defines a non-empty domain.

Agents negotiate about a set of issues, seeking to increase

their outcomes. The following definition introduces the utility

function that agents use to evaluate contracts. We assume that

the agents use the preference model described earlier in this

section. This model of utility functions is adopted from [8].

Definition 3: Let CA be the constraint set of agent A (the

set of all constraints used by agent A to express his pref-

erences). Each constraint C ∈ CA has an associated weight

(a strictly positive real number) ωC > 0, which the agent

uses to build a preference relation over constraints. These

weights are normalized, i.e.
∑

C∈CA
ωC = 1. The function

uA : D1 × D2 × · · · × Dm → R, uA(x) =
∑

C∈CA
ωC × C(x)

is the utility function of agent A.

The utility function corresponding to outcome x is the

weighted sum of all constraint evaluations in x. Throughout

the paper we assume that agents try to maximize their utility

functions [14].

Note that the utility function for independent preferences is

usually modeled as a weighted sum of issue values. However,

even if it has a similar form (i.e. a weighted sum), the utility

function from Definition 3 defines a complex aggregation of

constraints and usually has a non-monotonic shape [8].

An agent must determine consistent combinations of con-

straints in order to find contracts that score above a particular

utility threshold. Please note that not every value in [0, 1] can

be scored by the utility function, as the set of all possible

values scored by the utility function is finite. Compared to the

linear programming problems studied earlier for independent

utilities [11], [13], exploration of the contract space becomes

a combinatorial optimization problem.

For the rest of the paper we make a very important as-

sumption, that drives the result of our work. We assume that

a constraint defines a single interval (open or closed) on the

real line for each negotiation issue. Example 1 illustrates a

constraint set with such constraints. A constraint is therefore

defined as a conjunction of interval memberships on the real

line, with one interval per issue. Please note that in this case

the issue graphs are interval graphs [15] and a constraint graph

is composed by intersecting m interval graphs. Therefore,

under this assumption, the reverse of Proposition 1 is true,

i.e. each clique is a consistent constraint subset1.

1This statement results from the fact that real intervals have the Helly
property: if a set of real intervals is such that each two of them intersect then
all of them have a non-empty intersection.

598 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011



Fig. 1. Example of constraints. Weights are not illustrated, for simplicity.
Edges connect vertices whose domains intersect

Example 1: Let’s suppose that an agent has the following

simple constraints over 2 issues denoted x, y, defined over

[0, 100]: c1 (x ∈ [37, 84]), c2 (x ∈ [79, 96]), c3 (x ∈ [41, 86]∧

y ∈ [5, 78]), c4 (x ∈ [5, 51]∧y ∈ [33, 98]), c5 (x ∈ [61, 69]∧y ∈

[36, 40]), c6 (x ∈ [14, 25]), c7 (y ∈ [62, 69]). When the interval

for an issue is not specified, it is assumed that the domain of

the issue is not restricted. The constraint set is depicted in

Figure 1.

III. Protocol

We model negotiation as a bargaining game of alternating

offers [16]. In this paper we study only bilateral negotiations,

i.e. negotiations with 2 players denoted by A and B.

In the general case, an offer consists of a set of values for

each issue. The set assigned to an issue must be included in

the domain of the issue. An agreement is represented by the

last offer that has been accepted, so it also consists of a set of

values for each issue. We consider that agents are indifferent

about the issue values chosen from these sets and an exact

agreement (i.e. that consists of exactly one value from each

of these sets for each issue) can be chosen randomly by one

of the players.

Following our preference model described earlier, an offer

contains a list of offered constraints with one interval per

issue2. The offered constraints can be constraints from the con-

straint set of the agent or constraints formed from constraints

in the constraint set by shrinking their intervals. Shrinking

of an interval happens when an interval is intersected with

another interval, as a result of combining constraints into

consistent constraint sets. In other words, the constraints in

the offers are composed of one interval per issue and these

intervals represent domains of consistent constraint subsets (or

cliques in the constraint graph) of the agents.

The agent receiving an offer can accept the offered con-

straints or he can accept only parts of offered constraints

obtained by shrinking their domains (i.e. by shrinking one

or several issue intervals). This operation makes sense as

agents try to satisfy as many of their constraints as possible,

2We are consistent with the assumption made earlier. In the most general
case an offer can contain a more complex specification of a set of values per
issue, for example a union of intervals, rather than a single interval. However,
we do not deal with this case in this paper. Our results are based on the
assumption that there is only a single interval assigned to one issue in a
constraint, as in [8].

and sometimes shrinking domains results in contracts that

satisfy more constraints. In this case, shrinking happens when

the agent makes combinations of constraints to determine

consistent constraint sets and intersects their domains with the

domains in the opponent’s offer. In this way he can accept only

a part of the offer that maximizes his utility.

Agents seek to maximize their private utilities, but it is

required that the opponent’s utility is not lost, i.e. Pareto

agreements are preferred. An agreement is Pareto if there is

no other agreement that is at least as good for both agents and

strictly better for at least one of them.

IV. Negotiation with complete information

Let A and B be two agents that negotiate in order to reach

an agreement over their sets of preferences. They would like to

allocate values to multiple issues, but the issues are constrained

to subsets of their domains. The issues are interdependent, i.e.

the subset of values that an issue is allowed to take depends

on the subsets of values that the other issues can take. These

interdependencies are modeled using multi-issue constraints,

as described in Section II. Each agent has a constraint set

containing possibly many such constraints. Agents A and B

have constraint sets CA and CB respectively.

Agents have time constraints given as deadlines and dis-

count factors similarly to [11]–[13]. We represent deadlines as

time steps in negotiation. For simplification (but without losing

the generality of the algorithm), we make the assumption

that both agents have the same deadline, denoted with n. We

assume that agents have no gain if the agreement is reached

after the deadline and so agents wish to reach agreements

before their deadlines. Moreover, we assume that the utility

of each agent decreases as negotiation advances in time. We

model this with the help of a discounted utility function that

depends on two variables: the contract and the negotiation

step. By taking into account deadlines and discount factors,

the agents i ∈ {A, B} have the discounted utility function:

Ui(x, t) =

{

ui(x) × δt−1
i

if t ≤ n

0 if t > n

with δA ∈ [0, 1), δB ∈ [0, 1) and t ≥ 1. Again, to reduce the

complexity of the representation (but not the generality), we

assume that both agents have the same discount factor δ. Thus,

the utility an agent gets from a contract in the first negotiation

round is greater than the utility it gets from the same contract

in subsequent negotiation rounds.

Please note that the negotiation game we study is not the

split-the-pie game [17] previously studied for independent

issues. There is no object that the participants want to split and

that shrinks over time. Participants want to reach an agreement

over a set of values (that are constant during the negotiation),

not over shares of an object.

We consider that agents have complete knowledge about

the deadline and the discount factor and they know each

other’s preferences. Our negotiation model builds on existing

negotiation models with complete information [11]. We adapt

existing equilibrium strategies for negotiation with complete
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information, under time constraints, with multiple issues and

monotonic utility functions [11] to negotiation with complete

information, under time constraints, with multiple interdepen-

dent issues and non-linear, non-monotonic utility functions.

We show that under specific circumstances (the preferences are

expressed using constraints that restrict issue values to inter-

vals and the utility functions are weighted sums of constraint

evaluations) the equilibrium solution is not as hard to compute

as it was recently considered. Although the same preference

model under the same circumstances had been studied before,

only approximate solutions were proposed, using heuristic

methods [8], [10]. No efficient algorithm that finds the exact

solution was proven to exist.

Finding equilibrium strategies for negotiation with multiple

divisible issues under time constraints has been proven to

be equivalent to solving a particular maximization problem,

the fractional knapsack problem [11]. The solution can be

computed in linear time, in the first negotiation round and

the strategy set is a Nash equilibrium. We adapt these results

to the preference model discussed in this paper. We use a

notation similar to [11]. Let S i(t) be the equilibrium strategy

of agent i ∈ {A, B} for 1 ≤ t ≤ n.

The following proposition defines Nash equilibrium strategy

for our bargaining game with deadlines and discounted utility

functions.

Proposition 2: For t = n, the equilibrium strategy is:

S A(n) =



















OFFER OA(n) = {x|x = arg max
y

UA(y, n)} if A’s turn

ACCEPT ACCA(n) if B’s turn

S B(n) =



















OFFER OB(n) = {x|x = arg max
y

UB(y, n)} if B’s turn

ACCEPT ACCB(n) if A’s turn

For t < n, the equilibrium strategy is:

S A(t) =































OFFER OA(t) if A’s turn

IF ∃x ∈ OB(t) s.t. UA(x, t) ≥ UA(t + 1)
THEN ACCEPT ACCA(t)
ELSE REJECT

if B’s turn

S B(t) =































OFFER OB(t) if B’s turn

IF ∃x ∈ OA(t) s.t. UB(x, t) ≥ UB(t + 1)
THEN ACCEPT ACCB(t)
ELSE REJECT

if A’s turn

where Oi(t) with i ∈ {A, B} are the equilibrium offers of the

agents at time t.

OA(t) is the set of offered constraints satisfied by all

solutions x of the following maximization problem:

maximize UA(x, t)

such that UB(x, t) ≥ UB(t + 1)
(1)

OB(t) is the set of offered constraints satisfied by all

solutions x of the following maximization problem:

maximize UB(x, t)

such that UA(x, t) ≥ UA(t + 1)
(2)

Ui(t) with i ∈ {A, B} is the maximum utility that agent i can

get from his equilibrium offer at time t.

ACCA(t) = {x ∈ OB(t),UA(x, t) ≥ UA(t + 1)|x = arg max
y

UA(y, t)}

is the part of the offer of agent B accepted by agent A at time

t, if he decides to accept.

ACCB(t) = {x ∈ OA(t),UB(x, t) ≥ UB(t + 1)|x = arg max
y

UB(y, t)}

is the part of the offer of agent A accepted by agent B at time

t, if he decides to accept.

Proof: The equilibrium strategy is similar to [11], but

slightly adapted for the preference model with constraints.

At the last step (n), the agent making the offer (say A) is

in a strong position and offers a consistent constraint set

that gives him the highest utility (diminished with time), i.e.

max(UA) = max(uA) × δn−1. All the values in the domain of

the offered consistent constraint set score the same utility. The

other agent’s (B) best response is to accept, but as specified

in Section III, he can accept only a part of the proposal

to obtain as much utility as possible. He will intersect the

domain of the offered consistent set with one of the consistent

constraint subsets of his own constraint set and he will select

the intersection that gives him maximum utility, ACCB(n).

This intersection of the domains might shrink the domain of

the offered constraint set. As agents have different preferences,

it might be the case that B gets a high utility, even maximum,

making this a key difference from the split-the-pie games. At

step t = n−1, the agent that must make a proposal (B) reasons

backwards to t = n and thinks that A will be able to get

max(uA)× δn−1. Therefore, at step t = n− 1, B’s best action is

to make an offer that will give to A an utility at least as high as

max(uA)× δn−1, such that A will immediately accept. From all

the possible offers that satisfy this condition, B chooses those

that maximize his utility by solving maximization problem

(2). The agent that makes the first proposal has complete

information about the negotiation setting and therefore at step

t = 1 he can compute the best offer such that the other agent

will accept (the whole offer or only a part of it) immediately

by reasoning backwards to t = n and solving maximization

problems (1) and (2) for each time step. Both agents play

their best response strategies and the strategy set is a Nash

equilibrium.

The equilibrium solution depends on the agent that makes

the first move, so it is neither symmetric, nor unique. As there

are two players, A and B, there are two equilibrium solutions.

Moreover, the equilibrium solution is a set of multiple possible

contracts and the final agreement is established randomly by

one of the agents, so there may be many possible agreement

contracts. However, as an agent equally prefers any contract

from the set of the equilibrium solution, this step is trivial and

not of critical importance.
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Note that our equilibrium strategy is Pareto optimal, i.e.

there is no loss of utility points. At each step, an agent offers

to the other agent as much as needed such that he can accept

his offer. At the same time he tries to maximize his own utility.

The agent that receives an offer is able to accept a part of the

offer that gives him the highest utility.

Solving maximization problems (1) and (2) for each time

step is a difficult process. Agents must perform suitable combi-

nations of constraints to aggregate a certain utility value. So far

in the literature the solutions were to sample the contract space

by using heuristic techniques like simulated-annealing [8] thus

obtaining near-optimal solutions. In this paper we describe a

method to find an exact solution to this problem. The next

theorem helps us to reduce the number of combinations in

order to find the equilibrium solution.

Theorem 1: If GCi
(corresponding to constraint set Ci) are

constraint graphs of agents i ∈ {A, B} then the equilibrium

solution is one of the maximal cliques of the constraint graph

corresponding to the union of the constraint sets of agents A

and B, i.e. GCA∪CB
.

Proof: The agent that makes the first offer, say A, tries

to satisfy as many of his constraints as possible in order

to maximize his utility, i.e. a maximal set of constraints. If

the offer is constructed according to the method described in

Section III, i.e. using the constraints themselves or subintervals

of the issue intervals of the constraints, then no additional

constraints from his set of constraints, CA, can be satisfied by

the values included in the offer. In conclusion, no other nodes

from GCA
are taken into consideration and the equilibrium

solution is maximal with respect to the nodes of GCA∪CB
that

are part only of CA. The agent receiving an offer, B, can accept

a part of the offer that maximizes his own utility, i.e. the one

that satisfies as many constraints as possible from CB. The part

of the offer is computed by intersecting the issue intervals in

the offer with the issue intervals from his own constraint set.

Because no additional constraints can be satisfied by the part

of the offer he accepts, it follows that the solution is maximal

with respect to CB (and with respect to the nodes in GCB
).

Because no other nodes can be taken into consideration either

from CA or from CB, it results that the equilibrium solution

contains the domain of a maximal consistent set of constraints

from CA and CB – a maximal clique in GCA∪CB
.

Even if this theorem shows that the search space can be

drastically reduced, finding all the maximal cliques of the

constraint graph is still a difficult problem. Note however that

according to our assumption, constraints are single intervals

and the constraint graph is a special type of graph formed

by intersecting the issue graphs. Consequently, the following

proposition shows that the number of maximal cliques of the

constraint graph can be further reduced.

Proposition 3: A clique is maximal in the constraint graph

iff its vertex set is the intersection of the vertex sets of maximal

cliques in each of the issue graphs.

Proof: Let GC = (V, E) be the constraint graph and let

Gi = (V, Ei), 1 ≤ i ≤ m be the issue graphs. From the definition

E = ∩m
i=1

Ei.

⇐= Let S i be maximal cliques in Gi and let Vi be their

vertex sets, 1 ≤ i ≤ m. We define VS = ∩
m
i=1

Vi. Let x , y,

x, y ∈ VS . It follows that for all 1 ≤ i ≤ m we have x, y ∈ Vi.

From the fact that S i is a clique of Gi it follows that (x, y) ∈ Ei,

so (x, y) ∈ E that clearly shows that VS induces a clique S of

GC . Let us now prove that clique S is maximal. Assuming

by refutation that clique S is not a maximal clique of GC we

would find a vertex x ∈ V \ VS s.t. S ∪ {x} is also a clique of

of GC . It follows that (y, x) ∈ E for all y ∈ VS , i.e. (y, x) ∈ Ei

for all 1 ≤ i ≤ m. Therefore the set of vertices Vi ∪ {x} would

define a clique of Gi, that contradicts the hypothesis that S i is

a maximal clique of Gi.

=⇒ Let S be a maximal clique of GC and let VS be its

vertex set. From the definition of E as ∩m
i=1

Ei it follows that S

is also a clique of each Gi. We expand S to a maximal clique

S i of Gi and let Vi be its vertex set for all 1 ≤ i ≤ m. Clearly

VS ⊆ ∩
m
i=1

Vi. If we assume by refutation that the inclusion is

strict, we would be able to find another clique S ′ of GC with

vertex set VS ′ = ∩
m
i=1

Vi s.t. VS ⊂ VS ′ . But this contradicts that

S is a maximal clique of GC .

In other words, the maximal cliques of graphs GCA
(GCB

) are

obtained by intersecting the vertex sets of the maximal cliques

of issue graphs that compose GCA
(GCB

). Note that issue

graphs are interval graphs, and interval graphs are also chordal

graphs3. The number of maximal cliques of a chordal graph

is at most equal to the number of its vertices [15] (|CA| for

agent A and |CB| for agent B). It follows that GCA
has at most

|CA|
m (i.e. the total number of intersections) maximal cliques,

while GCB
has at most |CB|

m maximal cliques. This follows

from the fact that there are m issue graphs that compose each

of the constraint graphs GCA
and GCB

.

Chordal graphs can be recognized in linear time using pro-

cedures Lexicographic Breadth First Search (LexBFS) [19] and

Maximum Cardinality Search (MCS) [20]. Both procedures,

when applied to chordal graphs, generate a particular ordering

of vertices called Perfect Elimination Ordering (PEO) (which

every chordal graph has [15]). This ordering has the property

that any vertex x together with its neighbors that are placed

to its right in the ordering (RN(x)) form a clique. That is,

x ∪ RN(x) is a clique. With the help of a PEO it is possible

to collect the maximal cliques in linear time [21].

Algorithm 1 computes the equilibrium solution for the case

when A is the first mover and runs in polynomial time. The

next theorem gives the complexity.

Theorem 2: If each constraint defines a single interval on

the real line per issue, the time complexity of finding the

equilibrium solution in the first round is O((n + 1) · (|CA| +

|CB|)
m +m · (|CA|+ |CB|)

2 + 2 ·m · (|CA|+ |CB|+ E)), where m is

the number of issues, E is the maximum number of edges in

the issue graphs that compose GCA∪CB
and n is the negotiation

deadline (the number of steps).

Proof: The result follows by summing up the complexities

of individual sections of Algorithm 1.

3A graph is chordal if any of its cycles with more than 3 vertices has a
chord, i.e. an edge connecting two vertices non-adjacent in the cycle [18].
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Algorithm 1 COMPUTE SOLUTION – A MOVES FIRST

COMPUTE A FIRST(UA,CA,UB,CB, n)

1: GCA∪CB
← transformation of CA and CB into constraint graph

2: for i = 1 to m

3: peo[i]← ComputePEO(i,GCA∪CB
) for the issue graph i

5: mc[i]← ComputeMaximalCliques(peo[i], GCA∪CB
)

6: solution← empty clique
7: MAXCG ← compute maximal cliques of GCA∪CB

8: UAMAX ← 0, UBMAX ← 0
9: LAS TUA← 0, LAS TUB← 0
10: for t = n to 1
11: if (t is odd) then //A’s turn
12: for each clique in MAXCG

if (UA(clique, t) ≥ UAMAX and

13: UB(clique, t) ≥ LAS TUB) then

14: UAMAX ← UA(clique, t)
15: LAS TUB← UB(clique, t)
16: solution← clique

17: else // B’s turn
18: for each clique in MAXCG

if (UB(clique, t) ≥ UBMAX and

19: UA(clique, t) ≥ LAS TUA) then

20: UBMAX ← UB(clique, t)
21: LAS TUA← UA(clique, t)
23: solution← clique

24: return solution

Transformation of constraint sets into a single constraint

graph takes O(m·(|CA|+|CB|)
2) – line 1. First we create a larger

constraint set from the constraint sets of the two agents. The

larger constraint set will have size |CA|+ |CB|. Then we create

the graph GCA∪CB
from this constraint set. The existence of an

edge will be tested for every pair of constraints in the set and

this operation costs O(m · (|CA| + |CB|)
2). The multiplication

with m in the equation means that the domains of all issues

will be tested for intersection, for each pair of constraints.

LexBFS or MCS algorithms (line 3) take O(|CA|+ |CB|+ E)

to produce a PEO that is stored into peo[i] [19], [20]. Maximal

cliques are saved into mc[i] in time O(|CA|+|CB|+E) [21]. This

happens m times, once for each issue graph, so lines 2 to 5 take

O(2 ·m · (|CA|+ |CB|+ E)). Storing maximal cliques of GCA∪CB

into MAXCG costs O((|CA|+|CB|)
m) by taking the intersections

among all possible combinations of maximal cliques of issue

graphs. The search for equilibrium solution for each step is

carried out in time O(n·(|CA|+|CB|)
m). For each step (n in total)

we must check all the maximal cliques (at most (|CA|+ |CB|)
m).

Summing up, we get O((n+1) ·(|CA|+ |CB|)
m+m ·(|CA|+ |CB|)

2+

2 · m · (|CA| + |CB| + E)).

We can observe that if the number m of issues is fixed then

the complexity is polynomial with respect to the number n of

constraints.

V. Related work

According to our literature review, there is little work on

negotiation about interdependent issues. Probably the first

result to appear in the literature is the negotiation model

of Klein [10]. After the authors observed that hill climbers

perform better when paired with annealers, they proposed a

model with an annealer as a mediator and a voting mechanism

for agents. The model performs quite well, but the solutions

are not exact and a mediator that performs the annealing is

required. Differently from our work, there is no game-theoretic

analysis of the model and there is no theoretical study of the

preference model.
There are works that build on [10], such as [7]–[9]. All

of them use simulated annealing, again without any game-

theoretic analysis of the model. Moreover, their model has

some disadvantages: the number of bids per agent is restricted

because of performance limitations; the achieved optimality

decreases with the number of issues. An important thing that

worths mentioning is that, while these works used the same

preference model as we did (in fact we have borrowed their

preference model), they did not derive the same conclusions.
Another work that employs simulated annealing is [6].

Simulated annealing is used by agents to accept contracts

and the accepted contracts are mutated in the next step. The

contract is thus improved until the deadline is reached. In our

work we use the hill climbing strategy for accepting contracts

and we compute the exact solution of the negotiation problem.
There are results in the literature that approach the problem

differently. By using utility graphs, authors of [5] achieve

an exponentially decrease of the complexity of the problem,

though the problem remains complex. In [12], the authors

consider approximations of generic separable nonlinear utility

functions and show that the equilibrium can be computed

in linear time. A comparison of the outcomes for different

negotiation procedures is also provided.

VI. Conclusions and future work

We have shown that, under certain assumptions, the equilib-

rium solution of negotiations with nonlinear utility functions

can be computed in polynomial time.
We are not aware of a similar work that derives the same

powerful conclusions, although a similar preference model

(constraints with intervals assigned to issues) has been studied

before [7]–[9]. Compared to previous related works, we pro-

vide a game-theoretic analysis of the negotiation model using

a method inspired from [11] and we show that the equilibrium

solution can be computed in polynomial time. The agents

are using the hill-climbing approach of accepting contracts.

Therefore, we consider that our approach for negotiation with

interdependent issues is novel.
As future work, we plan to experimentally evaluate the

algorithm in order to see how it performs against real-world

complex negotiation scenarios. In particular, we are interested

in the average computation time of the algorithm when applied

to various realistic scenarios.
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