
Computer Language Notation Specification
through Program Examples

Miroslav Sabo, Jaroslav Porubän, Dominik Lakatoš, Michaela Kreutzová
Technical University of Košice

Letná 9

042 00 Košice, Slovakia

Email: {miroslav.sabo, jaroslav.poruban, dominik.lakatos, michaela.kreutzova}@tuke.sk

Abstract—It often happens that computer-generated docu-
ments originally intended for human recipient need to be pro-
cessed in an automated manner. The problem occurs if analyzer
does not exist and therefore must be created ad hoc. To avoid the
repetitive manual implementation of parsers for different formats
of processed documents, we propose a method for specification
of computer language notation by providing program examples.
The main goal is to facilitate the process of computer language
development by automating the specification of a notation for
recurring well-known language constructs often observed in
various computer languages. Hence, we introduce the concept
of language patterns, which capture the knowledge of language
engineer and enables its automated application in the process of
notation recognition. As a result, by using the proposed method,
even a user less experienced in the field of computer language
construction is able to create a language parser.

I. INTRODUCTION

S
OFTWARE systems generate a lot of textual output,

either as a main product of their execution or for other

secondary purposes such as logging. If the output is intended

for information transfer and further processing by another

system, its structure must be explicitly defined (e.g. XML

and XSD) in order for receiving system to transform the

textual content into appropriate structural representation. On

the other hand, if the output is intended for human recipient,

the structure of textual content is often not defined explicitly

but is rather hidden in its human-usable notation. In most of

these cases, the explicit specification of structure is not even

necessary, as primary purpose of such textual output is to

store the information in form which is easily comprehensible

to human users just by reading it. However, sometimes it

happens that output originally intended for human has to be

processed by computer (e.g. to perform an analysis). Since

explicit specification of its structure does not exist, it must be

defined first.

Considering the generative origin and human-usable no-

tation, we think of such textual output as of collection of

programs written in some domain-specific language (DSL).

From this perspective, the task of specifying a structure can be

translated into a problem of DSL notation specification. One

of the options is to examine the source code of the system

generating the output and construct the grammar of a DSL

accordingly. Besides the complexity of such task, it requires

access to source code, which might not always be feasible.

That leaves us the specification of a notation by inferring it

from the provided program examples.

Although syntax recognition is a well-established area of

research and multiple approaches to grammar inference have

already been implemented [1]–[3], in this paper we pro-

pose a method for example-driven DSL notation specification

(EDNS) based on language patterns. The innovative concept

of language patterns is proposed to capture the well-known

recurring notation of common language constructs often seen

in many computer languages. Automated identification of

such patterns in provided program examples eliminates the

necessity to specify the same notation manually and repeatedly

for each language being designed. Along the recognition of

recurring notations, language patterns are also used to check

whether the notation satisfies the conditions (e.g. unambiguity)

of a machine-processable computer language.

Our objective is to automate the process of DSL notation

specification as much as possible. By using EDNS method, it

is be possible to perform this task even for a user with little

knowledge about the language construction. Moreover, the

concept of formalized language patterns allows to incorporate

into the process a domain expert with no technical knowledge

as well. Besides the analytic way of using language patterns

in context of EDNS method, they can also be utilized in

the synthetic manner when specifying a notation by their

composition [4].

The rest of the paper is organized as follows. In the next

section we give a detailed description of approaches to com-

puter language inference, with special emphasis on DSLs. The

overview of EDNS method is given in Section III. Following

sections discuss the individual artifacts used in the method –

Section IV describes the specification of abstract syntax of a

DSL, while Section V describes ProgXample, the mechanism

for formalization of textual program examples which represent

the concrete syntax of a DSL. Section VI elaborates in detail

on the proposed concept of language patterns and discusses

its application in the proposed EDNS method. Finally, Section

VII gives the conclusions of the paper.

II. RELATED WORKS

The problem of syntax recognition from existing resources

has been specifically addressed by grammar inference research

community. Successful results have been achieved in inferring

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 895–898

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 895

regular languages using various algorithms like EDSM [5] and

RPNI [6]. Genetic-programming approach was used for infer-

ring regular grammars in [2]. The methodologies of context-

free grammars induction for domain-specific languages are the

aim of GenParse Project research group. Their initial research

of genetic approach resulted in the successful induction of

small grammars [7], however their current focus is on the

incremental grammar learning [1] which should allow for

bigger DSLs to be inferred as well.

Although yet another various approaches both automatic [8]

or semi-automatic [9], [10] exist, they are all targeted towards

language design based on the concrete syntax which is recog-

nized solely from artifacts represented as sentences/programs

written in the unknown language. The aim of our research

is focused, however, on the language development based on

abstract syntax since we advocate that language specification

with separated abstract and concrete syntaxes is more suitable

for DSL design. The fact that many supporting tools for

DSL development [11], [12] follow this approach makes for

a promising research area to explore.

III. EXAMPLE-DRIVEN METHOD FOR

DSL NOTATION SPECIFICATION

In traditional approach to computer language development

[13], central part of the language specification is grammar

which defines the concrete syntax (notation) of a language.

Abstract syntax is not defined explicitly but can be derived

from the grammar.

In model-driven approach to DSL development, it is a usual

practice to define abstract and concrete syntaxes separately

[14], [15], using some metamodeling and grammar-like lan-

guages respectively. The DSL notation is specified formally

by writing grammar-like rules containing domain-specific key-

words and references to elements of language metamodel. This

process is performed by language engineer. As the required

domain-specific notation is achieved by amending the rules

with domain-specific keywords, we can look at the process

of notation specification as a tailoring of the computer-like

syntax to meet the requirements on look and feel of the specific

domain.

Example-driven method for DSL notation specification

(EDNS) takes the opposite direction and starts with ideal

domain-specific notation, provided informally by domain ex-

pert through examples of programs as they would have been

written in a desired DSL (Fig. 1). The formal specification

is then derived from examples using the concept of language

patterns. The method consists of three consecutive phases –

formalization of program examples, DSL notation recognition

and generation of language specifications.

A. Formalization of Program Examples

Formalization of Program Examples can be considered a

preprocessing phase to the main phase of EDNS method

where the actual process of notation recognition happens. Its

purpose is to formalize the program examples which are given

Language
Engineer

Domain
Expert

Language
Patterns

Formatting
LPs

Mapping
LPs

DSL
Metamodel

Program
Examples

Examples
Formalization

ProgXample
Models

DSL Notation
Inference

Annotated
Metamodel

Output
Generation

Xtext
Grammar

EMFText
Grammar

Example-Driven
DSL Notation
Specification

YAJCo
Model

Fig. 1. Overview of the example-driven method for DSL notation specifica-
tion.

informally as plain text files, so they can be processed in an

automated manner in the following phase.

The resulting formal representation is tree models defined

in Ecore-based ProgXample modeling language. The process

of formalization is automated and models are created by

transforming the initial models using the formatting language

patterns. Initial models are constructed as trivial trees with

single node holding the whole textual content of an example

file. Creating of ProgXample models will be discussed in more

detail in Sec. V.

B. DSL Notation Inference

DSL Notation Inference is the main phase of EDNS method.

It has three inputs – DSL metamodel, ProgXample models and

mapping language patterns. DSL metamodel represents the

abstract syntax of a language and is the result of common

domain analysis conducted by both language engineer and

domain expert. ProgXample models are the output of previous

preprocessing phase and they are the formalization of concrete

syntax proposed by domain expert. The last input is a set

896 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

of language patterns which drive the process of notation

recognition. Patterns are in an iterative manner compared

against metamodel and ProgXample models and if the match

is found, the appropriate elements of metamodel are injected

with special annotations. The output of the notation recog-

nition process is the metamodel enriched with annotations

marking the identified patterns. This metamodel is an internal

representation of the language specification in EDNS method.

C. Output Generation

EDNS method does not directly concern the implementation

of languages or their supporting tools. For this purpose, it

rather exploits the maturity of existing technologies in this

area. There are many tools for language design and implemen-

tation, varying from simple parser generators [4] to complex

language workbenches [14], [15], which can generate the

full implementation of a language given just its specification.

Moreover, the more sophisticated tools can generate other

supporting tools (editor, debugger, visualizer, etc.) or even a

fully-fledged language-specific IDE as well. These tools are

in the focus of EDNS method and to utilize their generative

capabilities, EDNS provides them with language specifications

in the appropriate format.

Output generation is the final phase of EDNS method.

It takes a single input produced by the preceding phase of

language notation recognition – annotated metamodel of a

language. At first, Ecore metamodel serves as a source for

instantiating the in-memory Java objects which constitute

the internal YAJCo model [16]. This model represents the

implementation-independent language specification and itself

can be used for generation of the language parser and support-

ing language-specific tools. The specification files for other

tools for language implementation (e.g. Xtext, EMFText) can

be generated from YAJCo model using the Generator tool

provided by YAJCo framework [16].

IV. LANGUAGE METAMODEL

Language metamodel is the central part of computer lan-

guage specification in the proposed EDNS method, as it

defines the abstract syntax of a language. It is composed

of domain concepts, their properties and relations between

the concepts. The metamodel is created to formally capture

the output of domain analysis conducted together by both

language engineer and domain expert. In EDNS method, a

metamodel is constructed using the EMF Ecore Metamodel.

Each domain concept is represented by a single class and

concept’s properties are modeled using the class attributes.

The relations between concepts are in metamodel represented

as named connections between classes. Since metamodel is

defined in EMF Ecore format, any of the existing EMF editors

can be utilized in this phase.

V. PROGXAMPLE MODELS

In EDNS method, concrete syntax of a language is defined

informally by providing the examples of programs as they

would have been written in a DSL being specified. For

these examples to be processable in the following phase of

automated notation recognition, first they must be formalized.

For this purpose, a specialized modeling language, tailored for

the needs of EDNS method, has been proposed.

ProgXample is a compositional modeling language for tree

representation of textual content. It is defined on EMF Ecore

platform by its metamodel which specifies the components

of tree models that can formally represent the plain text of

program examples. The special facet of this language is that

its metamodel is not defined as a monolithic structure, but it is

rather composed of extensions attached to the core metamodel.

The construction of trivial tree is the starting point of

formalization of every program example and it is same for

every example file. Comparing the trivial tree model to a

flat representation of textual content, it indeed does not bring

any additional information on the structure of the program

example. However, tree model is iteratively compared against

formatting language patterns and if the match is recognized,

the model gets transformed into more complex form, possibly

being augmented with nodes of other kinds, introduced to

metamodel by various patterns. After all patterns have been

compared, the final form of tree models is handed as an input

to the following phase of DSL notation recognition.

VI. LANGUAGE PATTERNS

The concept of language pattern in the area of computer

language design has been inspired by the concept of design

pattern in the area of object-oriented software design [17].

In analogy with design patterns, language patterns capture

the language design knowledge in a form that can be reused

effectively. The captured knowledge serves two purposes:

1) captures the widely known and accepted notation of

particular language constructs, often used throughout

various programming languages (e.g. punctuation, de-

limiter marks, bracketing)

2) controls the specified notation that it satisfies require-

ments on being computer-processable (e.g. problem of

ambiguity in a language)

Language patterns are the foundation of a proposed method

for example-driven DSL notation specification [18]–[20]. Ac-

cording to their utilization, they come in two flavors – format-

ting language patterns and mapping language patterns.

Formatting language patterns (FLPs) are used in the early

phase of EDNS method when ProgXample models are being

created. Their purpose is to formalize the plain text of example

files into form that will be processable in the following phase

of notation inference. FLPs only concern the concrete syntax

of a language therefore the only artifacts included in the

process of pattern recognition are program examples which

define the notation of a language.

Mapping language patterns (MLPs) are used in the main

phase of EDNS method when the actual process of DSL

notation inference happens. Their purpose is to infer the con-

crete human-usable notation of a language from the provided

program examples. The inferred notation is then defined as

mapping between abstract and concrete syntaxes. Since MLPs

MIROSLAV SABO ET AL.: COMPUTER LANGUAGE NOTATION SPECIFICATION 897

concern both syntaxes of a language, the artifacts involved

in the process of inference include both DSL metamodel

representing the abstract syntax and ProgXample models (for-

malized program examples) representing the concrete syntax.

VII. CONCLUSION

Capturing the recurring notation style of common language

constructs and its formalization in form of computer language

patterns is an unexplored topic in the area of computer

language design. In this paper we have elaborated on this

novel idea and have discussed its application in context of

model-driven language development. The proposed method for

example-driven DSL notation specification (EDNS) has been

introduced. The paper has presented in detail the concept of

formatting and mapping language patterns and its application

in EDNS method.

The language patterns open new possibilities in construction

of computer languages. They can be utilized in both directions

to creating a language specification, analytical and synthetic.

Although synthetic approach was not discussed in this paper,

more details on this subject can be found in our earlier work

[4]. This paper presented the analytical approach, set up in

the context of proposed EDNS method. We believe that by

using it there is a potential for speeding up the process of

language creation since DSL notation is inferred from program

examples automatically and the only part of DSL specification

that must be performed manually by language engineer boils

down to construction of DSL metamodel. Besides the cases

where program examples are provided as an output generated

by software, the examples can be created manually as well.

This gives a possibility to define DSL notation even for a

person not versed in language construction, nevertheless the

most competent for such task – a domain expert. Since having

a domain expert as the direct author of DSL notation can

significantly increase the quality and usability of developed

DSL, we consider this an important benefit offered by EDNS

method.

Currently we are working on development of graphical user

interface for EDNS method. This will enable the visualization

of identified language patterns in provided program examples.

Moreover, it will facilitate the necessary process of amending

the examples in situations when proposed notation is not

machine-processable and DSL notation can not be inferred.

The success of notation inference is directly influenced by

number of language patterns that are to be looked for. Indeed,

the ones listed in this paper certainly do not encompass all of

the patterns that can be observed in computer languages. Since

language patterns are still the subject of ongoing research, we

expect to identify and formalize more of them in the future.

ACKNOWLEDGMENT

This work was supported by VEGA Grant No. 1/0305/11

Co-evolution of the artifacts written in domain-specific lan-

guages driven by language evolution.

REFERENCES

[1] M. Črepinšek, M. Mernik, B. R. Bryant, F. Javed, and
A. Sprague, “Inferring Context-Free Grammars for Domain-Specific
Languages,” Electronic Notes in Theoretical Computer Science

(ENTCS), vol. 141, pp. 99–116, December 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.entcs.2005.02.055

[2] P. Dupont, “Regular Grammatical Inference from Positive and Negative
Samples by Genetic Search: the GIG Method,” in Proceedings of the

Second International Colloquium on Grammatical Inference and Appli-

cations. London, UK: Springer-Verlag, 1994, pp. 236–245. [Online].
Available: http://portal.acm.org/citation.cfm?id=645515.658234

[3] M. Mernik, D. Hrncic, B. Bryant, A. Sprague, J. Gray, Q. Liu, and
F. Javed, “Grammar inference algorithms and applications in software
engineering,” in Information, Communication and Automation Technolo-

gies, 2009. ICAT 2009. XXII International Symposium on, 2009, pp. 1
–7.

[4] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek, “Annotation Based
Parser Generator,” Computer Science an Information Systems, vol. 7,
no. 2, pp. 291–307, 2010.

[5] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results
of the Abbadingo One DFA Learning Competition and a
New Evidence-Driven State Merging Algorithm,” in Proceedings

of the 4th International Colloquium on Grammatical Inference.
London, UK: Springer-Verlag, 1998, pp. 1–12. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645517.655780

[6] J. Oncina and P. Garcia, “Inferring regular languages in polynomial
update time,” in Pattern Recognition and Image Analysis, 1991, pp. 49–
61.

[7] M. Črepinšek, M. Mernik, and V. Žumer, “Extracting
Grammar from Programs: Brute Force Approach,” SIGPLAN

Not., vol. 40, pp. 29–38, April 2005. [Online]. Available:
http://doi.acm.org/10.1145/1064165.1064171

[8] P. R. Henriques, M. J. V. Pereira, M. J. A. Var, and A. Pereira,
“Automatic Generation of Language-based Tools,” in Electronic Notes

in Theoretical Computer Science, M. van den Brand and R. Laemmel,
Eds., vol. 65, no. 3. Elsevier Science Publishers, 2002.

[9] R. Lämmel and C. Verhoef, “Semi-automatic Grammar Recovery,”
Softw. Pract. Exper., vol. 31, pp. 1395–1448, December 2001. [Online].
Available: http://portal.acm.org/citation.cfm?id=569229.569230

[10] F. Javed, M. Mernik, J. Gray, and B. R. Bryant, “Mars: A metamodel
recovery system using grammar inference,” Information and Software

Technology, vol. 50, pp. 948–968, August 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1379905.1379993

[11] S. Cook, G. Jones, K. Stuart, and W. A. Cameron, Domain-Specific De-

velopment with Visual Studio DSL Tools. Addison-Wesley Professional,
2007.

[12] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Language

(DSL) Toolkit, 1st ed. Addison-Wesley Professional, 2009.
[13] T. Parr, The Definitive Antlr Reference: Building Domain-Specific Lan-

guages. Pragmatic Bookshelf, 2007.
[14] EMFText, http://www.emftext.org.
[15] Xtext, http://www.eclipse.org/Xtext.
[16] D. Lakatoš, J. Porubän, and M. Sabo, “Assisted Software Language

Creation using Internal Model,” in Proceedings of the International

Conference on Engineering of Modern Electric Systems, ser. EMES’11,
2011.

[17] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[18] J. Porubän, M. Sabo, J. Kollár, and M. Mernik, “Abstract Syntax Driven
Language Development: Defining Language Semantics through As-
pects,” in Proceedings of the International Workshop on Formalization

of Modeling Languages, ser. FML ’10. New York, NY, USA: ACM,
2010, pp. 2:1–2:5.

[19] M. Sabo, “Abstract Syntax Driven Concrete Syntax Recognition,” Jour-

nal of Information, Control and Management Systems, vol. 8, no. 4, pp.
393–402, 2010.

[20] M. Sabo and J. Porubän, “Concrete Syntax Recognition using Language
Patterns,” in Proceedings of CSE 2010 International Scientific Confer-

ence on Computer Science and Engineering, 2010, pp. 101–108.

898 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

