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Abstract—Deformation of normal structures in medical images
has usually been considered as undesired and even a challenging
issue to be tackled in medical image segmentation and reg-
istration tasks. With the objective of improving brain tumor
segmentation accuracy in human brain magnetic resonance (MR)
images, this paper proposes an approach to extract useful
information from the correlation between lateral ventricular
deformation and tumor. In some cases, comparative experiments
show the improved tumor segmentation accuracy when the
extracted information is added as an additional feature.

I. INTRODUCTION

B
RAIN tumor segmentation in magnetic resonance (MR)

image is an important image processing step for both

medical practitioners and scientific researchers. Large amounts

of research efforts have been made in developing effective

segmentation methods in the past years, however, such meth-

ods have failed to achieve the accuracy level comparable to

analyses performed by human experts[1], [2], [3], [4].

One of the most challenging problems that hinder the

development of accurate automatic systems is that MR image

lacks strong association between actual anatomical meaning

and MR imaging (MRI) intensity, especially for pathology

such as brain tumor. Therefore, in addition to intensities,

other features which are relevant to anatomical meaning are

necessary for more accurate tumor segmentation.

This paper brings forward the idea of utilizing brain lateral

ventricular deformation, which has been normally consdiered

as undesired and challenging, as an additional information for

tumor segmentation, and proposes to quantify the deformation

information as a feature with a design and implementation of a

feature extraction component. The created feature data is then

incorporated for improving tumor segmentation accuracy.

II. BACKGROUND

A. Brain Lateral Ventricles and Tumor

A ventricle is an internal cavity of brain. A normal brain

contains a connecting system of ventricles, commonly referred

to as the ventricular system, which is filled with cerebrospinal

fluid (CSF) [5], [6], [7], [8]. Fig. 1 illustrates scans from

sequences of T1- and T2-weighted MR images in axial view

where lateral ventricles are located in the brain center. Lateral

Fig. 1. healthy (a) T1- and (b) T2-weighted brain MR image slices in axial
view showing the lateral ventricles, images courtesy of [10].

ventricles are the biggest structures that mainly contain CSF

in the axial view of the brain center [9].

As can be seen clearly from Fig. 2(a-i), in cases where

brain tumors exist, one or two of the lateral ventricles are

compressed; whereas for a healthy brain the two lateral

ventricles are nearly symmetrical to each other (see Fig. 1).

Fig. 2(j) illustrates the direction of compression from brain

tumor and the deformed lateral ventricle. It can be seen that,

in some cases, lateral ventricle is compressed in the opposite

direction of the location of the brain tumor. This suggests the

strong correlation between the two structures. However, due to

the fact that brain tumours vary substantially in their location

and size, and have diverse effects on lateral ventricles, it is

not always the case that brain tumour and deformed lateral

ventricles appear in the same image plane. Fig. 3 illustrates

how this correlation becomes clear when seen from different

planes. The positions of the deformed parts of the lateral

ventricle in Fig. 3 (c) and (d) are basically the same as that of

the brain tumor shown in Fig. 3 (b). Fig. 3 (a) illustrates the

compression caused by a brain tumour on one lateral ventricle

(coronal view). It can be seen that correlations between lateral

ventricular deformation and the brain tumor still exist, even

though it may not be observable in the same plane or view of

MR images.

B. Brain Tumor Segmentation with Lateral Ventricular Defor-

mation

Automatic MR image segmentation systems are typically

designed as a combination of several components of pre-

processing, feature extraction, segmentation and classification

[1]. Feature extraction component which creates relevant data

sets is the key to successful segmentation [1]. It can be

assumed that, if the correlation between lateral ventricular
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Fig. 2. (a-i): Nine axial view MR image slices from different patients showing
brain tumor and lateral ventricles; (j): zoomed illustration of a deformed lateral
ventricle and a tumor.

Fig. 3. Some selected MR image slices of one patient showing brain tumour
and deformed lateral ventricles not in the same plane of axial view [11]: (a)
coronal view in middle of the head; (b) axial view from slice near the top
area of the head; (c) axial view from slice in the middle area of the head; (d)
axial view from slice next to (c).

deformation and tumor is correctly quantified and used, tumor

segmentation accuracy will be accordingly improved.

The fact that lateral ventricles constitute one of the major

structures with sharp boundaries in the brain allows for their

shapes to be easily delineated from their associated MR images

[12], [7], [8]. This makes the feature extraction process based

on deformation of this structure relatively more reliable. As a

result, lateral ventricular deformation caused by the presence

of brain tumors provides an intuition that one could exploit the

information derived from the correlations between them. By

utilizing this derived information, brain tumor segmentation

could be improved.

Fig. 4. Overview of the lateral ventricular deformation feature extraction
component.

III. DEFORMATION INFORMATION EXTRACTION

A. Overview

The task of extracting the lateral ventricular deformation

information should include retrieval of lateral ventricular

shape, and transformation of lateral ventricular deformation

into feature. To achieve the latter, one process to model and

estimate the deformation of the retrieved lateral ventricular

shape should be applied.

The step of modeling and estimating lateral ventricular

deformation is to associate template and deformed lateral ven-

tricles, and to model, calculate and quantify shape variation.

Hence, both healthy and deformed lateral ventricles must be

available for shape comparison. However, lateral ventricles of

one person are subject to shape variation with age, even with

the absence of pathology or abnormality [13]. Furthermore, be-

cause of the varieties of size, location and type of brain tumors

[14], [15], [16], their compression effects on lateral ventricles

are significantly diverse. There are no lateral ventricles that

can be used as a general template to perfectly associate

the deformed lateral ventricles in all cases. Therefore, an

additional step of adjusting feature data is necessary in the

lateral ventricular deformation feature extraction component.

The design of lateral ventricular deformation feature extraction

component actually consists of the three streamlined processes

as illustrated in Fig. 4.

B. Retrieving Lateral Ventricualr Shape

The existing works on brain lateral ventricular shape re-

trieval generally apply the approach of discriminating tissues

of ventricles through the analysis on its intensity and geometric

location [17], [18]. In this paper, the lateral ventricular shape

retrieval is achieved through three steps: brain MR image

tissue segmentation for separating CSF tissue from other

tissues, CSF identification for locating the image pixels/re-

gions of which lateral ventricles are composed and lateral

ventricles extraction for removing CSF pixels outside the

lateral ventricular regions.

In order to separate CSF from other tissues, we can create

several clusters by applying a clustering method. In this

step, brain tissues are clustered according to the similarity of

158 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011



Fig. 5. Lateral ventricular shape retrieval results: (a) healthy T1-weighted
MR image data; (b) T2-weighted MR image data of (a); (c) after tissue
segmentation on (a) and (b); (d) extracted lateral ventricles from (c); (e) tumor-
affected T1-weighted MR image data; (f) T2-weighted MR image data of (e);
(g) after tissue segmentation on (e) and (f); (h) extracted lateral ventricles
from (g).

MRI intensity of tissue types, and one of the output clusters

accommodates CSF tissue. This research applies our previous

work of feature-weighted Fuzzy C-Means (fwFCM) [19], [20]

which provides higher insensitivity to noise and capability of

adjusting feature weights. These properties make fwFCM more

suitable for MR images than conventional FCM algorithm.

After brain tissue segmentation, CSF extraction can be

conducted by selecting the cluster labeled as CSF from the

multiple clusters created by the fwFCM method. It can be

seen from Fig. 1 that, under the situation of absence of certain

types of lesions, within several major tissue types, CSF is

the only one that appears bright in T1-weighted and dark in

T2-weighted MR images [6]. As a result, intensity values of

CSF in T2-weighted MRI are high while those in T1-weighted

MRI are low. This selection process can be expressed as:

maxi {VT2,i − VT1−i} , where i is the cluster number, VT2

and VT1 represent the centroid values in the T2- and T1-

weighted features respectively in the input feature set of the

fwFCM clustering.

Although from brain MR images of axial view, lateral

ventricles are of large volume, CSF can still fall outside the

ventricular system [6]. Furthermore, the proposed brain tissue

segmentation step may wrongly assign non-CSF pixels to the

cluster of CSF. To remove undesired pixels, a global mask

is applied to remove pixels outside the area where pixels of

lateral ventricles normally reside, thereby leaves the regions as

the extracted lateral ventricles. Fig. 5 demonstrates the lateral

ventricles extraction results by applying this approach.

C. Estimating Lateral Ventricular Deformation

The process of estimating lateral ventricular deformation

can be decomposed into two steps: lateral ventricles align-

ment and lateral ventricular deformation measurement. Lateral

ventricles alignment is achieved by two sub-steps of linking

lateral ventricles and selecting landmark points. The lateral

ventricular deformation measurement step is also achieved by

two sub-steps of modeling lateral ventricular deformation and

calculating estimated deformation.

Fig. 6. Lateral ventricles linking and alignment results: (a) separated left and
right lateral ventricles; (b) linked left and right lateral ventricles; (c) template;
(d) target; (e) aligned template and target. White circles and grey cross
represents control points on template and target lateral ventricles, respectively.

In MR images, left and right lateral ventricles are actually

separated [7], [8]. Furthermore, lateral ventricles may be

broken. To effectively estimate deformation using modeling

functions, left and right lateral ventricles are treated as one sin-

gle object. Therefore left and right ventricles and the disjointed

parts of lateral ventricles need to be linked together. Fig. 6(a,

b) demonstrate a sample resultant image after the separated

lateral ventricles are linked together through a connecting line

with the shortest distance.

Based on the study of anatomical properties of brain lateral

ventricles, anterior and posterior horns are employed as key

landmark points. The process of lateral ventricles alignment

is completed by selecting intermediate landmark points based

on these key landmark points. Fig. 6(c, d) show the extracted

template and target lateral ventricles, respectively. Fig. 6(e)

displays the alignment results by selecting the landmark points

and overlapping them in one image. However, misalignment

effect caused by the applied imperfect template can be easily

observed.

Deformation is usually modeled and represented as a trans-

formation function [21]. Generally, in order to model deforma-

tion, both linear and non-linear functions can be used. How-

ever, with regards to brain MR images, linear transformation

functions, cause the images to be globally smoothed, thereby

accommodating only very small and simple deformations [22]

and making the process of employing them for modeling

deformation undesirable. As a nonlinear deformation modeling

function, thin plate splines (TPS) function is employed to

perform the nonlinear mapping between template and target

lateral ventricular boundary image data set [23]. A TPS f(x, y)
is a smoothing function which interpolates a surface that is

fixed at landmark points Pi at a specific height. TPS can be

treated as a process of finding a function z(x, y) which mini-

mizes the bending energy [23], [24]. In the application for 2-

dimensional images, instead of assuming that f corresponds to

a displacement orthogonal to the image plane at the landmark

points, one can treat it as a displacement in the image plane

[24]. By using two separate TPS functions fx and fy which

model the displacement of the selected landmark points in the

x and y direction, a vector-valued function F which maps each
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Fig. 7. Example of landmark points with original and deformed TPS meshes
formed by x and y coordinates: (a) original; (b) deformed. (c) Illustration of
the effect of deformation in a zoomed view before and after deformation, solid
and dashed lines are segments of the meshes from the original and deformed
image, respectively; grey arrows indicate the vector of the displacement due
to deformation.

point of the image into a new point in the image plane can

be represented using (x′, y′) → (fx(x, y), fy(x, y)), where fx
and fy are the functions causing displacement on x and y

coordinates respectively.

Once the vector-valued function F is defined via the se-

lected landmark points with TPS functions, it is then applied

to the original coordinates of all pixels in the target image

to retrieve new coordinates for all pixels. If one treats some

selected horizontal and vertical lines of equal spaces in the

original image as a mesh, then a corresponding distorted mesh

can be used to describe the displacement of each node of the

mesh. This effect is illustrated in Fig. 7(a, b) by visualizing

the original and its corresponding deformed meshes after TPS

function is applied to all pixels in the image. The effect of the

deformation on the lateral ventricles can then be represented

by finding out the coordinate displacement value of each pixel

in the image. In the deformed image, each pixel is displaced

from its original coordinate at specific direction and distance.

Therefore, vector can be used for representing the estimated

deformation of each point. Fig. 7(c) illustrates an example on a

segment of an image using magnitude and direction of vectors

to represent the deformation measurement.

D. Transforming Lateral Ventricular Deformation to Features

The process of transforming lateral ventricular deformation

to features can be decomposed to two indispensable steps:

estimated deformation data to feature conversion and lateral

ventricular deformation data adjustment.

The estimated deformation data is normalized to the format

of image grayscale value of 8 bits, which can be represented

as Equation Ik = Dk

max{D} × 255, where I is the normalized

intensity value, k is the index of pixel in the image and

255 is the maximum 8 bits grayscale value of MR image

pixels, and D is the magnitude of displacement vector which

can be calculated by using the Euclidean distance as D =
√

(Po_x − Pt_x)2 + (Po_y − Pt_y)2, where Po_x and Po_y are

the original data point x and y coordinate values, while Pt_x

and Pt_y are the obtained data point x and y coordinate values,

respectively.

It can be seen in Fig. 8(b) that that the maximum measured

deformation value is not in the area where tumor resides,

and the direction of vector denoting the highest displacement

value is irrelevant to that of the compression from the brain

tumor. This is mainly because of the misalignment between

Fig. 8. Example of estimating lateral ventricular deformation: (a) manual
selection of tumor, where round dot is selected by user input; (b) visualized de-
formation estimation, where magnitude of displacement vector is normalized
and visualized as image grayscale value, arrows are showing the directions of
displacement vectors, and a cross covered by a circle indicates the maximum
displacement vector magnitude; (c) visualized deformation estimation; (d)
deformation feature extraction final result.

the template and target lateral ventricles caused by using the

imperfect lateral ventricles template ( as seen in Fig. 6(e))..

To address this problem, as shown in Fig. 8(a), a method

for adjusting the estimated deformation data is proposed. The

method allows user to select one point in the brain tumor.

With this reference point, a line can be drawn from the point

to the center of the image, at the direction from the border

to the center of the image. Deformation estimation values can

therefore be adjusted by D′ = D
∣

∣cos
(

θ
2

)∣

∣ , where D and D′

are the magnitudes of the original and adjusted displacement

vector representing the estimated deformation, respectively. θ

is the angle between the connecting line and the displacement

vector. It can be seen that when θ = π (the connecting line

and the displacement vector are in the opposite directions),

adjusted displacement vector magnitude is reduced to 0. And

when θ = 0, magnitude of the adjusted displacement vector is

1, which means the estimated data is kept without any change.

Fig. 8(c) visualizes the estimated deformation data by

normalizing it into grayscale values and Fig. 8(d) illustrates the

final feature data of lateral ventricular deformation. It can be

seen that, although not perfect, the bright area which indicates

the high deformation values is approximately in the same

location as brain tumor in the original image. The deformation

estimation values can then be used as an additional feature

in the feature set the brain MR image tumor segmentation

methods that support input data of multiple features.

IV. BRAIN TUMOR SEGMENTATION WITH LATERAL

VENTRICULAR DEFORMATION FEATURE

A. System Implementation

Structure of the brain tumor segmentation system in this

research follows the common MR image segmentation system

[1] shown in Fig. 9(a). To investigate the effect of brain

tumor segmentation caused by the feature of lateral ventricular

deformation, special considerations have to be given to the

inclusive components of pre-processing, feature extraction and

brain tumor segmentation.

The pre-processing component in this brain tumor segmen-

tation system will need to address the issues of intensity non-

standardization, geometrical non-uniformity and redundant

data in the image background and skull. These issues are

respectively addressed by the four streamlined processes of
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Fig. 9. System structures: (a) structure of a common MR image segmentation
system.; (b) overview of the pre-processing component.

intensity standardization, geometrical standardization, back-

ground and skull removal processes, as illustrated in Fig. 9(b).

In the segmentation component, selected supervised and

unsupervised segmentation methods are used to evaluate the

effect of lateral ventricular deformation feature on brain tumor

segmentation. In order to achieve that, this research uses

two feature sets, one includes the extracted lateral ventricular

deformation feature, and the other does not. By comparing

the segmentation results using the same segmentation method,

i.e., supervised or unsupervised, effectiveness of the feature

of brain lateral ventricular deformation can be examined. In

this paper, the most frequently used k-nearest neighbors (k-

NN) [25], [26], [1] and conventional FCM [27], [19], [20] are

selected as supervised and unsupervised methods, respectively.

The intention of selecting conventional FCM method is to

evaluate the segmentation results by the original segmentation

method with no interference or adjustment.

B. Experimentation and Evaluation

To use the supervised k-NN algorithm on brain tumor seg-

mentation, tumor segmentation results from medical experts

are used as training samples in which tumor areas are marked.

Therefore all pixels in the images can be labeled as tumor or

non-tumor. After the k-NN classification, each testing image

pixel is categorized as tumor or non-tumor. In the experiments

using unsupervised FCM algorithm, the number of clusters is

set to 6 denoting six clusters of major brain tissues. The cluster

of tumor will be identified manually out from 6 clusters after

the clustering process due to the fact that there is no training

data for the FCM method.

By using input feature set with or without the extracted

deformation feature, pixels segmented as tumor which are in

the same class as the corresponding pixels in the segmentation

by medical expert are treated as correctly segmented tumor

pixels; those segmented as tumor but labeled as non-tumor

in the segmentation by medical expert are treated as wrongly

segmented tumor pixels.

Statistical measures of sensitivity and specificity [28], [29]

are applied for evaluating the segmentation results. By treat-

ing correctly segmented tumor, wrongly segmented tumor,

correctly segmented non-tumor and wrongly segmented non-

tumor pixel number as true positive (true+), false positive

Fig. 10. Training data and tumor segmentation results using k-NN classifier:
(a) segmentation by medical expert; (b) training data converted from (a); (c)
segmentation result without deformation feature; (d) segmentation result with
deformation feature, and segmentation results using FCM clustering method:
(e) segmentation by medical expert; (f) visualized segmentation by medical
expert; (g) segmentation result without deformation feature; (h) segmentation
result with deformation feature.

(false+), true negative (true−) and false negative (false−)

number respectively, sensitivity and specificity values can

be obtained according to: Sensitivity = true+

true++false−
and

Specificity = true−

true−+false+
, respectively. A sensitivity of

100% means that the test recognizes all actual positives,

i.e., all brain tumor pixels are segmented as tumor. And a

specificity of 100% means that the test recognizes all actual

negatives, i.e., all non-tumor pixels are segmented as non-

tumor [28].

The brain tumor segmentation result of one image case is

illustrated in Fig. 10. It can be seen from Fig. 10 (d, h) that, the

classification results obtained from the feature set with lateral

ventricular deformation feature are respectively closer to the

results from medical expert than the result shown in Fig. 10

(c, g), which is created from the feature set without lateral

ventricular deformation feature.

With more image cases, sensitivity and specificity values

tabulated in Table I and Table II provide further evidence of

the positive effect from the additional feature. It can be seen

from in Table I that from the experiments using supervised

kNN, with the inclusion of the extracted lateral ventricular

deformation feature, specificity values in the increase for

all eight cases. Except for the decrease in case number 3,

sensitivity values increase in 7 out of 8 cases. In the experi-

ments using unsupervised FCM as illustrated in Table II, with

the inclusion of the extracted lateral ventricular deformation

feature, specificity values increase for all eight cases. However,

sensitivity values decrease in 3 out of 8 cases. This is mainly

because there is no specific rule created for distinguishing

between tumor and non-tumor pixels in clustering [30]. In

short, the clusters of tumor or non-tumor are not well defined

concepts if no training process is included in the segmentation.

V. CONCLUSION

This paper establishes and implements the idea of utlizing

deformation of lateral ventricles for brain tumor segmentation.

The results show that the extracted lateral ventricular defor-

mation infromation is relevant to the position of brain tumor.
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TABLE I
SPECIFICITY AND SENSITIVITY VALUES OF BRAIN TUMOR SEGMENTATION USING SUPERISED kNN METHOD

Specificity Sensitivity
Feature Set

without deformation with deformation without deformation with deformation

Case 1 99.9% 100.0% 94.3% 95.3%

Case 2 99.9% 100.0% 90.9% 98.2%

Case 3 99.8% 99.9% 95.3% 94.3%

Case 4 99.1% 99.4% 79.7% 88.2%

Case 5 99.2% 99.7% 61.6% 82.7%

Case 6 99.8% 99.9% 93.7% 96.0%

Case 7 99.2% 99.8% 87.3% 96.6%

Case 8 99.8% 99.9% 91.0% 95.3%

TABLE II
SPECIFICITY AND SENSITIVITY VALUES OF BRAIN TUMOR SEGMENTATION USING UNSUPERISED FCM METHOD

Specificity Sensitivity
Feature Set

without deformation with deformation without deformation with deformation

Case 1 100.0% 100.0% 80.6% 81.9%

Case 2 99.2% 99.9% 2.29% 12.47%

Case 3 99.9% 99.9% 22.4% 20.2%

Case 4 98.2% 100.0% 13.8% 18.4%

Case 5 99.9% 99.9% 13.8% 15.7%

Case 6 99.2% 99.5% 11.1% 11.0%

Case 7 97.8% 99.2% 80.3% 84.1%

Case 8 100.0% 100.0% 49.1% 36.5%

By incorporating the relevant lateral ventricular deformation as

an additional feature in the feature set for pattern recognition

segmentation methods, brain tumor segmentation accuracy

increases.
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