
Preserivng pieces of information in a given order in

HRR and GAc

Agnieszka Patyk-Łońska

Abstract—Geometric Analogues of Holographic Reduced Rep-
resentations (GA HRR or GAc—the continuous version of
discrete GA described in [16]) employ role-filler binding based
on geometric products. Atomic objects are real-valued vectors in
n-dimensional Euclidean space and complex statements belong to
a hierarchy of multivectors. A property of GAc and HRR studied
here is the ability to store pieces of information in a given order
by means of trajectory association. We describe results of an
experiment: finding the alignment of items in a sequence without
the precise knowledge of trajectory vectors.

Index Terms—distributed representations, geometric algebra,
HRR, BSC, word order, trajectory associations, bag of words.

I. INTRODUCTION

O
VER the years several attempts have been made to

preserve the order in which the objects are to be remem-

bered with the help of binding and superposition. While some

solutions to the problem of preserving pieces of information

in a given order have proved ingenious, others are obviously

flawed. Let us consider the representation of the word eye—
it has three letters, one of which occurs twice. The worst

possible choice of binding and superposition would be to store

quantities of letters, e.g.

eye = twice ∗ e+ once ∗ y, (1)

since we would not be able to distinguish eye from eey or yee.
Another ambiguous representation would be to remember the

neighborhood of each letter

eye = beforey ∗ e+ betweene ∗ y + aftery ∗ e. (2)

Unfortunately, such a method of encoding causes words eye
and eyeye to have the same representation

eyeye = beforey ∗ e+ 2 · betweene ∗ y +

(beforey + aftery) ∗ e+ aftery ∗ e

= 2
(
beforey ∗ e+ betweene ∗ y + aftery ∗ e

)

= 2 eye. (3)

Real-valued vectors are normalized in most distributed rep-

resentation models, therefore the factor of 2 would be most

likely lost in translation. Such contextual roles (Smolensky

[19]) cause problems when dealing with certain types of

palindromes. Remembering positions of letters is also not a

good solution

eye = letterfirst ∗ e+ lettersecond ∗ y + letterthird ∗ e (4)

as we need to redundantly repeat the first letter as the third

letter, otherwise we could not distinguish eye from ey or ye.

Secondly, this method of encoding will not detect similarity

between eye and yeye.
A quantum-like attempt to tackle the problem of information

ordering was made in [1]—a version of semantic analysis,

reformulated in terms of a Hilbert-space problem, is compared

with structures known from quantum mechanics. In particular,

an LSA matrix representation [1], [10] is rewritten by the

means of quantum notation. Geometric algebra has also been

used extensively in quantum mechanics ([2], [4], [3]) and so

there seems to be a natural connection between LSA and

GAc, which is the ground for fututre work on the problem

of preserving pieces of information in a given order.

As far as convolutions are concerned, the most interesting

approach to remembering information in a given order has

been described in [12]. Authors present a model that builds a

holographic lexicon representing both word meaning and word

order from unsupervised experience with natural language

texts comprising altogether 90000 words. This model uses

simple convolution and superposition to construct n-grams

recording the frequency of occurrence of every possible word

sequence that is encountered, a window of about seven words

around the target word is usually taken into consideration. To

predict a word in a completely new sentence, the model looks

up the frequency with which the potential target is surrounded

by words present in the new sentence. To be useful, n-gram
models need to be trained on massive amounts of text and

therefore require extensive storage space. We will use a com-

pletely different approach to remembering information order—

trajectory association described by Plate in [18]. Originally,

this technique also used convolution and correlation, but this

time items stored in a sequence are actually superimposed,

rather than being bound together.

II. GEOMETRIC ANALOGUES OF HRR

Holographic Reduced Representations (HRR) and Binary

Spatter Codes (BSC) are distributed representations of cogni-

tive structures where binding of role–filler codevectors main-

tains predetermined data size. In HRR [17], [18] binding is

performed by means of circular convolution

(x⊛ y)j =

n−1∑

k=0

xkyj−kmodn. (5)

of real n-tuples or, in ‘frequency domain’, by componentwise

multiplication of (complex) n-tuples,

(x1, . . . , xn)⊛ (y1, . . . , yn) = (x1y1, . . . , xnyn). (6)

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 213–220

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 213

Bound n-tuples are superposed by addition, and unbinding

is performed by an approximate inverse. A dual formalism,

where real data are bound by componentwise multiplication,

was discussed by Gayler [9]. In BSC [13], [14] one works with

binary n-tuples, bound by componentwise addition mod 2,

(x1, . . . , xn)⊕ (y1, . . . , yn) = (x1 ⊕ y1, . . . , xn ⊕ yn),

xj ⊕ yj = xj + yj mod 2, (7)

and superposed by pointwise majority-rule addition; unbinding

is performed by the same operation as binding.

One often reads that the above models represent data by

vectors, which is not exactly true. Given two vectors one

does not know how to perform, say, their convolution or

componentwise multiplication since the result depends on

basis that defines the components. Basis must be fixed in

advance since otherwise all the above operations become

ambiguous. Geometric Analogues of Holographic Reduced

Representations (GA HRR) [5] can be constructed if one

defines binding by the geometric product, a notion introduced

in 19th century works of Grassmann [11] and Clifford [8].

In order to grasp the main ideas behind GA HRR let us con-

sider an orthonormal basis b1, . . . , bn in some n-dimensional

Euclidean space. Now consider two vectors x =
∑n

k=1 xkbk
and y =

∑n
k=1 ykbk. The scalar

x · y = y · x (8)

is known as the inner product. The bivector

x ∧ y = −y ∧ x (9)

is the outer product and may be regarded as an oriented plane

segment (alternative interpretations are also possible, cf. [7]).

1 is the identity of the algebra. The geometric product of x
and y then reads

xy =

n∑

k=1

xkyk 1

︸ ︷︷ ︸

x·y

+
∑

k<l

(xkyl − ykxl)bkbl

︸ ︷︷ ︸

x∧y

. (10)

Grassmann and Clifford introduced geometric product by

means of the basis-independent formula involving the mul-

tivector

xy = x · y + x ∧ y (11)

which implies the so-called Clifford algebra

bkbl + blbk = 2δkl1. (12)

when restricted to an orthonormal basis. Inner and outer

product can be defined directly from xy:

x · y =
1

2
(xy + yx), x ∧ y =

1

2
(xy − yx).

The most ingenious element of (11) is that it adds two

apparently different objects, a scalar and a plane element, an

operation analogous to addition of real and imaginary parts of

a complex number. Geometric product for vectors x, y, z can

be axiomatically defined by the following rules:

(xy)z = x(yz),

x(y + z) = xy + xz,

(x+ y)z = xz + yz,

xx = x2 = |x|2,

where |x| is a positive scalar called the magnitude of x. The
rules imply that x · y must be a scalar since

xy + yx = |x+ y|2 − |x|2 − |y|2.

Geometric algebra allows us to speak of inverses of vectors:

x−1 = x/|x|2. x is invertible (i.e. possesses an inverse) if

its magnitude is nonzero. Geometric product of an arbitrary

number of invertible vectors is also invertible. The possibility

of inverting all nonzero-magnitude vectors is perhaps the

most important difference between geometric and convolution

algebras.

Geometric products of different basis vectors

bk1...kj
= bk1 . . . bkj

,

k1 < · · · < kj , are called basis blades (or just blades). In

n-dimensional Euclidean space there are 2n different blades.

This can be seen as follows. Let {x1, . . . , xn} be a sequence

of bits. Blades in an n-dimensional space can be written as

cx1...xn
= bx1

1 . . . bxn
n

where b0k = 1, which shows that blades are in a one-to-one

relation with n-bit numbers. A general multivector is a linear

combination of blades,

ψ =
1∑

x1...xn=0

ψx1...xn
cx1...xn

, (13)

with real or complex coefficients ψx1...xn
. Clifford algebra

implies that

cx1...xn
cy1...yn

= (−1)
∑

k<l ykxlc(x1...xn)⊕(y1...yn),(14)

where ⊕ is given by (7). Multiplication of two basis blades

is thus, up to a sign, in a one-to-one relation with exclusive

alternative of two binary n-tuples. Accordingly, (14) is a

projective representation of the group of binary n-tuples with
addition modulo 2.

GA HRR is based on binding defined by geometric product

(14) of blades while superposition is just addition of blades

(13). The discrete GAd is a version of GA HRR obtained if

ψx1...xn
in (13) equal ±1. The first recognition tests of GAd,

as compared to HRR and BSC, were described in [16]. In the

present paper we go further and compare HRR and BSC with

GAc, a version of GA HRR employing “projected products”

[5] and arbitrary real ψx1...xn
.

Throughout this paper we shall use the following notation:

“∗” denotes binding roles and fillers by means of the geometric

214 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

product and “+” denotes the superposition of sentence chunks,

e.g.

“Fido bit Pat” = biteagt ∗ Fido+ biteobj ∗ Pat. (15)

Additionally, “⊛” will denote binding performed by circular

convolution used in the HRR model and a∗ denotes the

involution of a HRR vector a. A “+”’ in the superscript of

x+ denotes the operation of reversing a blade or a multivector

x: (bk1...kj
)+ = bkj

. . . bk1 . Asking a question will be denoted

with “♯”, as in

“Who bit Pat?”

= (biteagt ∗ Fido+ biteobj ∗ Pat) ♯ biteagt (16)

≈ Fido.

The size of a (multi)vector means the number of memory

cells it occupies in computer’s memory, while the magnitude

of a (multi)vector V = {v1, . . . , vn} is its Euclidean norm
√∑n

i=1 v
2
i .

For our purposes it is important that geometric calculus

allows us to define in a very systematic fashion a hierarchy

of associative, non-commutative, and invertible operations that

can be performed on 2n-tuples. The resulting superpositions

are less noisy than the ones based on convolutions, say.

Geometric product preserves dimensionality at the level 2n-
dimensional multivectors, where n is the number of bits

indexing basis vectors. Moreover, all nonzero vectors are

invertible with respect to geometric product, a property absent

for convolutions and important for unbinding and recognition.

A detailed analysis of links between GA HRR, HRR and BSC

can be found in [5].

III. THE GAc MODEL

The procedure we employ was suggested in [5]. The space

of 2n-tuples is split into subspaces corresponding to scalars

(0-vectors), vectors (1-vectors), bivectors (2-vectors), and so

on. At the bottom of the hierarchy lay vectors V ∈ R
n,

having rank 1 and being denoted as
1

V . An object of rank

2 is created by multiplying two elements of rank 1 with

the help of the geometric product. Let
1

V= {α1, α2, α3} and
1

W= {β1, β2, β3} be vectors in R
3. A multivector

2

X of rank

2 in R
3 comprises the following elements (cf. [15])

2

X=
1

V
1

W=





α1

α2

α3









β1
β2
β3



 =







α1β1 + α2β2 + α3β3
α1β2 − α2β1
α1β3 − α3β1
α2β3 − α3β2






, (17)

the first entry in the array on the right being a scalar and the

remaining three entries being 2-blades. For arbitrary vectors in

R
n we would have obtained one scalar (or, more conviniently:(
n
0

)

scalars) and

(
n
2

)

2-blades.

Let
2

X= {γ1, γ2, γ3, γ4} and
1

V= {α1, α2, α3} be two

multivectors in R
3. A multivector

3

Z of rank 3 in R
3 may

be created in two ways: as a result of multiplying either
1

V by
2

X or
2

X by
1

V . Let us concentrate on the first case

3

Z=
1

V
2

X=





α1

α2

α3











γ1
γ2
γ3
γ4






=







α1γ1 − α2γ2 − α3γ3
α1γ2 + α2γ1 − α3γ4
α1γ3 + α2γ4 + α3γ1
α1γ4 − α2γ3 + α3γ2






. (18)

Here, the first three entries in the resulting matrix are 1-blades,

while the last entry is a 3-blade. For arbitrary multivectors of

rank 1 and 2 in R
n we would have obtained

(
n
1

)

vectors

and

(
n
3

)

trivectors. We cannot generate multivectors of rank

higher than 3 in R
3, but it is easy to check that in spaces

R
n>3 a multivector of rank 4 would have

(
n
0

)

scalars,

(
n
2

)

bivectors and

(
n
4

)

4-blades. The number of k-blades in a

multivector of rank r is described by Table I. It becomes clear

that a multivector of rank r over Rn is actually a vector over

a
∑⌊ r

2 ⌋
i=0

(
n

2i+ r mod 2

)

-dimensional space.

As an example let us consider the following roles and

fillers being normalized vectors drawn randomly from R
n with

Gaussian distribution N(0, 1
n
)

Pat = {a1, . . . , an},
male = {b1, . . . , bn},

66 = {c1, . . . , cn},

name = {x1, . . . , xn},
sex = {y1, . . . , yn},
age = {z1, . . . , zn}.

(19)

PSmith, who is a 66 year old male named Pat, is created by

first multiplying roles and fillers with the help of the geometric

product

PSmith = name ∗ Pat+ sex ∗male+ age ∗ 66

= name · Pat+ name ∧ Pat+ sex ·male+

sex ∧male+ age · 66 + age ∧ 66 (20)

=






∑n
i=1(aixi + biyi + cizi)

a1x2 − a2x1 + b1y2 − b2y1 + c1z2 − c2z1
a1x3 − a3x1 + b1y3 − b3y1 + c1z3 − c3z1

.

.

.

an−1xn − anxn−1 + bn−2yn − bnyn−1 + cn−1zn − cnzn−1






= [d0, d12, d13, . . . , d(n−1)n]
T

= d0 + d12e12 + d13e13 + · · ·+ d(n−1)ne(n−1)n, (21)

where e1, . . . , en are orthonormal basis blades. In order to be

decoded as much correctly as possible, PSmith should have

the same magnitude as vectors representing atomic objects,

therefore it needs to be normalized. Finally, PSmith takes

the form of

PSmith = [d̂0, d̂12, d̂13, . . . , d̂(n−1)n]
T , (22)

where d̂i =
di

√

∑(n−1)n
j=0,12 d2

j

.

AGNIESZKA PATYK-ŁOŃSKA: PRESERIVNG PIECES OF INFORMATION IN A GIVEN ORDER IN HRR AND GAC 215

TABLE I
NUMBERS OF k-BLADES IN MULTIVECTORS OF VARIOUS RANKS IN R

n

rank scalars vectors bivectors trivectors 4-blades . . . data size

1 0
(

n

1

)

0 0 0 . . . O
(

(

n

1

)

)

2
(

n

0

)

0
(

n

2

)

0 0 . . . O
(

(

n

0

)

+

(

n

2

)

)

3 0
(

n

1

)

0
(

n

3

)

0 . . . O
(

(

n

1

)

+

(

n

3

)

)

.

..
.
..

.

..
.
..

.

..
.
..

. . .
.
..

2r
(

n

0

)

0
(

n

2

)

0
(

n

4

)

. . . O
(

∑r
i=0

(

n

2i

)

)

2r + 1 0
(

n

1

)

0
(

n

3

)

0 . . . O
(

∑r
i=0

(

n

2i + 1

)

)

PSmith is now a multivector of rank 2. The decoding

operation

name+PSmith

= name+(name · Pat+ name ∧ Pat+ sex ·male

+sex ∧male+ age · 66 + age ∧ 66) (23)

will produce a multivector of rank 3 consisting of vectors

and trivectors. However, the original Pat did not contain any

trivector components—they all belong to the noise part and the

only interesting blades in name+PSmith are vectors. The

expected answer is a vector, therefore there is no point in

calculating the whole multivector name+PSmith and only

then comparing it with items stored in the clean-up memory.

To be efficient, one should generate only the vector-part while

computing name+PSmith and skip the noisy trivectors.

Let 〈·〉k denote the projection of a multivector on k-blades.
To decode PSmith’s name we need to compute

〈name+PSmith〉1

= name+namePat+ 〈 name+(name ∧ Pat

+sex ·male+ sex ∧male+ age · 66 + age ∧ 66) 〉1

= Pat+ noise = Pat′. (24)

The resulting Pat′ will still be noisy, but to a lesser degree

than it would have been if the trivectors were present.

Formally, we are using a map ∗11,2 that transforms a multi-

vector of rank 1 (i.e. an n-tuple) and a multivector of rank 2

(i.e. a (1+ (n−1)n
2)-tuple) into a multivector of rank 1 without

computing the unnecessary blades. Let X be a multivector of

rank 2

X = 〈X〉0 + 〈X〉2 = x0 +
∑

l<m

xlmelem, (25)

where xlm = −xml. If A = (A1, . . . , An) is a decoding vector
(actually, an inverse of a role vector), then

A ∗11,2 X = x0A+
∑

l,m

Alxlmem

=
∑

k

(
xAk +

∑

l

Alxlk
)
ek (26)

=
∑

k

Ykek = Y,

with Y = (Y1, . . . , Yn) being an n-tuple, i.e. a multivector of

rank 1. More explicitly,

Yk = (A ∗11,2 X)k = x0Ak +

k−1∑

l=1

Alxlk −

n∑

l=k+1

Alxkl. (27)

The map ∗11,2 is an example of a projected product, introduced

in [5], reconstructing the vector part of AX without com-

puting the unnecessary parts. The projected product is basis

independent, as opposed to circular convolutions. In general,

∗ml,k transforms the geometric product of two multivectors
l

A

and
k

B into a multivector
m

C.
We now need to compare Pat′ with other items stored in

the clean-up memory using the dot product, and since Pat′

is a vector, we need to compare only the vector part. That

means, if the clean-up memory contained a multivector
2t+1

M

of an odd rank, we would also need to compute Pat′ · 〈
2t+1

M 〉1
while searching for the right answer.

This method of decoding suggests that items stored in the

clean-up memory should hold information about their ranks,

which is dangerously close to employing fixed data slots

present in localist architectures. However, a rank of a clean-up

memory item can be “guessed” from its size. In a distributed

model we also should not “know” for sure how many parts

the projected product should reject, but it can certainly reject

parts spanned by blades of highest grades.

Before providing formulas for encoding and decoding a

complex statement we need to introduce additional notation for

the projected product and the projection. We have already in-

troduced the projected product ∗ml,k transforming the geometric

product of two multivectors of ranks l and k into a multivector

of rank m. This will not always be the case for complex

statements, since we can produce a multivector that will not

be of any given rank. Let ∗ml,{α1,α2,...,αk}
denote the projected

product transforming the geometric product of a multivector
l

A and a multivector B containing α1-blades, α2-blades,. . . and

αk-blades into a multivector
m

C . In this way, the projected

product ∗11,2 may be written down as ∗11,{0,2}. By analogy,

let 〈·〉{α1,α2,...,αk} denote the projection of a multivector

on components spanned by α1-blades, α2-blades,. . . and αm-

blades.

216 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Let Ψ denote the normalized multivector encoding the

sentence “Fido bit PSmith”, i.e.

Ψ = biteagt ∗ Fido
︸ ︷︷ ︸

rank 2

+ biteobj ∗ PSmith︸ ︷︷ ︸

rank 2
︸ ︷︷ ︸

rank 3

. (28)

Multivector Ψ will contain scalars, vectors, bivectors and

trivectors and can be written down as the following vector

of dimension
∑3

i=0

(
n
i

)

Ψ = α
︸︷︷︸

a scalar

+

n∑

i=1

βiei

︸ ︷︷ ︸

vectors

+

n∑

1=i<j

γijeij

︸ ︷︷ ︸

bivectors

+

n∑

1=i<j<k

δijkeijk

︸ ︷︷ ︸

trivectors

(29)

IV. TRAJECTORY ASSOCIACION

In the HRR model vectors are normalized and therefore

can be regarded as radii of a sphere of radius 1. If we attach a

sequence of items, say A,B,C,D,E to arrowheads of five of

those vectors, we obtain a certain trajectory on the surface

of a sphere, that is associated with sequence ABCDE. This

is a geometric analogue to themethod of loci which instructs

to remember a list of items by associating each term with a

distinctive location along a familiar path. Let k be a randomly

chosen HRR vector and let

ki = k ⊛ ki−1 = ki−1
⊛ k, i > 1 (30)

be its ith power, with k1 = k. The sequence SABCDE is then

stored as

SABCDE = A⊛k+B⊛k2+C⊛k3+D⊛k4+E⊛k5. (31)

Of course, each power of k needs to be normalized before be-

ing bound with a sequence item. Otherwise, every subsequent

power of k would be larger or smaller than its predecessor.

As a result, every subsequent item stored in a sequence would

have a bigger or a smaller share in vector SABCDE . Obviously,

this method cannot be applied to the discrete GA model

(decribed in [16]) or to BSC, since it is impossible to obtain

more than two distinct powers of a vector with the use of XOR

as a means of binding.

This technique has a few obvious advantages present in

HRR but not in GAc had we wished to use ordinary vectors

as first powers—different powers of a vector k would then be

multivectors of different ranks. While ki and ki±1 are very

similar in HRR, in GAc they would not even share the same

blades. Further, the similarity of ki and ki+m in HRR is the

same as the similarity of kj and kj+m, whereas in GAc that

similarity would depend on the parity of i and j. In the light

of these shortcomings, we need to use another structure acting

as a first power in order to make trajectories work in GAc. Let

t be a random normalized full multivector over Rn and let us

define powers of t in the following way

t1 = t, ti = (ti−1)t for i > 1. (32)

We will store vectors a1 . . . al in a sequence Sa1...al
using

powers of the multivector t

Sa1...al
= a1t+ a2t

2 + · · ·+ alt
l. (33)

To answer a question “What is the second item in a sequence?”

in GAc we need to use the projected product

〈Sa1...al
(t2)+〉1 ≈ a2, (34)

and to find out the place of item ai we need to compute

(ai)
+Sa1...al

≈ ti. (35)

Some may argue that such encoding puts a demand on items

in the clean-up memory to hold information if they are roles

or fillers, which is dangerously close to employing fixed data

slots present in localist architectures. Actually, elements of a

sequence can be recognized by their size, relatively shorter

than the size of multivector t and its powers.

V. ITEM ALIGNMENT

We present an experiment using trajectory association and

we comment on test results for HRR and GAc models. We

tested whether the HRR and GAc models were capable of

performing the following task:

Given only a set of letters A,B,C,D,E and an encoded

sequence S????? comprised of those five letters find out

the position of each letter in that sequence.

We assumed that no direct access to t or its powers is

given—they do belong to the clean-up memory, but cannot

be retrieved “by name”. One may think of this problem as a

“black box” that inputs randomly chosen letter vectors and in

return outputs a (multi)vector representing always the same

sequence, irrespectively of the dimension of data. Inside, the

black box generates (multi)vectors t, t2, t3, t4, t5. Their values
are known to the observer but their names are not. Since we

can distinguish letters from non-letters, the naive approach

would be to try out all 120 alignments of letters A,B,C,D
and E using all possible combinations of non-letters as the

powers of t. Unfortunately, powers of t are different each time

the black box produces a sequence. We will use an algorithm

based on two assumptions:

(a) tx, if not recognized correctly, is more similar to highest

powers of t,
(b) letters lying closer to the end of the sequence are often

offered as the incorrect answer to questions concerning

letters, as in S ♯tn.

Assumption (a) can be easily justified: since lower powers of t
are recognized correctly more often, higher powers of t come

up more often as the incorrect answer to S ♯ A. Vector t3

is the correct answer to SxxAxx ♯ A. However, if t3 is not

recognized, the next most similar answer will be t5 because

it contains three “copies” of t3, indicated here by brackets
{

t ∗
(

t ∗ [t
}

∗ t
)

∗ t]. (36)

The second most similar item will be t4 because it contains

two “copies” of t, and so on. The item least similar to t3 will

AGNIESZKA PATYK-ŁOŃSKA: PRESERIVNG PIECES OF INFORMATION IN A GIVEN ORDER IN HRR AND GAC 217

Asking with A

non A

B

C

D

E

N=100 N=200 N=300 N=400 N=500

1643 960 616 506 393

19.90%

25.56%

26.78%

27.75%

16.04%

22.92%

27.71%

33.33%

12.66%

22.73%

28.73%

35.88%

8.30%

21.94%

32.02%

37.75%

6.62%

18.58%

30.03%

44.78%

= 100%

✲

✻

100 200 300 400 500
N

10%

20%

30%

40%

50%

[%] of {B,C, D,E}

❛

❛

❛

❛
❛

B

B
B

B
B

❛

❛ ❛
❛

❛

C
C C C

C

❛
❛

❛

❛

❛

D D D
D

D❛

❛

❛
❛

❛

E

E
E

E

E

Asking with B

non B

A

C

D

E

N=100∗ N=200∗ N=300 N=400 N=500

2474 1588 1133 837 628

18.03%

25.14%

29.59%

27.24%

18.14%

24.87%

28.90%

28.09%

12.71%

22.51%

30.98%

33.80%

9.44%

23.30%

30.59%

36.68%

8.28%

21.97%

30.89%

38.85%

= 100%

✲

✻

100 200 300 400 500
N

10%

20%

30%

40%

50%

[%] of {A,C, D,E}

❛ ❛

❛

❛
❛

A A

A
A A

❛ ❛

❛
❛

❛C C
C C C

❛ ❛

❛ ❛ ❛

D D
D D D

❛
❛

❛

❛

❛

E E

E
E

E

Asking with C

non C

A

B

D

E

N=100 N=200 N=300 N=400 N=500

3003 2214 1694 1346 1121

22.51%

24.18%

25.51%

27.81%

18.16%

22.81%

26.06%

32.97%

18.00%

21.55%

27.86%

32.59%

15.30%

21.47%

27.64%

35.59%

13.83%

20.07%

28.55%

37.56%

= 100%

✲

✻

100 200 300 400 500
N

10%

20%

30%

40%

50%

[%] of {A,B,D, E}

❛

❛ ❛

❛
❛

A

A A
A A

❛
❛

❛ ❛
❛

B B B B B

❛ ❛
❛ ❛

❛

D D
D D D

❛

❛ ❛

❛
❛

E

E E
E

E

Asking with D

non D

A

B

C

E

N=100∗ N=200 N=300 N=400 N=500

3432 2686 2264 1808 1564

21.71%

26.84%

25.44%

26.02%

22.23%

24.72%

25.58%

27.48%

20.19%

24.03%

25.66%

30.12%

17.64%

25.77%

26.05%

30.53%

18.67%

21.16%

27.37%

32.80%

= 100%

✲

✻

100 200 300 400 500
N

10%

20%

30%

40%

50%

[%] of {A,B,C, E}

❛ ❛

❛

❛
❛A A

A
A A

❛

❛ ❛
❛

❛

B
B B

B

B

❛ ❛ ❛ ❛
❛

C C C C C❛
❛

❛ ❛

❛

E E
E E

E

Asking with E

non E

A

B

C

D

N=100∗ N=200∗ N=300 N=400∗ N=500

3754 3116 2617 2353 1921

24.77%

25.12%

26.08%

24.03%

20.31%

25.48%

28.34%

25.87%

19.79%

23.42%

27.59%

29.19%

19.46%

22.90%

29.20%

28.35%

18.84%

23.27%

28.37%

29.52%

= 100%

✲

✻

100 200 300 400 500
N

10%

20%

30%

40%

50%

[%] of {A,B,C, D}

❛

❛ ❛ ❛ ❛

A

A A A A

❛ ❛

❛ ❛ ❛B B
B B B

❛

❛
❛

❛
❛

C
C C

C C
❛

❛

❛
❛

❛

D
D

D D D

Fig. 1. Finding letter alignment in a sequence SABCDE in HRR, 10000 trials.

be t. Assumption (b) comes exactly from the same fact—a

letter multiplied by one of the highest powers of t will be

stored more “prominently” than other letters.

The clean-up memory C for this experiment consists of all

five letters and the five powers of t. We will also use an

auxiliary clean-up memory L containing letters only.

Since the normalization using the square root of the number

of chunks proved very noisy in initial tests on statements

containing powers of the trajectory vector, we decided to

improve the HRR model. The HRR vectors in our tests were

normalized by dividing them with their magnitude.

218 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

TABLE II
FINDING LETTER ALIGNMENT IN A SEQUENCE SABCDE IN GAc , 10000 TRIALS.

R
5 fA fB fC fD fE

asking with A 71.60% 8.22% 6.44% 2.72% 6.47%
asking with B 8.98% 65.92% 9.16% 6.76% 9.18%
asking with C 7.28% 9.52% 67.25% 9.67% 6.28%

asking with D 8.74% 6.75% 8.80% 66.83% 8.88%
asking with E 8.03% 9.96% 6.83% 9.28% 65.90%

A ≺ B
∗B ≺ E

C ≺ D

D ≺ E
∗E ≺ B

⇒
A ≺ B

C ≺ D ≺ E

R
6 fA fB fC fD fE

asking with A 80.34% 5.34% 4.61% 5.08% 4.63%
asking with B 6.56% 73.91% 7.48% 4.67% 7.38%
asking with C 6.71% 7.47% 72.83% 7.68% 5.31%

asking with D 6.79% 5.37% 7.42% 72.30% 8.12%
asking with E 5.52% 7.77% 5.58% 8.54% 72.59%

A ≺ B

B ≺ C

C ≺ D
∗D ≺ E
∗E ≺ D

⇒ A ≺ B ≺ C ≺ D

R
7 fA fB fC fD fE

asking with A 89.78% 2.42% 2.91% 2.37% 2.52%
asking with B 3.78% 83.92% 4.04% 4.44% 3.82%
asking with C 4.30% 4.79% 80.54% 5.11% 5.26%

asking with D 4.35% 5.07% 5.41% 79.09% 6.08%
asking with E 4.57% 5.07% 5.85% 5.68% 78.83%

A ≺ C

B ≺ D
∗C ≺ E

D ≺ E
∗E ≺ C

⇒
A ≺ C

B ≺ D ≺ E

R
8 fA fB fC fD fE

asking with A 95.33% 0.88% 1.26% 1.20% 1.30%

asking with B 1.34% 92.27% 1.72% 2.93% 1.74%
asking with C 2.15% 2.28% 88.99% 2.35% 4.23%

asking with D 1.93% 3.75% 2.82% 88.19% 3.31%
asking with E 2.60% 2.36% 5.09% 3.32% 86.63%

A ≺ E
∗B ≺ D
∗C ≺ E
∗D ≺ B
∗E ≺ C

⇒ A ≺ E

The algorithm for finding out the position of each letter

begins with asking a question

S????? ♯ Lx =

{
S????? ⊛ (Lx)

∗ in HRR

(Lx)
+S????? in GAc

}

= (tx)′ ≈ tx (37)

for each letter Lx ∈ L. Next, we need to find the item in the

clean-up memory C \ L that is most similar to (tx)′. Let us
denote this item by z. With high probability, z is the power of

t associated with the position of the letter Lx in the sequence

S?????, although, if recognized incorrectly, z will most likely

point to some other ty>x. Now let us ask a second question

S????? ♯ z =

{
S????? ⊛ z∗ in HRR

〈S????? z
+〉1 in GAc

}

= L′ ≈ Lx. (38)

We use the projected product in GAc because we are looking

for a letter vector placed on the position indicated by z. In
HRR the resulting L′ should be compared with letters only.

In most cases L′ will point to the correct letter. However,

in a small fraction of test results, L′ will point to letters

surrounding Lx, because z has been mistakenly decoded as

ty for some y 6= x. Also, letters preceding Lx should come

up less often than letters proceeding Lx.

Figure 1 presents test results for HRR. The data in Figure

1 should be interpreted as follows: the first row of each table

next to a graph contains the vector lengths of the data used

in 5 consecutive experiments (10000 trials each). The second

row contains the number of faulty answers within those 10000

trials. The next 4 rows present the percentage of occurence

of a ”faulty” letter within all faulty answers presented in the

second row.

Faulty alignments (i.e. those, for which the percentages

corressponding to letters do no align increasingly within a

single column) have been marked with a “∗” in the table

headings. We used SABCDE as the mysterious encoded se-

quence S?????. In each case we crossed out the most frequently

occurring letter and we concentrated on the frequency of the

remaining letters. In HRR, for sufficiently large vector sizes,

the frequencies fL of all letters L ∈ L aligned correctly

fB < fC < fD < fE asking with A, (39)

fA < fC < fD < fE asking with B, (40)

fA < fB < fD < fE asking with C, (41)

fA < fB < fC < fE asking with D, (42)

fA < fB < fC < fD asking with E. (43)

It was straightforward that these inequalities lead to fA <
fB < fC < fD < fE and correctly identify the encoded

sequence as SABCDE . Test results are less accurate when

we asked about letters lying closer to the end of a sequence,

therefore the size of the vector should be adequately long.

Moreover, the longer the vector, the larger the difference

between the frequencies.

GAc was expected to perform worse in this experiment,

because we can construct powers of a mulivector ti−1 by

AGNIESZKA PATYK-ŁOŃSKA: PRESERIVNG PIECES OF INFORMATION IN A GIVEN ORDER IN HRR AND GAC 219

multiplying it with t from one side only. Indeed, at the first

glance Table II shows that letter frequencies do not align

correctly at all. We therefore needed to slightly modify the

algorithm for finding letter alignment in GAc: we concentrated

on two largest frequencies in each series of asking questions—

the largest frequency represents the letter L that was used to

ask the question and the second largest frequency indicates

letter L̂ that most likely proceeds letter L.
Table II presents the frequencies of letters recognized as

the most probable answer to Equation (38), the second largest

frequency in each row is printed in bold. Partial letter align-

ments have been placed next to each table and contradictory

alignments have been preceded with a “∗”. When being asked

with the last letter of the sequence, HRR provided less accurate

answers and so did GAc by yielding more contradictions

than in case of previous letters. It is impossible to avoid

contradictory alignments in GAc because we do not know

which letter is the last one and the algorithm for recovering

letter alignment in GAc instructs us to write down the partial

alignment with that letter being proceeded by some other letter.

The remaining alignments point correctly to the sequence

SABCDE

A ≺ B
C ≺ D ≺ E

A ≺ B ≺ C ≺ D
A ≺ C

B ≺ D ≺ E
A ≺ E







⇒ A ≺ B ≺ C ≺ D ≺ E. (44)

VI. CONCLUSION

We have shown that multivector powers in GAc have

properties similar to convolutive powers of HRR vectors

• (multi)vectors ti−r and ti are similar in much the same

way as ti and ti+r ,

• items placed near the beginning of a sequence are re-

membered more prominently and thus, are recognized

correctly more often,

• items placed near the end of a sequence are remembered

less precisely and often come up as the most probable

answer when the correct item is not recognized.

We have used the last two properties to find the alignment of

sequence items without the explicit knowledge of (multi)vector

powers. While HRR retrieved the original alignment without

greater problems, GAc left us with an easily soluble logical

puzzle providing fragmentary alignments.

These properties can be used to build holographic lexicons,

dictionaries and other structures that require storing order

information and word meaning in the same pattern.

ACKNOWLEDGMENT

This work was supported by grant G.0405.08 of the

Research Programme of the Research Foundation-Flanders

(FWO, Belgium)

REFERENCES

[1] D. Aerts and M. Czachor, “Quantum aspects of semantic analysis and
symbolic artificial intelligence”, J. Phys. A, vol. 37, pp. L123-L13, 2004.

[2] D. Aerts and M. Czachor, “Cartoon computation: Quantum-like algo-
rithms without quantum mechanics”, J. Phys. A, vol. 40, pp. F259-F266,
2007.

[3] M. Czachor, “Elementary gates for cartoon computation”, J. Phys. A, vol.
40, pp. F753-F759, 2007.

[4] D. Aerts and M. Czachor, “Tensor-product versus geometric-product
coding”, Physical Review A, vol. 77, id. 012316, 2008.

[5] D. Aerts, M. Czachor, and B. De Moor, “Geometric Analogue of
Holographic Reduced Representation”, J. Math. Psychology, vol. 53, pp.
389-398, 2009.

[6] D. Aerts, M. Czachor, and B. De Moor, “On geometric-algebra represen-
tation of binary spatter codes”. preprint arXiv:cs/0610075 [cs.AI], 2006.

[7] D. Aerts, M. Czachor, and Ł. Orłowski, “Teleportation of geometric
structures in 3D ”, J. Phys. A vol. 42, 135307, 2009.

[8] W.K. Clifford, “Applications of Grassmann’s extensive algebra”, Ameri-
can Journal of Mathematics Pure and Applied, vol. 1, 350–358, 1878.

[9] R. W. Gayler, “Multiplicative binding, representation operators, and
analogy”, Advances in Analogy Research: Integration of Theory and Data

from the Cognitive, Computational, and Neural Sciences, K. Holoyak, D.
Gentner, and B. Kokinov, eds., Sofia, Bulgaria: New Bulgarian University,
p. 405, 1998.

[10] S. Deerwester et al. “Indexing by Latent Semantic Analysis”, Journal
of American Society for Information Science, vol. 41, 391, 1990.

[11] H. Grassmann, “Der Ort der Hamilton’schen Quaternionen in der
Ausdehnungslehre”, Mathematische Annalen, vol. 3, 375–386, 1877.

[12] M.N. Jones & D.J.K. Mewhort, “Representing Word Meaning and Order
Information in a Composite Holographic Lexicon”, Psychological Review,
vol. 114, No. 1, pp. 1-37, 2007.

[13] P. Kanerva, “Binary spatter codes of ordered k-tuples”. In C. von der
Malsburg et al. (Eds.), Artificial Neural Networks ICANN Proceedings,

Lecture Notes in Computer Science vol. 1112, pp. 869-873, 1996.
[14] P. Kanerva, “Fully distributed representation”. Proc. 1997 Real World

Computing Symposium (RWC97, Tokyo), pp. 358-365, 1997.
[15] N.G. Marchuk, and D.S. Shirokov, “Unitary spaces on Clifford alge-

bras”, Advances in Applied Clifford Algebras, vol 18, pp. 237-254, 2008.
[16] A. Patyk, “Geometric Algebra Model of Distributed Representations”,

in Geometric Algebra Computing in Engineering and Computer Science,
E. Bayro-Corrochano and G. Scheuermann, eds. Berlin: Springer, 2010.
Preprint arXiv:1003.5899v1 [cs.AI].

[17] T. Plate, “Holographic Reduced Representations”, IEEE Trans. Neural

Networks, vol. 6, no. 3, pp. 623-641, 1995.
[18] T. Plate, Holographic Reduced Representation: Distributed Representa-

tion for Cognitive Structures. CSLI Publications, Stanford, 2003.
[19] P. Smolensky, “Tensor product variable binding and the representation

of symbolic structures in connectionist

220 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

