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Abstract—A parser called the embedded left LR(k) parser is
defined. It is capable of (a) producing the prefix of the left parse
of the input string and (b) stopping not on the end-of-file marker
but on any string from the set of lookahead strings fixed at the
parser generation time. It is aimed at automatic construction
of LL(k) parsers that use embedded LR(k) parsers to resolve
LL(k) conflicts. The conditions regarding the termination of
the embedded left LR(k) parser if used within LL(k) (and
similar) parsers are defined and examined in-depth. As the
embedded LR(k) parser produces the prefix of the left parse,
the LL(k) parser augmented with embedded LR(k) parsers still
produces the left parse and the compiler writer does not need
to bother with different parsing strategies during the compiler
implementation.

I. INTRODUCTION

Parsing is an important phase of virtually any modern com-

piler because it represents the backbone upon which syntax-

directed translation of the source program to the (intermediate)

code is based. Furthermore, syntax errors in the source pro-

gram can be successfully detected and precisely reported only

if the appropriate parsing method is chosen.

The two most widely used parsing methods nowadays, i.e.,

LL and LR parsing [1], [2], are both relatively old [3], [4].

Nevertheless, the discourse on whether LL or LR parsing is

more suitable either in general or in some particular case still

goes on decades later after both methods have been simplified

or strengthen many times since their discovery.

By careful examination of open source compilers for the

most popular programming languages one can conclude only

that the race between LL (most often implemented as a

hand-written recursive-descent parser) and LR parsing remains

open. For instance, Sun/Oracle Java compiler (a part of the

standard JDK) employs a recursive-descent parser augmented

with operator precedence parsers while Eclipse Java compiler

uses Jikes-generated LALR parser. Likewise, the distribution

of Google’s Go includes two parsers, a recursive-descent one

and a Bison-generated LALR one. GCC switched from Bison-

generated LALR parser to the recursive-descent parser for

parsing C++ in 2004 (gcc 3.4.0) and for C/ObjectiveC in

2006 (gcc 4.1.0). Python is parsed using a hand-written LL(1)
parser (augmented with DFAs to select the next production

at each step), but Ruby and PHP are parsed using Bison-

generated LALR parser. Finally, Haskell is parsed using

Happy-generated LALR parser (GHC and JHC) or recursive-

descent parser (NHC). (No citation is given in this paragraph:

the findings can be best verified by downloading and examin-

ing the appropriate source code.)

The latest spark in this ongoing debate was triggered by

the online publication of the paper entitled “Yacc is dead”

[5]. Although the authors’s original intent was to popularize a

new parsing method, the online discourse quickly focused on

whether it is better to use (mostly LALR) parser generators or

write recursive-descent parsers by hand. As it might have been

expected, no definite conclusion has been reached. However,

two issues have been made clear (again). First, parser gener-

ators are appreciated, and second, both methods, LR and LL,

remain attractive.

On one hand, LR parsing is popular for two reasons. First,

unlike LL parsing, it is powerful: all deterministic context-

free languages (DCFL) can be parsed using this method, and

left-recursive productions (necessary for describing the left

associativity of arithmetic operators, for instance) can be used.

Second, for nearly every widespread programming language,

an LALR parser generator is available (itself a consequence

of the first reason).

On the other hand, the popularity of LL parsing stems from

its simplicity which makes it suitable even for hand-written

recursive-descent parsers, and its error recovery capability that

allows generating precise error messages. Many LL parser

generators are available, but quite a few include some way

of producing parsers beyond the strength of LL(1) parsing:

ANTLR employs LL(∗) parsing [6] while LISA offers both

LL and LR parsing (but the generated parser uses either one

method or the other, but never both) [7].

Apart from some major modifications of LL parsing like

LL(∗) parsing [6], different techniques are used to bolster

LL parsing. One way is to augment an LL(1) parser with

DFAs (Python). Another way is to use small simple or

operator precedence parsers [1] for parsing those phrases of

the language (usually declarations or arithmetic expressions)

that are too complicated for LL(1) parsing. However, none of

these ways make parsing of all DCFL possible.

In this paper, we present yet another way to make LL
parsing stronger: to use small LR parsers to resolve LL
conflicts. Instead of the standard LR parser a modified LR
parser which (a) produces the left parse and (b) stops as soon

as the shortest prefix of the left parse can be computed, are

to be used within the main LL parser. From the compiler

writer’s point of view the combined parser acts like a top-

down parser capable of good error recovery [1], [10] while it
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is as powerful as an LR parser since it can be constructed for

any LR grammar.

An intermediate knowledge of LL and LR parsing is

presumed. The notation used in [1] and [2] is adopted and

all nonstandard symbols are introduced along the way. Fur-

thermore, it is assumed that the result the parser produces

is the left (right) parse of the input string, i.e., the list of

productions needed to derive the input string from the initial

grammar symbol using the leftmost (rightmost) derivation.

The paper is organized as follows. In Section II, the basic

method for embedding LR(k) parsers into LL parsing is

described and the embedded left LR(k) parser is formally

defined in Sections III. The termination properties are in-

vestigated in Section IV. The paper ends with Conclusion

containing a list of issues not cover in this paper due to the

lack of space.

II. EMBEDDING THE LR(k) PARSER

INTO THE LL(k) PARSER

Consider that an LL(k) parser is being used for parsing

a language generated by an LR(k) grammar, and that small

LR(k) parsers are used to resolve LL(k) conflicts in the LL(k)
parser. More precisely, let the backbone parser be an SLL(k),
i.e., strong LL(k), parser. There are several reasons for using

SLL(k) parser instead of the canonical LL(k) parser [1],

[2]. First, the construction and implementation of the SLL(k)
parser are much simpler and memory efficient than that of the

canonical LL(k) parser. Second, every LL(k) grammar can

be transformed into an equivalent SLL(k) grammar automati-

cally, so no expressive power is lost. And finally, when k = 1,

the only value of k used in practice, SLL(1) = LL(1).
Theoretically, the SLL(k) parser is a produce-shift parser

and produces the left parse of the input string. For instance,

after reading the prefix u of the input string w = uv that is

derived by the derivation

S =⇒πu

G,lm uδ =⇒πv

G,lm uv = w ,

the SLL(k) parser for G = 〈N,T, P, S〉 reaches configuration

$δR v$ with viable suffix $δR on the stack and lookahead

string x = k: v$ in the lookahead buffer; the parser’s output

contains the left parse πu ∈ P ∗. Furthermore, the parser is

said to be in position X x if symbol X is the topmost stack

symbol ($δR = $δ′RX).

By theory [1], [2], the SLL(k) parser for G (based on the $-

augmented grammar G′) exhibits produce-produce conflict in

conflicting position A x if and only if there exist productions

A −→ α1, A −→ α2 ∈ P where α1 6= α2 so that

x ∈ ( FIRSTG′

k (α1FOLLOWG′

k (A))

∩ FIRSTG′

k (α2FOLLOWG′

k (A))) .

As the conflicting position A x is the result of every produc-

tion B −→ β1Aβ2 where

x ∈ ( FIRSTG′

k (α1β2FOLLOWG′

k (B))

∩ FIRSTG′

k (α2β2FOLLOWG′

k (B))) ,

the basic idea (borrowed from the combination of LL and

simple/operator precedence parsing) is to replace the produc-

tion B −→ β1Aβ2 with production B −→ β1〈〈A〉〉β2 where

〈〈A〉〉 6∈ T is a marker that triggers an LR(k) parser for A.
However, the embedded parser for A cannot assume that the

end-of-input marker (denoted $) is at the end of the substring

being parsed, i.e., the substring derived from A. It must stop

when a string x ∈ FIRSTG′

k (β2FOLLOWG′

k (B)) is in the

lookahead buffer, and then handle the control back to the

backbone SLL(k) parser. This is not always possible as the

following two examples demonstrate.
Example 1: Consider the grammar Gex1 with productions

S −→ bAab, A −→ Aa | a .

The position A a exhibits the conflict, but the LR(1) parser

for a grammar with the new symbol A cannot stop in the right

moment. Suppose that an input string starts with baa and that

the LR(1) parser for A has been triggered in configuration

$baA aa . . . $. After the first a is shifted and reduced to A,

the lookahead buffer contains the second a. As k = 1, the

LR(1) parser cannot decide whether the particular a in the

buffer is derived from S (if baab is being parsed) or from

A (if baaab is being parsed, for instance). The solution is to

parse not just A but Aa using LR(1) parser as b is never a

part of the input for this embedded LR parser and can thus

stop on b.
Example 2: Consider the grammar Gex2 with productions

S −→ bBab | abBb, B −→ A, A −→ Ba | a .

The conflicting position is again A a. If the input string starts

with baa, the LR(1) parser for a new start symbol A cannot

stop correctly for the same reason as in Example 1. But now

A is the rightmost symbol in production A −→ B and thus

the solution from Example 1 cannot be used. Hence, position

B a must be declared conflicting instead.
However, if the input string starts with abaa, then the LR(1)

parser for A used for resolving the conflict in position A a

can stop on b — stopping of the embedded parsers clearly

depends on the wider context within which the conflicting

position occurs.
To avoid the problem of the context that is exposed in Exam-

ple 2, the grammar G = 〈N,T, P, S〉 for which the SLL(k)
parser using embedded LR(k) parsers is to be constructed,

is transformed into grammar Ḡ = 〈N̄ , T, P̄ , S̄〉 where each

nonterminal occurs in exactly one FOLLOW-context. More

precisely, the start symbol becomes S̄ = 〈S, {ε}〉 and the set

N̄ of nonterminals is defined as

N̄ = {〈A,FA〉;S =⇒∗

lm uAδ ∧ FA = FIRSTG
k (δ)} .

For any nonterminal 〈A,FA〉 the new set P̄ of productions

includes productions

〈A,FA〉 −→ X̄1X̄2 . . . X̄n

where, for any i = 1, 2, . . . , n,

X̄i =

{

Xi Xi ∈ T

〈Xi,FIRST
G
k (Xi+1Xi+2 . . . XnFA)〉 Xi ∈ N
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provided that A −→ X1X2 . . . Xn ∈ P . (This transformation

does not introduce any new LL(k) conflicts; in fact, if k > 1
and SLL(k) parser is used instead of LL(k) parser, it even

reduces the number of LL(k) conflicts for some non-SLL(k)
grammars [2].)

To resolve the SLL(k) conflicts during SLL(k) parsing,

every production

〈B,FB〉 −→ β1〈A,FA〉β2 ∈ P̄

must be replaced with

〈B,FB〉 −→ β1〈〈Aβ
′

2,FAβ′

2
〉〉β′′

2

where β2 = β′

2β
′′

2 and FAβ′

1
= FIRSTG

k (β
′′

2FB). The new

symbol 〈〈Aβ′

2,FAβ′

2
〉〉 6∈ N̄ acts as a trigger for starting the

embedded LR(k) parser for substrings derived from Aβ′

2 that

can stop on strings in FAβ′

2
.

Furthermore, as the amount of LR parsing is to be minimal,

β′

2 should be as short as possible or even ε in the best case.

If, on the other hand, not even β′′

2 = ε suffices for the safe

termination of the embedded LR(k) parser, 〈B,FB〉 must be

declared conflicting nonterminal.

Example 3: Using the transformation described just above,

grammar Gex1 is transformed to grammar Ḡex1 with a single

production

〈S, {ε}〉 −→ b〈〈Ab, {b}〉〉b .

Likewise, grammar Gex2 is transformed to grammar Ḡex2 with

productions

〈S, {ε}〉 −→ b〈〈Ba, {b}〉〉b | ba〈〈B, {b}〉〉b

despite the fact that symbol B is not part of any conflicting

position.

Finally, if marker 〈〈β,F〉〉 is given for grammar G =
〈N,T, P, S〉, an embedded LR(k) parser that stops (no later

than) on any lookahead string x ∈ F , is needed. The easiest

way to achieve this is to build the LR(k) parser for the

embedded grammar

Ĝ = 〈N̂ , T, P̂ , S1〉

where N̂ = N ∪ {S1, S2} for S1, S2 6∈ N and

P̂ = P ∪ {S1 −→ S2x, S2 −→ β ; x ∈ F} .

The trick is obvious: the embedded LR(k) parser for Ĝ must

accept its input no later than when the reduction on S2 −→ β

is due. In that way, it never pushes any symbol of any string

x ∈ F onto the stack. If this cannot be done, the embedded

LR(k) parser for 〈〈β,F〉〉 cannot be used.

III. THE EMBEDDED LEFT LR(k) PARSER

As mentioned in the introduction, the left LR(k) parser

that is embedded into the backbone LL(k) parser must fulfill

two requirements. First, it must produce the prefix of the left

parse instead of the right parse so that the compiler writer can

concentrate on the implementation of attribute grammar as if

the entire input is being parsed using LL(k) parser. Second,

it must stop and handle the control to the backbone parser

as soon as possible, preferably after the first production of

the left parse is produced. In that way, the amount of LR(k)
parsing is minimized. Furthermore, the embedded left LR(k)
parser must be able to accept its input and terminate without

the end-of-input marker in the lookahead buffer since it parses

only a substring of the entire input — but this issue has been

resolved in the previous section.

To meet these two goals, the embedded left LR(k) parser is

a modification of the left LR(k) parser. The left LR(k) parser

produces the left parse of the input string during bottom-up

parsing using two methods [8].

The first method, first introduced in the Schmeiser-Barnard

LR(k) parser [9], augments each nonterminal pushed on the

LR stack with the left parse of the substring derived from that

nonterminal:

• If the parser performs the shift action, no production

is pushed on the stack, i.e., the terminal pushed is

augmented with the empty left parse ε.

• If the parser performs the reduce action, the left parses

accumulated in states that are removed from the stack

are concatenated, and prefixed by the production the

reduction is made on. The resulting left parse is pushed

on the stack together with the new nonterminal.

Note that using this method, the first production of the left

parse is produced only at the very end of parsing.

In general, take an LR(k) grammar G = 〈N,T, P, S〉 and

the input string w = uv derived by the rightmost derivation

S =⇒∗

G,rm γv =⇒∗

G,rm uv . (1)

After reading the prefix u, the canonical LR(k) parser for

grammar G reaches the configuration

$[$][$X1][$X1X2] . . . [$X1X2 . . . Xn] v$ (2)

where X1X2 . . . Xn = γ, [$X1X2 . . . Xn] is the current parser

state and x = k: v$ is the contents of the lookahead buffer.

Note that [$X1X2 . . . Xj ], for j = 0, 1, . . . , n, denotes the

state of the canonical LR(k) machine MG reachable from

the state [$] by string X1X2 . . . Xj (MG is based on the

$-augmented grammar G′ obtained by adding the new start

symbol S′ with production S′ −→ $S$ to G).

On the other hand, the Schmeiser-Barnard LR(k) parser

(which is based on the canonical LR(k) machine as well)

reaches the configuration

$〈[$]; ε〉〈[$X1];π(X1)〉〈[$X1X2];π(X2)〉 . . .
. . . 〈[$X1X2 . . . Xn];π(Xn)〉 v$

(3)

where π(Xj) denote the left parse of the substring derived

from Xj , i.e., X1X2 . . . Xn =⇒
π(X1)π(X2)...π(Xn)
G,lm u.

Example 4: Consider the embedded grammar Gex4 with

productions

S1 −→ S2c, S2 −→ A,

A −→ aa | aB | bBa | bBaa, B −→ Bb | ε .

Parsing of the input string bbbaac using the Schmeiser-Barnard

LR(1) parser is shown in Table I.
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TABLE I
PARSING THE STRING bbbaac ∈ L(Gex4)

USING THE SCHMEISER-BARNARD LR(1) PARSER.

STACK INPUT

$ 〈[$]; ε〉 bbbaac$

$ 〈[$]; ε〉 〈[$b]; ε〉 bbaac$

$ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π1 = B→ε〉 bbaac$

$ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π1 = B→ε〉 〈[$bBb]; ε〉 baac$

$ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π2 = B→Bb·π1〉 〈[$bBb]; ε〉 aac$

$ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π3 = B→Bb·π2〉 aac$

$ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];π3 = B→Bb·π2〉 〈[$bBa]; ε〉 ac$

$ . . . 〈[$bB];π3 = B→Bb·π2〉 〈[$bBa]; ε〉 〈[$bBaa]; ε〉 c$

$ 〈[$]; ε〉 〈[$A];π4 = A→bBaa·π3〉 c$

$ 〈[$]; ε〉 〈[$S2];π5 = S2→A·π4〉 c$

$ 〈[$]; ε〉 〈[$S2];π6 = S2→A·π5〉 〈[$S2c], ε〉 $

$ 〈[$]; ε〉 〈[$S1];π7 = S1→S2c·π6〉 $

where π7 = S1→S2c·S2→A·A→bBaa·B→Bb·B→Bb·B→ε

The second method, first introduced in the left LR(k) parser

[8], enables the parser to compute the prefix of the left parse

of the substring corresponding to the prefix of the input string

read so far (although this is not possible in every parser

configuration). In other words, if apart from derivation (1) the

input string w = uv is derived by the leftmost derivation

S =⇒
π(u)
G,lm uδ =⇒∗

G,lm uv , (4)

then the left LR(k) parser computes the left parse π(u) in

configuration (3). As this part of the left LR(k) parser is

modified, it deserves more attention.

By theory [2], configurations (2) and (3) imply that machine

MG contains at least one sequence of valid k-items

[A0 → •α0A1β0, x0] · . . . · [A0 → α0•A1β0, x0] ·

· [A1 → •α1A2β1, x1] · . . . · [A1 → α1•A2β1, x1] ·
...

· [Aℓ → •αℓAℓ+1βℓ, xℓ] . . . [Aℓ → αℓ•Aℓ+1βℓ, xℓ]

(5)

where [A0 → • α0A1β0, x0] = [S′ → • $S$, ε], γ =

α0α1 . . . αℓ, k: v$ ∈ FIRSTG′

k (Aℓ+1βℓxℓ), and Aℓ+1 = ε;

the horizontal dots denote repetitive application of operation

passes (or GOTO) while the vertical dots denote the appli-

cation of desc (or CLOSURE).

Sequence (5) induces the (induced) central derivation

S′ = A0 =⇒G α0A1β0

=⇒G α0α1A2β1β0
...

=⇒G α0α1 . . . αℓAℓ+1βℓβℓ−1 . . . β0 ;

the name “central” becomes obvious if the corresponding

derivation tree presented in Figure 1(a) is observed.

However, if the left parses π(α0), π(α1), . . . , π(αℓ), where

αj =⇒
π(αj)
G′,lm uj for j = 0, 1, . . . , ℓ, are provided, then

sequence (5) induces the (induced) leftmost derivation

S′ = A0 =⇒G,lm α0A1β0 =⇒
π(α0)
G,lm u0A1β0

=⇒G,lm u0α1A2β1β0 =⇒
π(α1)
G,lm u0u1A2β1β0

...

=⇒G,lm u0u1 . . . uℓ−1αℓAℓ+1βℓβℓ−1 . . . β0

=⇒
π(αℓ)
G,lm u0u1 . . . uℓAℓ+1βℓβℓ−1 . . . β0

where u = u0u1 . . . uℓ and k: v$ ∈ FIRSTG′

k (βℓβℓ−1 . . . β0$).
The corresponding derivation tree is shown in Figure 1(b) and

the left parse of the induced leftmost derivation is therefore

π(u) =A0 −→ α0A1β0 · π(α0) ·

·A1 −→ α1A2β1 · π(α1) ·
...

·Aℓ −→ αℓAℓ+1βℓ] · π(αℓ) .

(6)

(Likewise, if the right parses π(β1), π(β2), . . . , π(βℓ) are

known, then sequence (5) induces the (induced) rightmost

derivation producing the derivation tree in Figure 1(c).)

Subparses π(αj) of the left parse (6) are available on the

parser stack because α0α1 . . . αℓ = γ = X1X2 . . . Xn, but

productions Aj −→ αjAj+1βj are not. However, if sequence

(5) is known, the missing productions and in fact the entire

prefix of the left parse can be computed [8]. Starting with

π = ε and i = [Aℓ → αℓ•Aℓ+1βℓ, xℓ], the stack is traversed

downwards:

• If i = [A→ •β, x], then (a) i expands the nonterminal A

by production A −→ β and (b) i′, the item that precedes

i in sequence (5), is in the same state. Hence, let π :=
A −→ β · π and i′ := i.

• If i = [A→ αX•β, x] ∈ [$γX] for some γ, then (a) the

left parse π(X) is available on the stack and (b) i′ is in

the state [$γ] (which is found beneath [$γX]). Hence, let

π := π(X) ·π and i′ := i; furthermore, proceed one step

downwards along the stack, i.e., to the state [$γ].

The downward traversal stops when the item [S2 → •β, x] ∈
[$], for some β ∈ (N ∪ T )∗ and x ∈ (T ∪ {$})∗k, is reached

(the production S2 −→ β is not added to the resulting left

parse).

This method can be upgraded to compute the prefix of the

left parse and the viable suffix δR in derivation (4) as well

since δ = Aℓ+1βℓβℓ−1 . . . β0 — see Figure 1(b). Hence, start

with δ = Aℓ+1βℓ and whenever i = [A→•β, x], let δ := δ ·β′

where i′ = [A′ → α′ •Aβ′, x′] is the item preceding i in

sequence (5).

Example 5: Consider again grammar Gex4 and the input

string bbbaac ∈ L(Gex4) from Example 4. After the prefix

bbba of the input string has been read, the parser reaches

the configuration shown in the 7th line of Table I. But as

illustrated in Figure 2, there is only one item active for the

current lookahead string a in state [$bBa], namely [S2 →
bBa•a, $]. Furthermore, there exist exactly one sequence of

LR(1) items starting with [S′ → •$S$, ε] ∈ [ε] and ending
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A1

A2

A3

A4

.

.

.

A!−1

A!

α1

α2

α3

α!−1

α!

β1

β2

β3

β!−1

β!

(a) The derivation tree of the induced central deriva-
tion.

A1

A2

A3

A4

.

.

.

A!−1

A!

α1

α2

α3

α!−1

α!

β1

β2

β3

β!−1

β!

u1 u2 u3
. . . u!−1 u!

(b) The derivation tree of the induced leftmost de-
rivation (the left parses παj ought to be provided).

A1

A2

A3

A4

.

.

.

A!−1

A!

α1

α2

α3

α!−1

α!

β1

β2

β3

β!−1

β!

v1v2v3
. . .v!−1v!

(c) The derivation tree of the induced rightmost de-
rivation (the right parses πβj

ought to be provided).

Fig. 1. The derivation trees corresponding to various kinds of induced derivations; remember that Aℓ+1 = ε in all three cases.

S′→•$S1$, ε S′→$•S1$, ε
S1→•S2c, $
S2→•A, c

A→•aa, c
A→•aB, c

A→•bBa, c

A→•bBaa, c

S′→$S1•$, ε S′→$S1$•, ε

S2→A•, c

A→a•a, c
A→a•B, c

B→•Bb, c

B→•, c
B→•Bb, b

B→•, b

A→aB•, c
B→B•b, c
B→B•b, b

B→Bb•, c
B→Bb•, b

A→aa•, c

A→b•Ba, c

A→b•Baa, c

B→•Bb, a

B→•, a

B→•Bb, b

B→•, b

A→bB•a, c
A→bB•aa, c
B→B•b, a

B→B•b, b

A→bBa•, c
A→bBa•a, cA→bBaa•, c

B→Bb•, a

B→Bb•, b

S1→S2•c, $ S1→S2c•, $

$ S1

A

a b

S2

$

B

a

b

B

a

b

a

c

Fig. 2. The canonical LR(1) machine for Gex4 — items that end multiple
sequences starting with [S′ → •$S$, ε] ∈ [ε] are shown in bold face.

with [S2 → bBa•a, $] ∈ [$bS2a]:

[S′ → •$S1$, ε] · [S
′ → $•S1$, ε] · [S1 → •S2c, $] ·

· [S2 → •bBaa, $] · [S2 → b•Baa, $] ·

· [S2 → bB•aa, $] · [S2 → bBa•a, $]

Hence, the prefix of the left parse and the corresponding viable

suffix can be computed by the method outlined above as shown

in Figure 3.

In general, cases where exactly one sequence (5) exists (as

in Example 5) are extremely rare, but all sequences (5) that

differ only in lookahead strings xj , where j = 1, 2, . . . , ℓ,
induce the same (leftmost) derivation. In other words, the

lookahead strings xj are not needed for computing the prefix

of the left parse and the viable suffix.

The left LR(k) parser uses an additional parsing table called

LEFT to establish whether the prefix of the left parse can be

computed in some state [$γ] for some lookahead string x,

and the left-parse-prefix automaton (LPP) to actually compute

sequence (5) with the lookahead strings omitted.

The LEFT table implements mapping

LEFT: QG
k × (T ∪ {$})∗k −→ (IG0 ∪ {⊥})

where QG
k and IG0 denote the set of LR(k) states and the set

of LR(0) items for grammar G′, respectively. It maps LR(k)
state [$γ] and the contents x of the lookahead buffer to either

• [Aℓ → αℓ•Aℓ+1βℓ], where αℓ 6= ε, if all sequences (5)

that are active for x, i.e., they end with some some LR(k)
item [Aℓ → αℓ•Aℓ+1βℓ, xℓ] (for different xℓ) where x ∈

FIRSTG′

k (Aℓ+1βℓxℓ), differ in lookahead strings only, or

• ⊥ otherwise.

Hence, the parser can produce the prefix of the left parse and

compute the viable suffix if and only if LEFT([$γ], x) 6= ⊥.

The above definition of LEFT works well for the left LR(k)
parser [8]. But as (a)

[$] = desc∗({[S′ → $•S1$, ε]})

(note that the embedded grammar is being used) and (b) there

is only one path to {[S′ → $•S1$, ε]} ∈ [$], the value of

LEFT([$], x) is set to [S′ → $•S1$] for all x ∈ FIRSTG′

k (S1$)
— if the definition suitable for the let LR(k) parser is used. It

is valid but useless because if the method outlined in Example

5 is used, the embedded LR(k) parser would print ε and stop

before ever producing any production of the left parse.

Thus, an exception must be made in state [$]. Provided that

the grammar includes the productions S1 −→ S2y and S2 −→
Aβ, the value of LEFT([$], x) must be set to either

• [Aℓ → • Aℓ+1βℓ] if all sequences (5) that are ac-

tive for x, i.e., they end with some some LR(k) item

[Aℓ → • Aℓ+1βℓ, xℓ] (for different xℓ) where x ∈

FIRSTG′

k (Aℓ+1βℓxℓ), differ in lookahead strings only

and

[S2 → •Aℓβ, y] desc [Aℓ → •Aℓ+1βℓ, xℓ] ,

or
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$ 〈[$]; ε〉 〈[$b]; ε〉 〈[$bB];B → Bb,B → Bb,B → ε〉 〈[$bBa]; ε〉 ac$

...
...

...
...

[A→ •bBaa, c] ∈ [$] [A→ b•Baa, c] ∈ [$b] [A→ bB•aa, c] ∈ [$bB] [A→ bBa•a, c] ∈ [$bBa]
π4 = A→bBaa · π3 π3 = ε · π2 π2 = B→Bb ·B→Bb ·B→ε · π1 π1 = ε · π0 where π0 = ε

δ4 = δ3 · ε δ3 = δ2 δ2 = δ1 δ1 = δ0 where δ0 = a

[S2 → •A, c] ∈ [$]
π5 = (S2→A) · π4
δ5 = δ4 The result: π5 = A→bBaa ·B→Bb ·B→Bb ·B→ε ; δ6 = a

Fig. 3. Computing the prefix of the left parse of the string bbbaac ∈ L(Gex4) after bbba has been read: the computation starts at the top of the stack (right
side of the figure) with π0 = ε and δ0 = a, and traverses the stack downwards (towards the left side of the figure, and then downwards).

S′→•$S1$ S′→$•S1$ S′
→$S1•$ S′

→$S1$•

S1→•S2c S1→S2•c S1→S2c•

S2→•AS2→A•

A→•aa

A→a•a

A→aa•

A→•aB

A→a•B

A→aB•

A→•bBa

A→b•Ba

A→bB•a

A→bBa•

A→•bBaa

A→b•Baa

A→bB•aa

A→bBa•a

A→bBaa•

[$] [$S1] [$S1$]

[$]
[$S2] [$S2c]

[$]
[$A]

[$]

[$a]

[$aa]

[$]

[$a]

[$aB]

[$]

[$b]

[$bB]

[$bBa]

[$]

[$b]

[$bB]

[$bBa]

[$bBaa]

Fig. 4. The left-parse-prefix automaton for Gex4 — items that are not needed
during embedded left LR(1) parsing are shown in bold face.

• ⊥ otherwise.

The left-parse-prefix automaton represents mapping

LPP: IG0 ×Q
G
k −→ IG0

which is a compact representation of all possible sequences (5)

with lookahead strings stripped off. Hence, LPP(i0, [$γ]) =
i′0 if and only if there exists some sequence (5) with two

consecutive LR(k) items i′k, ik, where ik ∈ [$γ], so that i0
(i′0) is equal to ik (i′k) without the lookahead string.

Example 6: The left-parse-prefix automaton for grammar

Gex4 is shown in Figure 4. (In this example, the left-parse-

prefix automaton is trivial, i.e., without any loop, but if

the grammar is bigger and describes some more complex

language, the corresponding LPP gets more complicated —

see [8].)

Mapping LEFT for Gex4 is defined as

LEFT([$S2], c) = [S2 → A•c]
LEFT([$a], a) = [A→ a•a]
LEFT([$a], b) = [A→ a•B]

LEFT([$bBa], $) = [A→ bBa•]
LEFT([$bBa], b) = [A→ bBa•a]

(in all other cases, the value of LEFT equals ⊥). Note that

LEFT([$], a) = ⊥ and LEFT([$], b) = ⊥ because of A −→
aa|aB and A −→ bBa|bBaa, respectively.

The algorithms for computing LEFT and LPP can be found

in [8]. Once mappings LEFT and LPP are available, the method

for computing the prefix of the left parse and the viable

suffix as outlined above and illustrated by Example 5 can

be formalized as Algorithm 1. It is basically an algorithm

which performs a long reduction: a sequence of reductions on

productions whose right sides have been only partially pushed

on the stack.

If compared with the similar method used by the left LR(k)
parser [8], this one is not only augmented to compute the

viable suffix but also simplified in that it does not leave any

markers on the stack about which subparses accumulated on

the stack have already been printed out. It does not need to

do this as after the first long reduction the LR parsing stops,

the LR stack is cleared, and the control is given back to the

backbone LL(k) parser.

Finally — for the sake of completeness, the sketch of

the embedded left LR(k) parser is given as Algorithm 2: in

essence, it is a Schemiser-Barnard LR(k) parser [9] with the

option of (a) premature termination and (b) computing the

viable suffix.

Algorithm 2 always terminates: if not sooner (including

cases where it detects a syntax error), the parser eventually

reaches the (final) state [$S2] = {[S1 → S2 •x, $]} where

LEFT([$S2], $) = [S1 → S2•x] causing it to exit the loop in

lines 3–5.

To conclude, the embedded left LR(k) parser is the left

LR(k) parser for the embedded grammar (with a modified

mapping LEFT) which (a) produces the left parse of the

substring parsed and the remaining viable suffix and (b)

terminates after the first (simplified) long reduction.

IV. THE TERMINATION OF THE

EMBEDDED LEFT LR PARSER

Determining whether the embedded LR(k) parser does not

contain any LR(k) conflicts is time consuming if a brute-force

approach of using testing whether Ĝ ∈ LR(k) is used. How-

ever, the method based on the following theorem significantly

reduces the time complexity of testing the embedded LR(k)
parser for LR(k) conflicts.

Theorem 1: Let G = 〈N,T, P, S〉 be an LR(k) grammar

with the derivation

S =⇒∗

G,lm uBδ =⇒G,lm uβ1β2δ .
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Algorithm 1 long-reduction: computing the prefix of the left parse and the viable suffix.

long-reduction (Γ, [A→ α•β]) = 〈π, β · δ〉
where 〈π, δ〉 = long-reduction′ (Γ, [A→ α•β])

long-reduction′ (Γ, [S′ → $•S$]) = 〈ε, ε〉

long-reduction′ (Γ · 〈[$γX], π(X)〉, [A→ •β]) = 〈A −→ β · π, δ · β′〉
where [A′ → α′•Aβ′] = LPP([A→ •β], [$γX])

〈π, δ〉 = long-reduction′ (Γ · 〈[$γX], π(X)〉, [A′ → α′•Aβ′])

long-reduction′ (Γ · 〈[$γX ′], π(X ′)〉 · 〈[$γX ′X], π(X)〉, [A→ α•β]) = 〈π(X) · π, δ〉

where 〈π, δ〉 = long-reduction′ (Γ · 〈[$γX ′], π(X ′)〉, LPP([A→ α•β], [$γX]))

Algorithm 2 Embedded LR(k) parsing.

1: let q ∈ QG
k denote the topmost state

2: let x ∈ (T ∪ {$})∗k denote the LA buffer contents

3: while (i← LEFT(q, x)) = ⊥ do

4: perform a step of the Schmeiser-Barnard LR(k) parser

5: end while

6: 〈π, δ〉 ← long-reduction (stack, i)
7: PRINT π

8: return δ

Grammar Ĝ = 〈N̂ , T, P̂ , S1〉 where

N̂ =N ∪ {S1, S2} for S1, S2 6∈ N and

P̂ = P ∪ {S1 −→ S2x, S2 −→ β2 ; x ∈ FIRSTG
k (δ)} ,

is not an LR(k) grammar if and only if

[S2 → •β2, x
′] desc∗ [B → •β2, x

′]

where x′ = k:x$ for some x ∈ FIRSTG
k (δ).

Proof: First, the structure of grammar Ĝ implies that

items [S1 → •S2x, $] and [S2 → •β2, x
′], where x′ = k:x$,

appear in the state [$]Ĝ = desc∗({[S′ → $•S1$, ε]}) only.

Hence, any item [S1 → ψ1•ψ2, $] or [S2 → ψ1•ψ2, x
′] can

appear in state [$ψ1]Ĝ only.

Second, because of the leftmost derivation above, there

exists the rightmost derivation

S =⇒∗

G,rm γBv =⇒G,rm γβ1β2v

and thus

{[B → β1•β2, x] ; x ∈ FIRSTG′

k (δ$)} ⊆ [$γβ1]G

where [$γβ1]G is a state of the canonical LR(k) machine for

grammar G. Therefore,

• [S1 → •S2x, $] ∈ [$]Ĝ implies

[B → β1•β2, x
′] ∈ [$γβ1]G where x′ = k:x$, and

• [S2 → γ̂•ψ, x′] ∈ [$γ̂]Ĝ implies

[B → β1γ̂•ψ, x
′] ∈ [$γβ1γ̂]G.

Consider any two items i1 and i2 (except items based on the

production S′ −→ $S1$ as these items are never involved in

an LR(k) conflict) in any state [$γ̂]Ĝ of the canonical LR(k)

machine for Ĝ, i.e., i1, i2 ∈ [$γ̂]Ĝ:

• If i1 and i2 are based on productions in P , then i1, i2 ∈
[$γβ1γ̂]G and there is no LR(k) conflict between i1 and

i2 since G ∈ LR(k).
• If i1 and i2 are based on productions in P̂ \P , three cases

must be considered:

– If i1 = [S1 → γ̂•α, $] and i2 = [S1 → γ̂•α′, $], then

either γ̂ = ε and both items imply the shift action

since α, α′ 6= ε or k:α$ 6= k:α′$ so no conflict is

possible.

– If i1 = [S1 → γ̂ •α, $] and i2 = [S2 → γ̂ •α′, y′]
(or vice-versa), then γ̂ = ε (otherwise γ̂ = S2γ̂

′

because of i1 but γ̂ 6= S2γ̂
′ because of i2) and both

items imply the shift action since α, α′ 6= ε.

– If i1 = [S2 → γ̂ •α, y] and i2 = [S2 → γ̂ •α′, y′],
then α = α′ and both items imply either the reduce

action on S2 −→ β2 or the shift action.

• If i1 is based on a production in P̂ \ P and i2 is based

on a production in P (or vice versa), two cases must be

considered:

– If i1 = [S1 → γ̂1γ̂2•α, $] and i2 = [A→ γ̂2•α
′, y′],

then obviously γ̂1γ̂2 = ε and α = S2x for some

x ∈ FIRSTG
k (δ) (otherwise γ̂1γ̂2 = S2γ̂

′ because of

i1 but γ̂1γ̂2 6= S2γ̂
′ because of i2). Thus

[S1 → •S1x, $], [A→ •α
′, y′] ∈ [$]Ĝ

implies

[B → β1•β2, x
′], [A→ •α′, y′] ∈ [$γβ1]G

where x′ = k:x$. But as

FIRSTĜ′

k (S2x$) = FIRSTG′

k (β2x
′)

and no items in [$γβ1]G exhibit any LR(k) conflict,

the items [S1 → •S1x, $] and [A→ •α′, y′] do not

exhibit LR(k) conflict either.

– If i1 = [S2 → γ̂1γ̂2 •α, x
′] and i2 = [A → γ̂2 •

α′, y′] where x′ = k:x$ for some x ∈ FIRSTĜ′

k (δ),
then γ̂1γ̂2 = β2 because of i1 and [B → β1γ̂1γ̂2 •
α, x′], [A→ γ̂2•α

′, y′] ∈ [$γβ1γ̂1γ̂2]G.

If α 6= ε and α′ 6= ε, then items i1 and i2 both imply

the shift action.

If α 6= ε but α′ = ε, then y′ 6∈ FIRSTĜ′

k (αx′) as

otherwise [B → β1γ̂1γ̂2 •α, x
′] and [A → γ̂2 • , y

′]
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would exhibit a shift-reduce conflict; hence, items i1
and i2 do not exhibit any LR(k) conflict.

If α′ 6= ε but α = ε, then x′ 6∈ FIRSTĜ′

k (α′y′) as

otherwise [B → β1γ̂1γ̂2• , x
′] and [A → γ̂2•α

′, y′]
would exhibit a reduce-shift conflict; hence, items i1
and i2 do not exhibit any LR(k) conflict.

If α = ε and α′ = ε, then

[S2 → β2•, x
′], [A→ γ̂2•, y

′] ∈ [$β2]Ĝ

implies

[B → β1β2•, x
′], [A→ γ̂2•, y

′] ∈ [$γβ1β2]G

Therefore, if and only if

[B → β1β2•, x
′] = [A→ γ̂2•, y

′]

where γ̂2 = β1β2 (and thus β1 = ε) can there be a

(reduce-reduce) conflict in [$β2]Ĝ without a conflict

in [$γβ1β2]G.

As determined, the only possibility for an LR(k) conflict

in the canonical LR(k) machine for Ĝ is the reduce-reduce

conflict exhibited by items

[S2 → β•, x′], [B → β2•, x
′] ∈ [$β2]Ĝ

which are derived from items

[S2 → •β, x
′], [B → •β2, x

′] ∈ [$]Ĝ .

But as

[$]Ĝ = desc∗{[S′ → $•S1$, ε]}
= {[S′ → $•S1$, ε]}

∪ {[S1 → •S2x, $] ; x ∈ FIRSTG
k (δ)}

∪ {[S2 → •β2, x
′] ; x′ ∈ FIRSTG′

k (δ$)}

∪ desc∗{[S2 → •β2, x
′] ; x′ ∈ FIRSTG′

k (δ$)} ,

item [B → •β2, x
′] can belong to the state [$]Ĝ only if [S2 →

•β, x′] desc∗ [B → •β2, x
′].

Finally, proving the theorem in the opposite direction is

trivial: items [S2 → •β2, x
′] and [A→ •β2, x

′] in [$]Ĝ imply

a reduce-reduce conflict between items [S2 → β2 • , x
′] and

[A→ β2•, x
′] in [$β2]Ĝ, so Ĝ 6∈ LR(k).

Theorem 1 provides two important insights into the em-

bedded left LR(k) parsing. First, it guarantees that by simply

checking the state [$β2] for reduce-reduce conflicts one can tell

whether the embedded left LR(k) parser for parsing substrings

derived from the sentential form β2 can be made. As the

sentential form β2 is a part of the right side of a production,

it is usually short and therefore the method based on Theorem

1 is significantly faster than the brute-force approach.

Second, Theorem 1 illustrates that once again it is the left

recursion that causes problems. But this is not to be worried

about since it is clear that any substring derived from the left

recursive nonterminal must be parsed entirely by an LR parser.

In other words, Theorem 1 indicates that if the grammar is

made so that the left recursive nonterminals are kept as low as

possible in the resulting derivative trees, the substrings actually

parsed using the embedded left LR(k) parsers tend to be short.

V. CONCLUSION

The embedded left LR(k) parser has been obtained by

modifying the left LR(k) parser in two ways. First, the left

LR(k) parser was made capable of computing the viable suffix

which the unread part of the input string is derived from.

Second, if was simplified not to leave any markers on the stack

about which subparses accumulated on the stack have been

printed out already — as the parser stops after the first “long”

reduction anyway. However, the algorithm for minimizing the

embedded left LR(k) parser, i.e., for removing states that are

not reachable before the first long reduction is performed, is

still to be formalized.

At present, both, the backbone LL parser and the embed-

ded LR parsers, need to use the lookahead buffer of the

same length. However, if the LL parser was built around

LA(k)LL(ℓ) parser (where k ≥ ℓ) as defined in [2], then

the combined parsing could most probably be formulated

as the combination of LL(ℓ) and LR(k) parsing (note that

LL(ℓ) ⊆ LA(ℓ′)LL(ℓ) for any ℓ′ ≥ ℓ). This would make the

combined parser even more memory efficient.

Furthermore, the left LR(k) parser could be based on the

LA(k)LR(ℓ) parser (most likely for ℓ = 0) instead of on

the canonical LR(k) parser. This would further reduce the

parsing tables while the strength of the resulting combined

parser would be reduced from LR(k) to LA(k)LR(ℓ): not

a significant issue as today LA(1)LR(0) is used instead of

LR(1) whenever LR parsing is applied.

Finally, by using an LL(k) parser augmented by the em-

bedded left LR(k) parsers instead of the left LR(k) parser

the error recovery can be made much better — especially if

the error recovery of the embedded left LR(k) parsers is made

using the method described in [10].
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