
An Adaptive Virtual Machine Replication
Algorithm for Highly-Available Services

Adrian Coleşa
Computer Science Department

Technical University of Cluj-Napoca, Romania

Email: adrian.colesa@cs.utcluj.ro

Bica Mihai
Computer Science Department

Technical University of Cluj-Napoca, Romania

Email: bicamihai.m@gmail.com

Abstract—This paper presents an adaptive algorithm for the
replication process of a primary virtual machine (VM) hosting
a service that must be provided high-availability. Running the
service in a VM and replicating the entire VM is a general strat-
egy, totally transparent for the service itself and its clients. The
replication takes place in phases, which are run asynchronous
for efficiency reasons. The replication algorithm adapts to the
running context, consisting of the behavior of the service and
the available bandwidth between primary and backup nodes.
The length of each replication phase is determined dynamically,
in order to reduce as much as possible the latencies experienced
by the clients of the service, especially in the case of a degraded
connectivity between primary and backup nodes.

We implemented our replication algorithm as an extension of
the Xen hypervisor’s VM migration operation. It proved better
than its non-adaptive variants.

Index Terms—high-availability, virtualization, replication,
asynchronous, adaptive

I. INTRODUCTION

THE AVAILABILITY of a service is given by the pro-

portion of time that service is perceived by its clients as

functioning according to its specifications, in both normal and

abnormal conditions, the latter ones being determined for ex-

ample by electric power outages, hardware dis-functionalities

or software attacks [1], [2].

The high-availability requirement of a service emerges from

the fact that its clients need a permanent access to the service.

The unavailability of some services would have a negative

impact for their clients, like in case of banking institutions,

telecommunication companies, military applications or even

hospitals. This is the main reason the research in this field has

received a great attention in the latest two decades [1], [3], [4].

We will call in this paper the way a service is made highly-

available high-availability strategy. The software infrastructure

needed to provide high-availability for that service will be

named high-availability or protection system and the service

itself will be referred to as the protected service.

Most existing solutions require design changes to hardware

or software components of the protection system, because they

are based on special properties of the service they support

[5], [6], [7]. Being integrated within the service, the main

advantage of such solutions is their efficiency. Their main

problem though is that any change in the service’s properties

requires the redesign and reimplementation of the whole

system in order to maintain initial requirements. Also, they

cannot be applied to services that cannot be reimplemented.

Other solutions try to provide high-availability indepen-

dently of the service. Some of them [8], [9] are capturing

the state of the service at the application level and are based

on the record-and-replay technique. They are dependent on the

operating system the service is running on and in general does

not support nondeterministic behavior of the service. Another

strategy is used by [10], [11], [12], [13], [14], [15], [16].

They run the service in a virtual machine and replicate the

entire virtual machine. Such a strategy can be applied to any

service and provides transparency for both service’s clients and

the service itself. Yet, the generality advantage of the service

virtualization results in the solution not being efficient for any

type of service. Also, the existing solutions do not adapt to

the service’s specific properties or running behavior, nor even

to other environment characteristics.

In this paper we describe an improved variant of the virtual

machine replication algorithm proposed in [16]. The result-

ing algorithm is adaptive to different environment changes

during the runtime of the protected service. It dynamically

calculates each replication phase’s duration based on the

characteristic of locality of memory changes of the protected

service and the number of output network packets generated

during runtime. The algorithm also takes into account the

available bandwidth between the primary and backup nodes.

The resulted protection system aims to reduce the network

traffic in case of degraded connectivity and still maintain

the latencies experienced by the service’s clients as close as

possible to the required values. In cases of normal condition

the algorithm tries to increase the efficiency of the CPU usage

on the VM running the service.

We implemented the proposed algorithm over the migration

mechanism of the Xen hypervisor [12]. We run the services

we want to make highly-available on a Linux distribution. The

tests we performed proved our adaptive algorithm’s efficiency

relative to its non-adaptive variants.

II. HIGH-AVAILABILITY STRATEGY AND SYSTEM

ARCHITECTURE

The high-availability system we use is the one proposed in

[15], [16]. This paper contributes to the replication algorithm

used by the system. This section briefly describes the general

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 941–948

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 941

Fig. 1. Highly-Available System Architecture Built on the Xen Hypervisor

architecture and main functional characteristic of the protec-

tion system, as prerequisites for understanding the adaptive

replication algorithm.

We considered centralized services that are already in use

and cannot be modified in order to increase their availabil-

ity level. High-availability implies tolerance to the service’s

components failure, which can be provided only based on

some degree of redundancy. Though, the fact that the service

is centralized means that it is implemented and provided by

a single running server, which constitutes a single point-of-

failure. In order to improve its high-availability, we must create

some replicas of the service’s server and run them altogether

in a distributed manner. The replication strategy we consider

is the passive one, with a primary and more backup replicas.

It provides total transparency for the service’s clients [1].

The only way of replicating a centralized service without

modifying it is to place the service’s server in a virtual machine

(VM) and replicate the entire virtual machine [10], [14], [15].

This method is general because it can be applied to any service

and operating system the service runs on.

Our solution is based on VM replication over the Xen

hypervisor and extends the live VM migration operation

supported by Xen. Xen allows several guest operating systems

to execute on the same computer hardware in different VMs.

The first VM which is booted, called Dom0 (Domain 0), is

a privileged one. It runs a Linux kernel and is used by the

Xen hypervisor to interact with the hardware. This way Xen

is independent of the hardware, letting this responsibility to

the Linux kernel in Dom0. The other VMs are called DomU

(Domain Unprivileged). User space Xen tools in Dom0 allows

the user to gain control rights over the other guest operating

DomU VMs. To implement our high-availability system we

modified some of the processes which are controlling DomU

domains. We run the service we want to make highly-available

in a DomU VM on a primary node and replicate that VM on

a backup node in a corresponding backup DomU VM. The

replication is controlled by processes placed in Dom0 VM

on both nodes. The architecture of the resulting system is

illustrated in Figure 1.

The main components of our system are the two

user-space processes primary_controller and

backup_controller, which controls the replication

mechanism. They interact with the Xen’s xc_save and

xc_restore components, which normally implemented

the Xen live migration operation, but which we modified to

transform the one-time migration in a continuous replication

of the VM machine running on the primary node to the

backup one.

The replication takes place in phases, each one consisting in

the following ordered stages: (1) running, lasting tR, during

which the primary VM is run, accepting inputs, but having

its network outputs blocked, (2) saving, lasting tS , when the

VM is suspended and its state saved in the state_buffer,

(3) transfer, lasting tT , when the previously saved VM state

are transfered from the primary node on the backup one,

(4) output release, lasting tO and corresponding to the act of

releasing the outputs of the VM corresponding to its already

replicated state.

The running stage is controlled by our system and its length

tR is calculated dynamically for each stage in a way described

in details in the next section. The VM state saved during a

saving stage consists in the memory pages modified from the

last saving point and current values of the VM’s CPU registers.

The corresponding tS depends on the number of modified

pages. Being small relative to the other times, we considered

it constant. The transfer time tT is dependent on the size of

the VM’s saved state and the available bandwidth between

the primary and backup nodes. These two terms cannot be

directly controlled by our system. Though, we will see below

how we can indirectly reduce the transfer time of the overall

replication process, trying to replicate as few pages as possible,

when network bottlenecks occur.

Blocking the primary VM’s outputs until its corresponding

state is replicated, provides for its transparent replacement by

942 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 2. Asynchronous Replication Strategy

a backup VM, in case it crashes. The kernel-space module

sch_hfn controls the blocking and releasing of the primary

VM’s network outputs. The crashes of the primary VM are

detected using a simple heartbeat mechanism.

The replication process is asynchronous, parallelizing as

many replication stages as possible, in order to reduce the

latencies experienced by the service’s clients. Actually, only

some of the stages can be performed in parallel. The way

different stages of successive replication phases overlap is

illustrated in Figure 2. We can note that during the transfer and

output release stages of previous phases, running and saving

stages of the following phases can take place.

III. THE ADAPTIVE REPLICATION ALGORITHM

Experimental results in [16] have led us to the conclusion

that an adaptive replication algorithm, which would calculate

dynamically the running time tR of each replication phase,

based on the current runtime environmental conditions, could

provide improvements in terms of decreasing the network load,

increasing the CPU usage efficiency, and reducing the latencies

perceived by the clients (response time).

We must note however that not all the mentioned parameters

could be optimized simultaneously. For instance, the strategy

of getting a better CPU usage could be in contradiction with

the one trying to decrease the response time. We will see below

the way our adaptive algorithm trades between these factors.

We denote the CPU usage efficiency by η and defined it by

the relation:

η =
tR

tR + tS
(1)

The smaller the running time and, implicitly, more frequent

the saving stages, the lower the efficiency of the CPU usage,

because most of the time the CPU would be used by the saving

process, which is time consumed additionally by the protection

system and not by the service. Equation (1) can be thought as

the fraction between the running times in cases the protection

system is deactivated and respectively, activated.

One condition required to our replication algorithm is to try

to keep η above a certain value ηmin. For instance having a

tS = 50ms, in order to provide a ηmin = 90%, the algorithm

must use a running time tR of at least 450ms. This could be

too much for a response time of a client request. Just to have an

idea of this problem, we will calculate the maximum delay our

protection system could introduce in a client request’s response

time in the particular favorable case, when we consider having

enough network bandwidth available in each replication phase,

such that the transfer stage of a phase could start immediately

after the saving stage of that phase. This means that for any

phase i > 1, tTi
6 tRi+1

+ tSi+1
. For simplicity we also

consider the time of all similar stages to be identical in all

phases and such we will have the following formula for the

delay introduced by our system in the response time:

Dmax = (n+ 2)tS + tT + tR (2)

where n is the number of phases needed for the service to

handle that client request and generate a response in terms of

one or more output network packets.

Coming back to the above example, for tR = 450ms and

tS = 50ms, considering a 1Gbs network bandwidth, a VM

state to be replicated of about 10000pages of 4KB each and

n = 1, the maximum delay will be Dmax ≈ 855ms, which

could be really too long for many of the client applications.

So the running time should be decreased in such cases. In the

case of not having enough bandwidth available, the transfer

time becomes the dominant factor in the delay formula, and

the result could be even worse.

From the example above we can understand intuitively the

way our replication algorithm will act. Firstly, it will try to

keep the response time as small as possible, because this is

directly perceived by the service’s clients. This depends on the

size of the VM state that must be replicated and also on the

available bandwidth. As long as the replication algorithm can

provide

Dmax 6 Dreq
max (C1)

where Dreq
max is the maximum acceptable delay required by

service’s clients, it increases the running time of the current

replication phase, in order to get a CPU usage efficiency as

close as possible to the required ηmin. This case is what we

will consider to correspond to the normal functionality of the

system. In case, the network bandwidth is not enough (e.g.

network overloaded or a large VM state) to transfer in time the

VM state, the replication algorithm will calculate the running

time of the each replication phase such that to minimize

the delay Dmax. Such a situation we will call abnormal or

degraded functionality.

The parameters taken into account to establish each tRi

are: (1) the protected service’s behavior regarding the locality

of memory changes, measured as the number of new distinct

pages that will be modified in the next future in current phase

i, noted ∆add, (2) the available current network bandwidth

between the primary and the backup nodes, noted Bcrt, (3) the

output network packets generated on the primary VM.

The first two parameters are predicted each τ ms (a period

established by the system administrator) using the exponential

average. The third parameter consists in both the number of

the output packets generated until the current moment, noted

Pout, and that of the packets that will be generated in the next

τ ms, noted P add
out .

ADRIAN COLESA, MIHAI BICA: AN ADAPTIVE VIRTUAL MACHINE REPLICATION ALGORITHM FOR HIGHLY-AVAILABLE SERVICES 943

The ideas the algorithm is based on are the followings:

when there are output packets waiting to be released, it tries to

reduce the running time, in order to reduce the response time

of client requests. Reducing the tR will result in a smaller

VM state that must be replicated, so a smaller transfer time,

so again a smaller delay in the response time. Nevertheless, the

number of replicated states will be bigger, comparing with the

case of longer replication phases. This means, firstly, a worse

CPU usage and, secondly, a possible greater total network

load. The latter especially occur when the replicated VM and

implicitly the protected service manifests a greater locality of

memory changes, i.e. modifies approximately the same set of

pages in consecutive time intervals. This could result in the

same set of pages being replicated more times consecutively,

corresponding to more consecutive saved VM states. Such a

situation must be avoided when the network is overloaded and

the transfer of a saved state cannot be started immediately after

the saving stage finishes.

Based on the above considerations, the first thing the

algorithm does is to check whether there are output packets

waiting to be released. If there is no one, then it makes no

sense terminating the current phase, especially if there is no

bandwidth available, because there will be no delay perceived

by the service’s clients. Furthermore, the shorter the running

stages, the greater the number n of replication phases a client

request handling lasts and, consequently, a larger response

time.

The second thing the algorithm considers is the available

network bandwidth. If there is enough available, then the cur-

rent phase could be terminated and a new one started, because

the replication of the current one could be started immediately.

If not, maybe it could be more appropriate to enlarge the

current phase (actually its running stage), especially if the

service behaves locality of memory changes, just to avoid a

greater amount of memory replicated and a greater overall

delay.

The exact decision the algorithm takes at one moment

regarding the continuation or finish of the current running

stage (and implicitly current phase) depends on the number of

output packets and the number of VM’s memory pages already

modified, i.e the size of the VM state that must be replicated.

It evaluates, based on the currently measured and predicted

values, if the average delay of the output packets would be

greater if the current phase is continued or terminated. The

best case is always chosen. If the decision is to continue the

current phase, then a new evaluation is made after a τ period.

The detailed description of the algorithm will illustrate the

above ideas. Algorithm 1 describes the strategy followed in

case of normal functionality, actually when enough bandwidth

is available. It returns TRUE if the current phase must

be terminate and FALSE otherwise. Also, it establish the

time after which a new estimation will be performed. Firstly,

the algorithms checks if continuing the current phase could

result in exceeding the Dreq
max. Condition C2 take into account

the currently introduced maximum delay Dmax and also the

additional time to transfer new distinct pages that will be

modified if continuing the current phase. Thus, we have the

following relation for C2:

Dmax +
∆add

i

Bcrt

> Dreq
max (C2)

In case the required delay is not exceeded, the algorithm

checks if the state buffer will be filled or not taking into ac-

count the current size of the buffer, the page already modified,

i.e. the current size of the VM state ∆i that must be replicated

and the number of new distinct pages that will probably be

modified in the next period τ . Thus, the condition C3 can be

express like:

size(state buffer) +∆i +∆add −Bcrtτ > MAX BUF
(C3)

The term ∆add−Bcrtτ represents the number of pages that

will be actually accumulated to the current state in the next

period. If the buffer is not to be filled, the next checking is

whether the required CPU usage efficiency ηmin is met or not.

Condition C4 is expressed based on Equation (1):

tRi
>

ηmintS
1− ηmin

(C4)

In case the ηmin is not reached, the current phase is contin-

ued. Otherwise, the algorithm does not decide to terminate

the current state. If the average delay of currently waiting

output could be greater than the estimated average delay of the

overall output packets, then the current state will be extended.

Intuitively, this could happen if in the immediate future (at

least next τ ms) the number of new generated output packets

will be great relative to the number of new distinct modified

pages that will be added to the current VM state, i.e. the VM

manifest a good locality of memory changes. The condition C5

could be express using the formula:

Pout(
∆add

τ
+Bcrt) 6 P add

out

∆com

τ
(C5)

where ∆com is the number of pages that would belong to

both current phase and a possible next one, if the current one

would be terminated.

Algorithm 2 describes the steps taken by the protection

system in case the required maximum delay in the client

response time cannot be provided. Some decisions are similar

with those in Algorithm 1, so we detail only the others.

Firstly, the algorithm checks if there is available bandwidth.

Actually, it checks if the transfer of the current state can start

immediately or not. So, the condition C6 can be written:

tS > size(state buffer)/Bcrt (C6)

In case the current state cannot be replicated immediately,

the algorithm try to find the best solution to get a minimum

overall delay. In essence, this depends on the locality of

memory changes manifested by the replicated VM and the

number of generated outputs. The state buffer is tested for

three other distinct situations, different by that of empty buffer

944 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

task VM replication;

function normal_functionality () : boolean
tchk ← τ ;

C2 if “it is possible to exceed Dreq
max” then

return TRUE;

else

C3 if “the state buffer is full” then
return TRUE;

else

C4 if “required ηmin provided” then
C5 if “it is more efficient extending the

current phase than starting the next one”

then
return FALSE;

else
return TRUE;

end

else
return FALSE;

end

end

end

Algorithm 1: Replication algorithm in case of normal func-

tionality

tested by condition C6: (1) buffer full, tested by condition C3,

(2) available space above a safe threshold, tested by condition

C8, and (3) available space below a safe threshold, i.e. the

trend is to rapidly fill the state buffer, tested by condition C9.

We will not insist anymore on conditions C8 and C9,

because they are very similar with C3. We only note that in

case the buffer is almost full, the next evaluation moment will

not be as usual after τ ms, but after the time needed to transfer

the saved VM state with the maximum size.

Condition C7 is very similar with C5, the difference consist-

ing in a new factor taken into account: the time the algorithm

has to wait for enough space in state buffer to save the current

VM state, in case the current phase is terminated, before

starting a new replication phase. It can be written like:

Poutt
add
T 6 P add

out (t
com
T − twait) (C7)

where taddT is the transfer time for the ∆add pages, tcomT is

the transfer time for the ∆com pages, and twait is the time the

algorithm must wait for sufficient space in state buffer to save

the current VM state.

IV. TESTS AND RESULTS

The following tests were made on two computers having

the same configuration Intel Core 2 Duo 2.7GHZ processor,

2GB of RAM, 80GB of hard disk space and a 100Mbit
Ethernet interface. Xen 3.3.1 was installed on each machine,

with the Linux kernel 2.6.26-1-xen-686, running Ubuntu 9.04

as primary operating system for Dom0. In DomU was installed

Linux Debian Lenny.

task VM replication;

function degraded_functionality () : boolean
tchk ← τ ;

C6 if “there is available bandwidth” then
return TRUE;

else

C3 if “state buffer is full” then
C7 if “it is more efficient extending the current

phase than waiting for saving space in state

buffer and starting the next phase” then
twait ←
max(0,size(∆i)+size(state buffer)−MAX BUF)

Bcrt

;

tchk ← min(twait, τ);
return FALSE;

else
return TRUE;

end

else
C5 if “it is more efficient extending the current

phase than starting the next one” then
return FALSE;

else

C8 if “not enough space in state buffer” then

C9 if “state buffer is almost full” then
tchk ← max(tTk

|∆k ∈
state buffer)− tS ;

end

end

return TRUE;
end

end

end

Algorithm 2: Replication algorithm in case of degraded

functionality

Fig. 3. Stages superimposing under usual stress

ADRIAN COLESA, MIHAI BICA: AN ADAPTIVE VIRTUAL MACHINE REPLICATION ALGORITHM FOR HIGHLY-AVAILABLE SERVICES 945

Fig. 4. Client delay reducing on increasing output packets number

In Figure 3 we illustrated a Gantt chart to show how some

of the consecutive phases are superimposing in practice and

reduce overall client delay. In Figure 2 we see how the phases

are superimposing based on theoretical formulas. Our practical

results are thus similar. If the replication of the system would

be made using only the asynchronous strategy without the

adaptive algorithm, the length of the running stages would

be of fixed length as they were configured by the the user

or the system administrator. In the Figure 3 on the x axis

is represented the running time in micro seconds. Time 0

corresponds to the starting of the replication process. The first

time represented is the second 123 and the distance between

the vertical grids is 200ms. In 4 phases out of 8 there is

an overlapping between the transmission stage of the previous

phase and the running stage of the the next phase. The process

which is running in background is modifying around 350 pages

per each iteration. If the replication strategy would use an

synchronous algorithm the total running time would be larger

because the phases would succeed one after another.

In Figure 4, starting with phase 174 a large number of inputs

(client requests) was simulated using the Linux command

ping target -i 0.1. This command makes the virtual

machine to generate around 2 or 3 output packets in each

phase and simulates the fact that 9 clients are making a request

each second. As seen from the figure, when there are output

packets, our algorithm instantly reduces the running time in

order to create a very small delay to the clients, around 200ms,

when the replication algorithm is configured to run the virtual

machine for at least 100ms in order to ensure the required

CPU efficiency. In this graphic we can also see that if there is

a small number of dirtied pages, the saving time of the state

to a local buffer in memory is greater than the transfer time

of the state to the network. This is because dirtied pages are

generated in a process and sent to another process using shared

memory and the Linux scheduler decides when to switch

between processes.

In Figures 5 and 6 are represented client delays in two

different situations: (1) when there are 9 requests per second,

simulated with the command ping -i 0.1, and (2) in the

Fig. 5. Delays in context of 9 client requests per second

Fig. 6. Delays in context of 100 client requests per second

situation where 100 client requests are generated per second,

sent by clients simulated with the command ping -i 0.01.

Output network packets are not plotted against the y axis,

which represents the time, but they are plotted against a

secondary fictional y axis show there number multiplied with

104, just to see them easily. As seen from the Figure 5, there

is a quick response in how the the client delays are reduced

when there are output packets. Otherwise, the client delays are

not reduced. In Figure 6 the delays are less than 200ms for

all 100 clients, which are making one request per second.

The test in the Figure 7 shows how the system behaves

when the number the output packets remains constant and

the number of modified pages is increased. The number of

modified pages is plotted against a fictional y axis showing

their number. In the first phases, from 40 to 90, the number

of modified pages is constant and around 120. From the

phase 90 to 130, the number of modified pages will increase

up to 4000 modified pages per phase. The page number

is increased running in the VM a test program, which is

modifying many pages. In this case, the system will not be

able to generate a very good response time because it will run

in degraded functionality, but the modified pages will have

a increased locality of memory modifications, and for this

946 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 7. Dirtied page variation, no clients connected

Fig. 8. Variation of running time in a complex scenario

reason we can increase the running time without generating too

many additional dirtied pages. The major benefit of increased

running time in this case is a better CPU usage efficiency.

We can observe an increase in CPU efficiency and also while

the CPU is running a phase, the previous phase is being

transfered by the network interface at the same time.This is

also confirmed by the fact that the transmission stage is equal

to the running stage.

In Figure 8 is represented an all case scenario for our

system. In this test, a program which is generating around

4800 pages per iteration is being run in two random moments.

Also, while the program was running, clients connections were

simulated as represented in the figure. We have to mention

that the network bandwidth during the idle periods, when

no program is running, is around 1.3MiB/s and during

the degraded functionality is around 18MiB/s. When the

adaptive algorithm was deactivated, the idle network traffic

was around 7MiB/s. This means that the adaptive algorithm

reduces network traffic during idle periods by up to 5.3 times,

compared to a simple asynchronous replication protocol.

Another test we made was to copy a large archive of

125MB to the protected VM and then extract the data

and compare the results in cases our protection system was

activated and not activated respectively. The copying speed

over the network of the archive was around 404KB/sec. After

the file was copied the contents was extracted. The extraction

period was around 50 seconds, when there were no other

clients connected and around 58 seconds, when there were

simulated 100 requests per second. We unzipped the same file

on the system without the replication being activated and we

measured 10 seconds. We conclude from this test that our

replication system is 5 up to 5.8 times slower than the system

with protection deactivated.

V. RELATED WORK

Virtual machine replication based on Xen has been explored

in [15], [16], Remus [14] and Kemari [17]. The main improve-

ment our system brings over other solutions is the adaptation

property of the replication algorithm. We are not aware of any

other similar strategy.

The system in [16] is the most similar with our system.

Actually, we developed further it. The adaptive replication

algorithm is overall more efficiently than its non-adaptive

variant, reducing in case of a degraded network link between

primary and backup the client response time.

Remus is also very similar with our system. Actually it

was introduced as a high-availability mechanism in newer

versions of Xen. They reported in [14] a possible improvement

consisting in dynamically modification of the rate at which

the protected VM operates, in order to reduce the number of

modified pages per replication phase, which would result in a

reduced transfer time and, consequently, a reduced response

time. Our strategy is better in cases of VM manifests high

locality of memory changes, since it let the VM run at normal

rate, by enlarging the replication phases. The proposed Remus

optimization can be combined with ours in case the locality

of memory changes and network bandwidth are very poor.

What our system also makes better than Remus is that it

reduces the frequency of replication phases, when there are

few or no output packets, just to get a better CPU usage

efficiency. Although, they have a very efficient saving method

of VM states, which automatically lead to better CPU usage,

but actually this is complementary to our strategy and can be

integrated with it in order to get an even better efficiency.

VI. CONCLUSION

This paper proves the fact that the asynchronous adaptive

replication algorithm can improve the performance, client re-

sponse time and reduce network bandwidth of high availability

systems in situations where the environment changes are very

often.

A drawback of our system is the buffering time. In present,

the buffering time is too large and for a small number of

modified pages it can be greater even than the network

transfers. Some improvements can be made by implementing

a better buffering technique.

ADRIAN COLESA, MIHAI BICA: AN ADAPTIVE VIRTUAL MACHINE REPLICATION ALGORITHM FOR HIGHLY-AVAILABLE SERVICES 947

REFERENCES

[1] R. Guerraoui and A. Schiper, “Fault-tolerance by replication in dis-
tributed systems,” in Reliable Software Technologies - Ada-Europe’96.
Springer-Verlag, 1996, pp. 38–57.

[2] A. Bartoli and O. Babaoglu, “Constructing highly-available internet
services based on partitionable group communication,” 2001. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.
218

[3] K. P. Birman and T. A. Joseph, “Reliable communication in the presence
of failures,” ACM Trans. Comput. Syst., vol. 5, no. 1, pp. 47–76, February
1987.

[4] F. Cristian, B. Dancey, and J. Dehn, “Fault-tolerance in the advanced
automation system,” in EW 4: Proceedings of the 4th workshop on ACM

SIGOPS European workshop. New York, NY, USA: ACM, 1990, pp.
6–17.

[5] T. Anker, D. Dolev, and I. Keidar, “Fault tolerant video on demand
services,” in In Proceedings of the 19th International Conference on

Distributed Computing Systems, 1999, pp. 244–252.
[6] M. Marwah, S. Mishra, and C. Fetzer, “Fault-tolerant and scalable tcp

splice and web server architecture,” in SRDS ’06: Proceedings of the

25th IEEE Symposium on Reliable Distributed Systems. IEEE Computer
Society, 2006, pp. 301–310.

[7] ——, “Enhanced server fault-tolerance for improved user experience,”
in Dependable Systems and Networks With FTCS and DCC, 2008. DSN

2008. IEEE International Conference on, 2008, pp. 167–176.
[8] Y. Saito, “Jockey: A user-space library for record-replay debugging,”

2005.
[9] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, F. M. Kaashoek, and

Z. Zhang, “R2: An application-level kernel for record and replay,” 2008.

[10] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault tolerance,”
in SOSP ’95: Proceedings of the fifteenth ACM symposium on Operating

systems principles, vol. 29, no. 5. ACM Press, December 1995, pp.
1–11.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Revirt: enabling intrusion analysis through virtual-machine logging and
replay,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 211–224, 2002.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating

systems principles. ACM Press, 2003, pp. 164–177.
[13] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,

and A. Warfield, “Live migration of virtual machines,” in NSDI’05:

Proceedings of the 2nd conference on Symposium on Networked Systems

Design & Implementation. USENIX Association, 2005, pp. 273–286.
[14] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield, “Remus: high availability via asynchronous virtual machine
replication,” in NSDI’08: Proceedings of the 5th USENIX Symposium on

Networked Systems Design and Implementation. USENIX Association,
2008, pp. 161–174.

[15] A. Coles, a and B. Marincas, , “Strategies to transparently make a cen-
tralized service highly-available,” in IEEE International Conference on

Intelligent Computer Communication and Processing (ICCP’09), 2009,
pp. 339–342.

[16] A. Coles, a, I. Stan, and I. Ignat, “Transparent fault-tolerance based
on asynchronous virtual machine replication,” in Proceedings of The

12th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC ’10). IEEE Computer Society, 2010,
pp. 442–448.

[17] Y. Tamura, “Kemari: Virtual machine synchronization for fault tolerance
using domt,” June 2008.

948 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

