
DCFMS: A Chunk-Based Distributed File System
for Supporting Multimedia Communication

Cosmin Marian Poteras
University of Craiova

Software Engineering Department

Bvd. Decebal 107, Craiova, 200440, Romania

Email: cpoteras@software.ucv.ro

Constantin Petrisor
University of Craiova

Software Engineering Department

Bvd. Decebal 107, Craiova, 200440, Romania

Email: costy petrisor@yahoo.com

Mihai Mocanu
University of Craiova

Software Engineering Department

Bvd. Decebal 107, Craiova, 200440, Romania

Email: mmocanu@software.ucv.ro

Cristian Marian Mihaescu
University of Craiova

Software Engineering Department

Bvd. Decebal 107, Craiova, 200440, Romania

Email: mihaescu@software.ucv.ro

Abstract—It is well known that the main drawback of dis-
tributed applications that require high performance is related to
the data transfer speed between system nodes. The high speed
networks are never enough. The application has to come out with
special techniques and algorithms for optimizing data availability.
This aspect is increasingly needed for some categories of dis-
tributed applications such as computational steering applications,
which have to permanently allow users to interactively monitor
and control the progress of their applications. Following our
previous research which was focused on the development of a
set of frameworks and platforms for distributed simulation and
computational steering, we introduce in this paper a new model
for distributed file systems, supporting data steering, that is able
to provide optimization for data acquisition, data output and
load balancing while reducing the development efforts, improving
scalability and flexibility of the system. Data partitioning is being
performed at a logical level allowing multimedia applications to
define custom data chunks like frames of a video, phrases of text,
regions of an image, etc.

I. INTRODUCTION

REAL time visualization and computational steering are

key elements when running a category of applications

known as distributed (discrete event) simulation [1] [2]. Gen-

erally, simulation refers to the numerical evaluation of a

model. It is well known that running simulations on distributed

high performance environments might become embarrassingly

slow if the analyze phase is performed as a post-processing

phase. A simulation has to be exhaustively executed for all

input data sets and data can only be analyzed as a post-

simulation phase, even if in some cases the process may reveal

useless results from the beginning. Therefore, we focused our

recent research towards the need to design a high performance

distributed simulation framework [3] whose main goal is

to optimize scientific simulations. Our framework uses the

concept of state-machines for representing general purpose

parallel processing tasks and allows the researcher to visualize,

analyze and steer the ongoing simulation avoiding irrelevant

areas of the simulation process.

The main performance bottleneck that we dealt with

while developing the state machine based distributed system

(SMBDS) was the data handling itself (acquiring data very

fast, dealing with multiple data sources, controlling the net-

work availability, a.o.). Another important aspect that we’ve

noticed was that in many situations it was more efficient to

migrate the processing task (state machine) to the host that

actually holds the input data than acquiring the data throughout

the network. For that we needed a way to query all nodes and

find out where the data resides before migrating.

There are many categories of distributed processing appli-

cations that demand high data availability. In a distributed

environment a set of nodes holds the input data for the entire

system. Each node of the system might also become data

holder (data storage) as it might output data needed by other

nodes in their assigned processing. It comes naturally that

the data flow is a crucial factor for achieving the desired

performance. It is a nice to have feature that a distributed

file system commonly offers. If data flow would be entirely

handled at the application level, the entire development process

would be significantly slowed down, the application’s main-

tenance would be less flexible, and there would be important

doubts on the data transfers efficiency. Obviously this is not

a desirable solution for handling data flow in a distributed

environment. Instead one could separate the data flow handling

into a standalone module whose main role is to acquire, store

and provide the data required by the application’s processes

in the most efficient way.

In this paper we describe the Distributed Chunks Flow

Management System (DCFMS) that enables and supports data

steering of distributed simulation applications.The system acts

like a file system while it adds two new innovative features:

logical partitioning and data awareness. Logical partitioning

allows the application to define the how the files shall be

splitted into chunks. This is very important for avoiding

unnecessary transfers of the entire file while only a part of

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 737–741

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 737

it is needed, instead the transfers fit exactly the application’s

needs. The data awareness allow the application to query

information related to data location. Most of the times in

distributed environments it is desirable to migrate processes

towards data than the other way around. This feature allow the

application to decide whether to send data towards processes

or processes towards data.

The rest of the paper is organized as follows. Section II

discusses briefly some related work. Section III-A introduces

the new model of DCFMS, as a distributed file system.

Section III-B focuses on a description of the support for

distributed data flow and load balancing issues in DCFMS

and gives some implementation details for Chunker classes.

Preliminary performance results are overviewed in Section IV.

Section V concludes the paper and outlines the future trends

of development.

II. RELATED WORK

In this section we will mention two of the most popular

and widely used distributed data transfer systems which have

similar components with the ones introduced in this paper:

Apache Hadoop - HDFS and BitTorrent Protocol.

BitTorrent Protocol [4] is a file-sharing protocol designed by

Bram Cohen used in distributed environments for transferring

large amounts of data. The idea behind BitTorrent is to es-

tablish peer-to-peer data transfer connections between a group

of hosts, allowing them to download and upload data inside

the group simultaneously. The torrents systems that implement

BitTorrent protocol use a central tracker that is able to provide

information about peers holding the data of interest. Once this

data reaches the client application, it tries to connect to all

peers and retrieve the data of interest. However, it is up to the

client to establish the upload and download priorities. Torrents

systems might be a good choice for distributed environments,

especially for those based on slower networks. However,

the main disadvantages of torrent systems are related to the

centralized nature of the torrents tracker as well as leaving

the entire transfer algorithms and priorities up to the client

application which might cause important delays if the transfers

trading algorithm chooses to serve a peer that might have

a lower priority at the application level. The reliability of

the entire system is concentrated around the tracker; if the

tracker goes down, the entire system becomes not functional.

Torrents are mainly systems that transfer files in distributed

environments in raw format without any logical partitioning

of the data. Such logical partitioning might often prove to be

very important. For example if an imaging application needs

a certain rectangle of an image it would have to download the

entire file and then extract the rectangle by itself instead of

just downloading the rectangular area and avoid transferring

unnecessary parts of the file. As a remarkable advantage of

torrents systems we could mention self-sustainability [5] due

to peer independence and redundancy.

Hadoop Distributed Files System (HDFS) has been designed

as part of Apache Hadoop [6] distributed systems framework.

Hadoop has been built on top of the Google’s Map-Reduce

architecture and HDFS. HDFS proved to be scalable, and

portable. It uses a TCP/IP layer for internal communication

and RPC for client requests. The HDFS has been designed to

handle very large files that are sent across hosts in chunks.

Data nodes can cooperate with each other in order to provide

data balancing and replication. The file system depends closely

on a central node, the name node whose main task is to man-

age information related to directory namespace. HDFS offers

a very important feature for computational load balancing,

namely it can provide data location information allowing the

application to migrate the processing tasks towards data, than

transferring data towards processing task over the network [7].

The main disadvantage of HDFS seems to be the centralized

architecture built around the name node. Failure of the name

node implies failure of the entire system. Though, there

are available replication and recovering techniques of the

name node, this might cause unacceptable delays in a high

performance application.

III. METHODS AND ALGORITHMS

A. Conceptual Model for Distributed File System

In this section the conceptual model of our distributed file

system will be introduced. The system is simple, based on

a client-server architecture. The entire model has been built

around the key element, data chunk. The data chunk usually

represents a file partition but none the less it can be any data

object required by the application’s processes. Besides the

data piece itself, a data chunk also contains meta-information

describing the data piece, like: size, location inside source

file, the data type, timestamp of latest update or the class that

handles chunks of its type.

Figure 1 illustrates the systems model. The most important

contribution of DCFMS is that it handles chunks of different

types in an abstract mode without actually knowing what

is inside the chunk, leaving the data partitioning up to the

application level. This is very important from the application’s

perspective as it can define the way files are partitioned into

chunks and how they can be put together again to reconstruct

the initial file allowing the application to map data chunks

to processing tasks in the most appropriate way for efficient

processing. No restrictions are imposed by the DCFMS on

data partitioning.

The Type Manager is the bridge between the abstract

representation of data chunks and their actual type. The Type

Manager is able to make use of external classes where all

the file type specific functionality can reside. The classes

are dynamically loaded whenever the application layer needs

partitioning, files reconstruction as well as information related

to the collection of chunks (i.e. the number of chunks). It is

the applications’ developer task to implement the data chunks

handler classes. The DCFMS only provides a set of interfaces

that helps the developer implement the partitioning logic.

For example, one might need to handle two types of files

in their distributed application: image files and text files. In

case of the image files a data chunk might be represented

by a rectangular region of the initial image. Multiple such

738 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Fig. 1. DCFMS design model

chunks can cover the entire image. An image can be split

into rectangular chunks by dynamically invoking the image

partitioning method. In case a node needs an entire file that is

spread all across the system, DCFMS can acquire all its chunks

from different hosts and recompose the image by dynamically

invoking the image reconstruction method. In case of a text

file, the chunks can take the form of paragraphs, or pages, or

simply an array of characters of a certain size. In a similar way

the files can be dynamically partitioned and reconstructed.

Later in this paper we will discuss the development effort

involved in writing such classes.

The proposed DCFMS is able to scale up dynamically at

run time without using a central node. This functionality is

achieved by the Discovery Unit which broadcasts and listens

to discovery messages.

There are two API interfaces that allow DCFMS nodes

to communicate with each other and also with the client

application.

B. Distributed Concepts Support and Implementation

1) Data flow: For a better understanding of the data flow

algorithm, we will analyze a concrete scenario. Lets assume

DCFMS consists of nodes N0, N1, ..., Nn, and let node N0 be

interested in aquiring data chunks C1, C2, ..., Cm. N0 will

broadcast a request for C1, ..., Cm to the entire DCFMS.

Nodes N1, ..., Nn reply back to N0 with a subset of C1,

..., Cm that they host. As soon as replys arrive, N0 builds

a chunks availability matrix having as rows the nodes N1, ...,

Nn and as columns chunks C1, ..., Cm. (Ni,Cj) gets valued

1 if the chunk Cj is available on host Ni, otherwise it gets

valued 0. N0’s main goal is to establish as many connections

as possible, but not more than one connection per serving

host (at most n-1 connections at a time). Chunks availability

responses are performed in an asynchronous manner so that

N0 won’t have to wait for all responses before proceeding

with transfers. Instead it will establish connections as the

responses arrive, overlapping chunks transfer with availability

requests. Whenever a chunk transfer completes, the External

API will be informed about it and the client application can

start processing the newly acquired data. As chunks might

spread across DCFMS while N0 transfers it’s chunks, the

availability matrix will be constantly updated by sending new

availability requests whenever a chunk transfer completes and

N0 has established less than n-1 connections (free download

slots available).

2) Support for load balancing: In distributed applications

it often happens that the processing of a data chunk requires

less time than the transfer of the data itself. For this reason

it might be a good practice to migrate the processing task

towards the data than transferring data to the processing

host. The DCFMS is able to provide through its external

API locating information about the data it holds (data aware

system). It is the application’s task to migrate the processing

tasks throughout the nodes in order to reduce or eliminate the

data transfer time.

3) Application developer’s task: Implementing Chunker

classes: Chunker classes define how files or data objects

are split into data chunks. A chunker class is nothing else

than a class that implements a Chunker interface defining the

following methods:

• GetChunk(chunkId)

• IsChunkAvailable(chunkId)

• ReconstructFile(filename)

Chunker classes are dynamically invoked at run time every

time chunks or their associated meta-data are being requested.

Data chunks are mapped to chunker classes by their meta-data.

IV. EXPERIMENTAL RESULTS

We conducted a set of experiments for the preliminary

performance evaluation of our DCFMS, as a standalone sys-

tem, out of the scope of the framework in which it will be

finally integrated. To evaluate DCFMS we’ve made use of two

environments:

• A high performance Myrinet network of 4 Gbps band-

width consisting of 8 identical hosts with Intel Core 2

Duo E5200 processors, 1GB of memory and the hard

drive benchmarked at an average read speed of 57MB/s

and write speed of 45MB/s.

• A regular Ethernet network of 100Mbps bandwidth con-

sisting of 8 identical hosts 4 hosts with Intel Core 2 Quad

processors and 4 GB of memory.

The purpose of the experiments was to determine how

fast will perform the DCFMS in one-to-many and many-to-

one scenarios. We’ve picked those two scenarios since they

represent the worst and the best traffic demanding scenarios.

In one-to-many scenario a certain file was hosted by one

node and had to be transferred to all the other nodes starting

simultaneous. The reverse work had to be performed in a

many-to-one scenario, namely all hosts except one hosted

the file, and they had to serve collectively the file to the

client host. Each scenario has been run for different chunk

COSMIN MARIAN POTERAS ET AL.: A CHUNK-BASED DISTRIBUTED FILE SYSTEM 739

TABLE I
MYRINET ONE-TO-MANY RESULTS

Chunk Size Min. time 7
hosts (s)

Max. time 7
hosts (s)

Avg. Time 7
hosts (s)

256KB 14.197 16.973 15.730
512KB 9.072 10.291 9.704
1MB 9.110 10.534 9.929
2MB 8.800 9.802 9.404
5MB 9.779 11.926 10.960
10MB 9.221 12.253 10.99
15 MB 9.166 11.529 10.353
20MB 12.444 18.583 15.640
25MB 13.763 18.407 17.066

Fig. 2. Myrinet One-to-Many results

sizes. The test cases presented in this paper focus on the

transfer speed of DCFMS rather than on the computational

performance of a system based on it. Around 50 runs were

performed for each case and the results were statistically

processed, avoiding singularities. We appreciate that the results

can be significantly improved by our DCFMS running in its

real design environment instead of a testbed, by using the data

awareness capabilities discussed in the previous sections.

A. Myrinet Network results:

Test case 1: One-to-Many one sender host and 7 receivers

that request the same file of 180.6MB simultaneously. Results

are presented in Table I and Figure 2

Test case 2: Many-to-One 7 senders that will serve one

host that requests the same file of 180.6MB from all senders.

Results are presented in Table II and Figure 3

By examining the results obtained at test cases 1 and 2

we can conclude that the chunk size has an important impact

on the file system’s performance. To obtain best timings, the

Myrinet-based application developer has to choose a chunk

size between 2MB and 5MB.

B. Ethernet Network results:

As the Ethernet speed is far less than the Myrinet network,

we decided to use a small file, namely a 9.8MB file.

Test case 3: One-to-Many one sender host and 7 receivers

that request the same file of 9.8MB simultaneously. Results

are presented in Table III and Figure 4

TABLE II
MYRINET MANY-TO-ONE RESULTS

Chunk Size Time (s)
256KB 11.362
512KB 5.693
1MB 5.466
2MB 4.168
5MB 3.692
10MB 4.111
15 MB 4.216
20MB 5.856
25MB 8.378

Fig. 3. Myrinet Many-to-One results

TABLE III
ETHERNET ONE-TO-MANY RESULTS

Chunk Size 128KB 256KB 512KB 1MB 2MB
Minimum time of
the 7 hosts (s)

77.241 80.833 64.011 70.572 57.159

Maximum time
of the 7 hosts (s)

83.553 85.908 80.121 82.930 75.547

Average Time of
the 7 hosts (s)

80.344 83.550 72.994 77.346 67.021

Fig. 4. Ethernet One-to-Many results

740 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

TABLE IV
ETHERNET MANY-TO-ONE RESULTS

Chunk Size 128KB 256KB 512KB 1MB 2MB
TIme (s) 29.697 29.048 28.940 28.726 28.752

Fig. 5. Ethernet Many-to-One results

Test case 4: Many-to-One 7 senders that will serve one host

that requests the same file of 9.8MB from all senders. Results

are presented in Table IV and Figure 5
Unlike the Myrinet network, in case of the Ethernet the

chunk size doesn’t have a big impact on the performance.

However the Ethernet network proved not to be the appropriate

environment for high performance distributed applications that

require high data availability.

V. CONCLUSIONS AND FUTURE WORK

In this paper we’ve introduced a new model of distributed

files systems. The dynamic discovery feature of the system

ensures the scalability of the system, the decentralized ar-

chitecture improves the reliability, while the dynamic data

handling offered by the chunker classes make the system

flexible and easier to extend. Some other important features of

the system, that worths mentioning are: load balancing support

due to the data awareness feature and the ability to define

chunks that can have any logical meaning.
Important contributions of the system relate to: custom

logical partitioning defined at the application level (abstractly

handling) and load balancing support due to the data awareness

(data location information) feature while maintaining a high

data availability.

The system shows good performance in very high speed

networks (Myrinet), but it can also be a good choice in

Ethernet networks for applications not requiring transfers of

high data volumes across the network.

As future development of the system we could mention the

hosts’ speed ranking which could be very significant when

deciding the source hosts, the network traffic monitoring which

could help deciding the route that should be followed for a

faster download and none the less the system needs caching

techniques.

Being designed as part of a distributed simulation frame-

work [3], as mentioned in the Introduction, DCFMS shall be
able to provide support for computational steering. Besides

steering the simulation processes the researcher shall be able

to also steer data storage, or alter data held by DCFMS

while simulation is running. Some algorithms for optimal

probabilistic replication of data when the system is in idle

state would also be a nice to have feature in our future

developments.

REFERENCES

[1] R. J. Allan and M. Ashworth. A survey of distributed computing,
computational grid, meta-computing and network information tools.
Daresbury, Warrington WA4 4AD, UK,2001, pp. 38-42

[2] Esnard, A. Richart, N. , Coulaud, O. A Steering Environment for Online
Parallel Visualization of Legacy Parallel Simulations,. Proceedings of
DS-RT’06 - 10th IEEE International Symposium on Distributed Simu-
lation and Real-Time Applications, 2006, pp.7-14

[3] Cosmin Poteras, Mihai Mocanu Grid-Enabled Distributed Simulation—
A State Machine Based Approach, Proceedings of TELFOR 2010,
Belgrade, Serbia, pp. 1323-1326

[4] Bram Cohen- The BitTorrent Protocol Specification, http://www.
bittorrent.org/beps/bep 0003.html

[5] D. Menasche, A. Rocha, E. de Souza e Silva, R. M. Leao, D. Towsley,
A. Venkataramani - Estimating Self-Sustainability in Peer-to-Peer
Swarming Systems, Journal of Performance Evaluation Volume 67 Issue
11, November, 2010.

[6] http://hadoop.apache.org/
[7] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James

Majors, Adam Manzanares, and Xiao Qin - Improving MapReduce Per-
formance through Data Placement in Heterogeneous Hadoop Clusters,
IPDPSW 2010, Atlanta, pp. 1-9

COSMIN MARIAN POTERAS ET AL.: A CHUNK-BASED DISTRIBUTED FILE SYSTEM 741

