
Services Composition Model for Home-Automation

peer-to-peer Pervasive Computing

Juan A. Holgado-Terriza, Sandra Rodrı́guez-Valenzuela

Software Engineering Department

University of Granada, Granada 18071, Spain

Email: jholgado@ugr.es, sandra@ugr.es

Abstract—Collaborative mechanisms between services are a
crucial aspect in the recent development of pervasive computing
systems based on the paradigm of service-oriented architecture.
Currently, trends in development of services computing are
taking into account new high-level interaction models founded on
services composition. These services make up their functionalities
with the objective of creating smart spaces in which services with
different purposes can collaborate to offer new and more complex
functionalities to the user transparently. This leads to the creation
of collaborative spaces with value-added services derived from the
composition of existing ones. However, there are many aspects
to consider during the development of this type of systems in
pervasive spaces, in which the extensive use of embedded devices
with limited characteristics of mobility, computing resources and
memory, is a large handicap. This paper describes a model of
services composition based on a directed acyclic graph used in a
services middleware for home-automation, in which we work with

loosely coupled services-oriented systems over the peer-to-peer
technology JXTA. The presented composition model guarantee
the acyclicity of the composition map between services as well as
favours the building of collaborative light services using peers as
proactive entities, which could be executed on embedded devices.
These ones are capable of establishing dynamic intercommunica-
tions, synchronizing with others and form coalitions to cooperate
between theirs for a common purpose.

I. INTRODUCTION

THE PROLIFERATION of smart communication devices

and the extensive use of the Internet in any device (e.g.

mobile device) have brought the need of integrating business

process models into any kind of system [1]. Business processes

provide complex and sophisticated services and products as

consequence of the massive penetration of data from internet-

enabled devices, the data management capabilities of mobile

devices and any other wearable and embedded devices, the

context information depending on its location, its physical and

computing environment, and even its human users. Services

such as videoconferencing, VoIP, ambient assisted living ap-

pliance, distance education or learning, smart security home

are now possible. Moreover the integration of more resource-

full computing devices into the home environment may assist

us by means of autonomous decision making based on the

context or available data which is part of the Smart Home

concept [2]. The convergence between the operation given by

in-house devices and the business process, require computing

models where the interactions between the device operation

and the business process should be more natural. The tech-

nological advances necessary to build a pervasive computing

environment fall into four broad areas: devices, networking,

middleware and applications [3].

Many years ago, Weiser defined the main lines of pervasive

computing research that are focused initially on hardware

issues such as the reduction in size and power consumption,

the processing power, the wireless communication protocols

and the invisibility, transforming the devices in invisible

objects [4]. Other key features of a ubiquitous environment

are the dynamic reconfigurability, modularity, extensibility

and portability. Thus, the middleware platform for pervasive

systems must solve problems such as interoperability, hetero-

geneity and transparency with respect to devices, as well as

dynamic discovery, selection, composition and adaptation of

components [5]. Today, the principles of the SOA (Service

Oriented Architecture) paradigm are the most widespread and

used for the development of pervasive computing systems [6].

However, the development of services-based software ar-

chitecture may become very complex in ubiquitous computing

when the interaction space includes embedded devices of small

size. The resources of these devices are often too limited

to run certain processes and store information. Besides, they

possess limited capabilities in terms of processing power,

memory, time battery life and bandwidth [7]. These charac-

teristics mean that the application development and business

processes in ubiquitous environments requires new specific

computer models, and therefore, new software infrastructures

that support these applications, taking into account that they

must be integrated into embedded execution environments, i.e.,

devices with limited resources.

By means of services composition a service can make up

its functionality in base of the collaboration with the rest

of services. Hence, a collection of collaborative services can

provide a way of creating smart spaces that offer new and

more complex functionality transparently to the user [8]. The

most common service collaboration models are based on the

orchestration and choreography of services. In the service or-

chestration the execution flow control is always responsibility

of one of the parties involved in the collaboration, while in

the service choreography any of the entities involved in the

collaboration can take part in the interaction [9].

There are several service composition approaches which

study how to make a composition from existing services in

order to achieve a more complex functionality that typically

is not provided by a single available service [10]. This paper

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 529–536

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 529

presents a model of services composition based in a directed

acyclic graph and used in a services middleware for home-

automation. The middleware is based on the SOA paradigm

and it has been built over the peer-to-peer framework JXTA,

which has been selected by the good scalability and the decen-

tralized nature achieved by the P2P systems [11]. The service

composition model is based on the orchestration principles in

which the interaction control is responsibility of each service,

as well as the execution order of operations and flow of

messages and transactions required in the collaboration. The

composition model in the service middleware often differenti-

ates between simple and composite operations. The execution

of a composite operation involves the execution of a set of

requested operations on several collaborative services. The

presented model of services composition favours building of

collaborative decentralized lightweight services, which could

be executed on embedded devices, using peers as distributed

and dynamic entities.

The rest of the paper is organized as follows. Section 2

introduces the most representative aspects of the SOA-based

middleware which has been developed taking into account

the constraints imposed by the use of devices with lim-

ited resources. Section 3 specifies the details of the service

composition model designed over the platform. Section 4

introduces the communication patterns involved in the service

composition model. Section 5 explains the behaviour of a

service when a composite operation is executed. In section 6

we will show an example which involves several services with

composite operations. Finally, section 7 reviews the related

work and shows the future research, before concluding in

section 8.

II. SOA-BASED MIDDLEWARE FOR PERVASIVE

COMPUTING

DOHA (Dynamic Open Home-Automation) is a services

platform for the access, control and management of home-

automation systems that facilitates the construction of dy-

namic, scalable and pervasive applications, based on a set

of lightweight and independent services. The DOHA services

platform is based on the SOA paradigm and uses the peer-to-

peer middleware JXTA as the support platform.

DOHA abstracts the physical distribution of devices and

its management by a set of high-level collaborative services,

as shown in Fig. 1. The platform promotes the collaboration

between services which involve communication between peers

at a lower level, and the interconnections between devices

across different networks placed on diverse subnets at the

lowest level.

DOHA is supported by the peer-to-peer framework JXTA,

which allows any device connected to the network to collab-

orate and communicate as a peer, providing positive features

such as interoperability, platform independence and ubiquity.

This enables integration in the same network of nodes that can

represent services, physical devices, applications requiring the

use of services, etc., leading to a system easily and naturally

scalable, where new features and new devices and services

Node
1

Peer 1

Device
Manager

Node
2

Node
3

Node
4

Device
1

Device
2

Device
3

Device
4

Peer 4Peer 2

Peer 5

Peer 3

Node
5

Physical Level

Virtual Level

Services Level

Home Network

W
ire

d
 N

e
tw

o
rk

W
ire

d
 N

e
tw

o
rk Wireless

Network

Device
Manager

Device
Service

Pure Consumer
Service

Service
Device
Service

Service

Fig. 1. Levels of abstraction of DOHA platform.

can be added in a more flexible manner. There are sev-

eral approaches which implement a distributed collaborative

model based on P2P technologies. For example, the JXTA-

Overlay is a JXTA-based P2P platform designed with the

aim of leveraging the capabilities of Java, JXTA and P2P

technologies to support distributed and collaborative systems

[12]. As in the Barolli et al. model, the DOHA platform has

been successfully applied to large-scale systems with powerful

embedded devices [13]. However, when the memory resources

of embedded devices are scarce, there is no space for the full

JXTA middleware. In this case a variation of JXTA for J2ME

(CLDC-MIDP2) is deployed on embedded devices [14].

The DOHA platform takes into account another important

aspect in pervasive systems, the large number of heterogeneous

hardware devices that may be part of a network, and how

the hardware interaction is managed from the service level

(e.g. HVAC, temperature sensor, alarm clock). The JavaES

(Java Embedded System) framework is used to enable the

operation with different types of physical devices (e.g. ap-

pliances, sensors, actuators) in the environment. The access to

the hardware is carried out in a standardized fashion, since

JavaES abstracts the specifics hardware capabilities of each

embedded device [15].

A service in the context of DOHA is an autonomous self-

contained component capable of performing specific activities

or functions independently, that accepts one or more requests

and returns one or more responses through a well-defined,

standard interface. There are two special types of services in

DOHA: the Device Service and the Pure Consumer Service.

The Device Service can interact with the physical devices

of the environment and it provides physical device control.

The Pure Consumer Service does not provide access to other

services; it often provides access to end users applications,

usually with a graphical user interface, and it does not offer

functionality to the rest of services.

A DOHA service has an internal structure organized in

a set of software layers. The multilayer structure facilitates

the decoupling of tasks performed by a service in cohesive

components; e.g., separating the task of requesting services

530 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Service Contract
<service>

<service_name>...</service_name>
<service_desc>...</service_desc>
<service_type>...</service_type>

</service>
<functional>

<op>
<name_op>...</name_op>
<params>...</params>

</op>
</functional>

Configuration Info
<identification>

<authentication_service_id>
...

</authentication_service_id>
<directory_service_id>

...
</directory_service_id>

</identification>
<position>...<position>

Composition Map
<composition>

<composite_operation>
<operation_name>...</operation_name>
<operation_degree>...</operation_degree>
<service>

<service_name>...</service_name>
<service_op>...</service_op>

</service>
</composite_operation>

</composition>

Interface Layer Application Layer Interaction Layer

GUI

Service
Interface

Service
Manager

Service
Interaction

Device
Interaction

Fig. 2. Anatomy of a DOHA service.

from the task of providing services. Fig. 2 shows the anatomy

of a DOHA service which provides a model to design and

implement services and also allows managing the behaviour

flow of the service in each step of its execution.

The Interface Layer is the public access point of the service

which provides the functionality of the service in terms of

operation (simple or composite) that can be invoked from any

other consumer service. The layer is responsible of receiving

the requests, executing the service operations by forwarding

them to the Application Layer and finally returning a response.

Services may have a graphical interface to allow the user’s

access. In this case, the Interface Layer should include the

GUI component.

The Application Layer is the real core of the service

and it is in charge of processing the operations from the

received requests given by the Interface Layer, supervised

by the Service Manager component. The Service Manager

handles the execution of an operation in the context of the

service, including the necessary invocation of operations of

any collaborative service, and provides an adequate response

to the service requesters. The decoupling of the Application

Layer with respect to the Interface Layer allows us a way

to control the ”stateless” feature of the service, since the use

of state information may adversely affect its availability and

scalability.

All DOHA services are stateless from an external point of

view, since the Interface Layer always provides a response to

any request carried out by any service at any given time. But

in many occasions the service could be required to maintain

state information; for example, when the service virtualizes the

state of a physical device (e.g. temperature sensor, illumination

sensor) with a logical state enclosed in the service. The state-

dependent part is bounded and limited by the Application

Layer and it is addressed by the Service Manager. Therefore,

it is imperceptible to the outside.

Finally the Interaction Layer contains the logic necessary to

make possible the communication, the invocation of operations

to other services or directly to devices (e.g. sensors or actua-

tors), and the recovery of responses which are delivered later

to the Application Layer in order to complete the execution

of the running service operation. The Service Interaction

component is responsible of managing the collaboration with

other services, acting as a client of consumer of these services.

On the other hand the Device Interaction component, which

only appears in the Device Services, interacts with JavaES

which gives a hardware abstraction to access the physical

devices in the environment.

The deployment, start-up and execution of the service

require knowing additional information that is managed by

the service during its life-cycle at runtime. This information

is enclosed into three descriptive documents which form the

base of the service specification. These ones are the Service

Contract, the Service Composition Map and the Service Con-

figuration. Each of them abstracts a fundamental aspect of the

service within the platform and contextualizes his collaborative

behaviour with other services. The Service Contract is a

public resource exchangeable between services, containing a

description of the requirements, restrictions and functionality

of a specific service. This information will be exploited by

the rest of services in order to be aware of the functionality

offered by the service and later make use of it. The Service

Composition Map establishes the relations among services

and the operations they are to perform, in order to carry out

composite operations. This information is private and only

accessible by the service itself, which is the only one who

knows with which other services it is supposed to interact,

in order to carry out a composite operation. Finally, the

Service Configuration is needed to initiate the execution of

the service, and it contains configuration parameters related to

the software infrastructure that provide support to the service

such as JXTA and JavaES. Related to JXTA, the Service

Configuration encloses the identifier of the Authentication

Service (peer group id) and the identifier of the Directory

Service (rendezvous peer).

III. SERVICE COMPOSITION MODEL

The service composition model of the DOHA platform is

based on the activities that a service should perform when

it needs to collaborate with other services to complete a

requested operation. Dynamic modelling of services, such as

the execution flow of a service, can be shown from the point

of view of the type of the operation to be carried out and

what activities the service must perform for it. The types of

operations that services can perform are simple or composite.

A simple operation is a single transaction that the service

can perform by itself, i.e., the service has all the resources

necessary to carry it out and it does not require interaction

with other services. In contrast, a composite operation involves

the invocation of one or more operations in one or more

services. The service that owns the composite operation is

responsible of its execution and it must interact with the

services involved in the operation, the requested services, to

get the necessary functionality in order to complete the whole

JUAN A. HOLGADO-TERRIZA, SANDRA RODRIGUEZ-VALENZUELA: SERVICES COMPOSITION MODEL 531

DOHA Services
Composition Map

- Name of the composite
operation

- Degree of the composite
operation

- Service name with which
it collaborates

- Operations to execute in
the service with which it
collaborates

<composition>
<composite_operation>

<operation_name>setLight
</operation_name>
<operation_degree>1
</operation_degree>
<service>

<service_name>PSLightRegulator
</service_name>
<service_operation>setLightValue
</service_operation>

</service>
</composite_operation>

</composition>

Fig. 3. Structure of the Service Composition Map and an example represented
in XML.

operation. A service that only has simple operations is called

a basic service; whereas a service that implements composite

operations invoking other services is called a composite ser-

vice. A Device Service is an example of a basic service that is

composed only of simple operations. The composite operations

are the base of the collaboration model of the platform and

are listed by the Service Composition Map.

In the XML code of Fig. 3 we can observe the structure

of a DOHA Service Composition Map that lists the requested

services (using meta-data enclosed into <service name> tags)

and the corresponding invoked operations required for the

execution of a composite operation available on the service. In

this case, the Service Composition Map belongs to the PSLight

service, which make use of the PSLightRegulator service to

manage the composite operation setLight().

Once a service is running, it can interact with other re-

quested services of the platform to perform composite opera-

tions. The service is only aware of these requested services,

allowing the collaboration with them to be carried out without

user intervention, creating autonomously collaborative appli-

cations at service level. However, the service is not aware of

the rest of the services available in the platform.

Service composition can be modelled using graph the-

ory. The composition map of a service is formed by com-

posite operations. Each composite operation op of a ser-

vice S can be defined by a directed graph GopS
=

(oopS
, V (G), L(G), E(G)) where:

• oopS
is the main vertex of the graph, and corresponds to

the origin service S of the composite operation opS .

• V (G) is the set of vertices of the graph where each vertex
represents a service invoked from the operation opS , i.e.

a required service.

• L(G) is the set of labels where each label embodies an

invoked operation in a required service.

• E(G) is the set of edges related with two vertices where

the origin vertex is oopS
, the destination vertex is an

element of V (G) and the label of the line is an element

of L(G). Accordingly, each element of this set is defined

by the function edgei(oopS
, opi, vi), where opi must be

an invoked operation of a required service vi, verifying

that E(G) ⊆ o× L(G)× V (G).

The composite operation graph is directed because the arcs

or operations between vertices always have a sender and a

receiver. The former is the service that starts or invokes a

composite operation and which performs the request, and the

latter is the requested service which is the owner of the invoked

operation. Thus, we can define a syntax based on graph

theory to model the composition between services. By means

of these premises, the full composition map of the service

map(S) = Gop1S
∪Gop2S

∪Gop3S
∪ ... ∪GopnS

= ∪iGopiS

is a directed super-graph formed by the union of all the

composite operations of the service S.

The composition graph of a given service may contain

calls to several services operations in the same composite

operation, but these operations are performed in a sequential

fashion, not nested. The depth of the composition graph of a

service is always of one level, however, we must take into

account that when a service starts a composite operation,

it does not know if one of the operations in the requested

services is composite too. In this case, we could have a

chain of composite operations. Because of this, we define

the function degree(GopS
) as the complexity degree of an

operation which establishes the depth of its graph. A simple

operation has complexity degree 0, i.e. degree(op) = 0. The
complexity degree of a composite operation GopS

is defined

by degree(GopS
) = max(degree(opi)) + 1, ∀opi ∈ L(G).

We can say that the degree of a service is the maximum

degree of all the composite operations of its composition map,

i.e. degree(map(S)) = max(degree(GopiS
)), ∀GopiS

⊆

map(S).
The function degree() is used to ensure the acyclicity of the

service composition graph. We have established the following

restrictions on the construction of composite operations:

• All composite operation must finish with a simple oper-

ation.

• A composite operation can only invoke another composite

operation with lower complexity degree. A composite op-

eration with degree 1 can invoke only simple operations,

i.e. operations with degree 0. A composite operation with

degree n can invoke another composite operations with

maximum degree n− 1.

We can see an example of composite operations degree

in Fig. 4. The degree of the simple operation, setTemper-

atureValue() in the service Temperature Regulator Service,

is equal to 0. This operation is invoked by the composite

operation setTemperature() of the service Temperature Service,

therefore this operation has degree 1. Also, the operation

setTemperature() is invoked by the composite operation set-

Profile() of the service Comfort Service. The operation setPro-

file() also invoke the simple operation tvOn() of the service

TV Control Service. Hence, we can say that the degree of

the composite operation setProfile() of the service Comfort

Service is 2, because that is the maximum degree of its invoked

operations plus 1.
Based on the restriction imposed on the invocations between

composite operations for the function degree(op) we have

defined the axiom edge(oopv1
, opv2, v2) → degree(opv1) >

degree(opv2). This axiom imposes that the degree of a com-

posite operation opv2 of v2 must be strictly less than the degree

of the composite operation in o which invokes it, opv1. Using

532 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Comfort
Service

Temperature
Service

Temperature
Regulator Service

USER

setProfile()
degree = 2

setTemperature()
degree = 1

Air-Conditioning

setTemperatureValue()
degree = 0 -> simple op

TV Control Service

tvOn()
degree = 0

TV

Fig. 4. Degree in composite operations.

this axiom we can prove the property of acyclicity of the

Services Composition Map. By construction, the model verifies

the acyclicity of the service composition graph with degree

1, a composite operation invokes only simple operations.

We could consider a more complex composition graph with

several services with composite operations interacting, v1, v2
and v3. This example must verify that edge(oopv1

, opv2, v2)
and edge(oopv2

, opv3, v3), which according to the axiom de-

fined above involve that degree(opv1) > degree(opv2) and

degree(opv2) > degree(opv3). By transitivity it could also

be verified that degree(opv1) > degree(opv3). Therefore we

can affirm that no matter how complex is the composition map

of a service built on DOHA, the graph associated with it is a

directed acyclic graph.

IV. COMMUNICATION MECHANISMS IN SERVICES

COMPOSITION

The DOHA communication mechanisms are based on the

SOA scheme of publication, discovery and invocation of

requests, which is implemented using JXTA primitives and

protocols. A DOHA service takes the peer as the entity that

provides communication capability. JXTA shares some of the

SOA principles. The JXTA Peer Discovery Protocol is used

for the publication and discovery of services using the concept

of advertisement as exchanged information between peers. In

contrast, for inter-peer communication JXTA provides three

basic transport mechanisms, each one providing a different

level of abstraction. The endpoint is the lowest level transport

mechanism, followed by the pipe, and then finally, at the

highest level, there are JXTA sockets [16]. DOHA exploits the

pipe as the basic facility in order to provide a communication

channel between peers in DOHA.

The DOHA services as peers publish their presence making

use of advertisements to allow other services to discover it.

Therefore, the services need discovery mechanisms that allow

communication among services with different locations and

functionalities. In JXTA special peers exist, the Relay Peer

and the Rendezvous Peer, which provide remote discovery of

advertisements between peers in different networks. DOHA

treats these types of peers in the implementation of a Directory

Service.

From a purely P2P point of view, JXTA does not require

a specific service node to provide registry services. However,

JXTA is versatile enough to accommodate a brokered mode of

operation as well, whereby Rendezvous/Relay nodes can take

over the role of the Registry and Lookup servers. The Ren-

dezvous/Relay peer nodes can manage requests and responses

to facilitate communication between pairs of peers [17].

When a service discovers new advertisements in the net-

work, it stores them in the local cache of its peer. If this ser-

vice is also connected to the Service Discovery (Rendezvous

peer), it can also perform a remote search and discover more

advertisements. A Rendezvous peer has the responsibility of

coordinating all peers in the JXTA net and propagating the

messages and advertisements remotely. If the peers are in

separate subnets, we can use any one Rendezvous peer to

manage the reception of remote messages and broadcast those

within its local net. If the local net has a firewall or NAT

(Network Address Translation), the peer can use a Relay peer

to surpass it and allow remote discovery of its advertisements

by peers of other external networks.

Each peer of any DOHA service has a pool of pipes with

a name, an unambiguous identifier, and a pipe advertisement

for each one. This information is known by the rest of the

peers in the peer group due to its publication into a pipe

advertisement, and in addition it could be delivered to remote

networks through the Rendezvous Peer. When a service wants

to establish communication with another, first it seeks one of

those announcements in the cache of his peer or from the

Directory Service, and then it uses this information for the

pipe creation.

The peer associated with each service have a special pipe,

named the interaction pipe or PipeI, to claim the use of

collaborated services as an input pipe in a customer service.

This pipe allows the peers to act as consumers in the network.

V. BEHAVIOUR FLOW OF THE SERVICE COMPOSITION

MANAGEMENT

The behaviour of a service can be represented using an

UML activity diagram that models how the services interact

with each other. The execution flow in a service can be

distinguished in function of the abstraction layer where the

activity takes place. Therefore, we have partitioned the set of

activities of a service according with the layer in which these

operations take place: Interface, Application and Interaction.

Each partition has a group of actions with respect to their

responsibility as we show in Fig. 5.

The services execute the activity of waiting for messages

in the partition associated with the Interface Layer. During

this activity the services listen to their input pipes waiting to

receive requests from other services. Once a message arrives, it

is delivered to the Application Layer, which will be responsible

for processing the message.

The bulk of the operations in a DOHA service is composed

by the group of activities associated with the Application

Layer. When a request is received on the interface, the flow

passes to this layer in order to determine the type of the

request. The types of request that a service can receive are

related with the next activity to perform. The main activities

JUAN A. HOLGADO-TERRIZA, SANDRA RODRIGUEZ-VALENZUELA: SERVICES COMPOSITION MODEL 533

get pipe execute operation

identify operation to
execute

confirmation
service

waiting for messages

¿new request?

¿what is the type of
the request?

search customer service
advertisement

new identificator

send message

save info customer
service

assign an input pipe in
the service

asign identificator to the
customer service

¿what is the
type of the
operation?

execute

search service
advertisement

get pipe

confirmation service

execute operation

identify services to
collaborate

In this layer the service acts
like a customer service ¿service known?

[no]

[yes]

[confirmation service][get pipe] [execute operation]

[yes]

[no]

[simple]

[composite]

In
te

rf
a

c
e

 L
a

y
e

r
A

p
p

lic
a

ti
o

n
 l
a

y
e

r
In

te
ra

c
ti
o

n
 L

a
y
e

r

Fig. 5. Behaviour of the execution flow of a service based on their activities.

in a service are grouped as a subgroup of activities: get pipe,

confirmation service, and execute operation. Depending on the

type of the received request, the execution flow will continue

for one or a subset of activities in this partition. All the

groups of activities in the application partition finalize by

sending a message to the service customer with information

about the request. Fig. 6 shows the messages involved in

the communication between a Customer Service and Provider

Service by means of an UML sequence diagram.

The sub-activity get pipe has the function of associating

an input pipe with the service customer in the service. The

first activity of this group is search a customer service. This

activity locates the customer advertisement in the network.

Then, the activity of save info customer determines who is

the service customer and what is his pipe of communication

from the information contained in the customer advertisement.

Finally, in the activity assigns an input pipe a pipe service is

associated with this customer.

The confirmation service activity allows the customer ser-

vice to know if the service is available before communicating

User
Customer Service Provider Service

getService(x)

getPipe()

message_pipeAdvertisementId()

savePipeService()

confirmationService()

message_confirmation()

service()

executeOperation()

executeOperation()

message_operation()

result()

Fig. 6. Communication flow between services.

534 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Comfort
Service

Light
Service

Temperature
Service

Light Sensor
Service

Temperature
Sensor Service

Light Regulator
ServiceServices Level

Devices Level

USER

Light Sensor LampTemperature SensorAir-Conditioning

Temperature
Regulator Service

setProfile
setLight

getTempValue

setTempValue

getLightValue

setLightValue

setTemp

setLightValuesetTempValue

TV Control Service

tvOn()

TV

Fig. 7. Example of services composition.

with it. This activity assigns identifications to each customer

and saves this information about what customer services are

communicating with it.

Finally, the execute operation activity performs the function-

ality of the service executing its operations. The first activity

in this group determines what operation of the service is the

one that the service customer wants to execute. If the operation

is simple, the service can execute it itself. Otherwise, when

the operation requires the collaboration with other services,

the activity of identifying services to collaborate is performed

inspecting the Service Composition Map. Remember that the

service in the execution of a composite operation can only

know the required operations from other services of lower

complexity degree with a depth of one level according to

the service composition graph. Subsequently, the control flow

must pass to the interaction partition, because the service must

act as a customer of other services.

The last partition of activities is the Interaction Layer. The

activities of this partition are fundamental in the behaviour

of the DOHA services and in the composition model. This

partition contains the activities that enable the service to

communicate with others services acting as a consumer and

to manage a composite operation. In this partition the service

performs the activities as if he was a customer, get pipe,

confirm the service and execute operation. Finally, returns the

execution flow to the partition of the Application Layer.

VI. AN EXAMPLE OF APPLICATION TO A COLLABORATIVE

SERVICES SYSTEM

To illustrate the model of service composition in DOHA

platform we are going to show an example scenario where dif-

ferent services implement their functionality using composite

operations which involve the collaboration between services.

The goal of the example application is to develop a large

enough number of services to cover the user needs for home-

automation. The implemented services are Comfort Service,

Light Service, Light Sensor Service, Light Regulator Service,

TV Control Service, Temperature Service, Temperature Sensor

Service and Temperature Regulator Service, as we show in

Fig. 7.

From the point of view of the owner of the composite

operation, the service composition process starts when it

receives a request for this operation from a service consumer.

After receiving the composite operation request the service

searches for the services involved in the operation. When

the communication between services can be carried out, the

service owner of the composite operation acts as customer of

the rest of the services. The users that request for a composite

operation do not know that it involves the collaboration

between services and the composition of their operations. The

users only make the request and receive a response from the

service owner of the composite operation.

Each service has its own directed graph which models its

composite operations by means of map(S). The set of all

composition graphs in an application form the total collabo-

rative execution flow of the application based on composite

operations. By construction, we can define the system com-

position graph of an application as the union of individual

composite operation graphs of the services of the application

app, i.e. map(app) = ∪imap(Si) = ∪i,jmap(GopjSi
) =

∪i,j(oopjSi
, VjSi

, LjSi
, EjSi

). The system composition graph

can be built dynamically in order to know the Service Com-

position Map of the running services at any time in contrast

with other works that require a static definition of the system

composition graph [18]. This information could be relevant

when a study of performance, reliability, workload, end-to-

end delay or any other QoS parameter should be performed.

VII. RELATED WORK

According to Peltz, the language used to describe the flow

of collaborative processes must satisfy the requirements of

i) asynchronous invocation and ii) exception handling and

integrity in transaction [9]. These requirements are met on the

DOHA platform, because the invocation of the operations is

asynchronous and is managed by the invoker service which is

responsible for handling any exceptions thrown by the specific

operation.

A research work with some similarities with the presented

in this paper is shown in [19], which uses the P2P technology

to support the design of a services middleware. It distinguishes

between the actions of peers as service providers, consumers,

or both at once. The main objective of the author’s research

is to present a services collaboration model based on the

properties of the services which are crossed semantically to

obtain services with more complex features. To achieve this,

the authors introduce a formal model for services composition

based on the semantic properties of the services, which is

similar to the collaboration model used in DOHA, that also is

represented using a formal model based on the graph theory.

The high complexity of pervasive systems makes the de-

velopment of applications with the non-functional properties

required for the SOA paradigm difficult. A well-know strategy

to overcome this complexity is the use of a centralized

architecture based on a gateway [18]. Nakamura proposes

a service collaboration model based on behaviour profiles

created from a collaboration graph and stored in a centralized

configuration file (SMI definition - Service method invoca-

tion). The collaboration between services in DOHA is also

based on a file which stores services and operations related

JUAN A. HOLGADO-TERRIZA, SANDRA RODRIGUEZ-VALENZUELA: SERVICES COMPOSITION MODEL 535

with the composite operations of each service. However, it is

private and known only to the service which is associated,

other services do not know how it is or how the service works

to carry out their composite operations. The main difference

between the composition model designed by Nakamura et

al. and the presented in this research is the scope of the

composition map. In the first case, the composition model

is defined at system level and the composition model can

be defined previous to the definition of the services. In our

case, the composition model is defined at service level and

requires the knowledge of the Service Contract of the services

with which the collaboration will be performed to form the

composition map.

Ontologies are a knowledge representation model being

used in a wide range of research works to manage the services

collaboration, as in the case of SOAM of Vazquez et al. [20].

SOAM is an experimental model for the creation of smart

objects using ontologies on the web, i.e. Semantic Web tech-

nologies to enable communication between the semantic con-

text and reasoning processes in order to provide an adaptation

of environment to user preferences. It also uses behavioural

profiles, based on which it provides a service collaborative

model between different semantic objects in the environment.

The main short-term objective in the development of DOHA

is to become a platform for context-sensitive services, thus

linking the development of pervasive computing applications

with the development of ambient intelligence applications

using ontologies as the method for the representation of the

context information and its relation with the services.

VIII. CONCLUSIONS

Development and deployment of service-based applications

on embedded devices are highly complex tasks. These de-

vices have very limited resources, little processing power

and memory. Hence, the programs developed on them must

optimize the use of scarce resources. For this project we

choose to implement an engineering process to model a

services architecture based on SOA principles and use the

capabilities of the peer-to-peer JXTA platform, with a well-

defined model of communication, behaviour and collaboration.

Using SOA as the design philosophy can improve relations

between technology and services development that support

the needs of users, broadening the range of possibilities that

the various applications built on the platform can offer. The

ability of optimally achieving collaboration between services

is a key factor for the competitiveness and growth of a

services platform. The use of lightweight services composition

maps based on directed acyclic graph and distributed in each

service, can create new added-value services that release

the potential of the applications and resources used by the

platform, raising user satisfaction with them. Furthermore,

the proposed composition model allows the services to define

their individual composition maps, which are smaller and easy

to manage and store in embedded systems than the models

which define the composition flow of the whole application.

A further advantage of the model presented with respect

of others is its distributed nature, being a model based in

individual composition maps, each service controls its own

map of collaboration, without requiring a centralized node

holding the information of system-wide collaboration.

ACKNOWLEDGMENT

This research is partially supported by the Spanish Ministry

of Education and Science through a pre-doctoral FPU grant.

REFERENCES

[1] P. Lalanda, L. Bellisard, and R. Balter, “Asynchronous mediation for
integrating business and operational processes,” Internet Computing,
vol. 10, no. 1, pp. 56–64, 2006.

[2] A. Yachir, K. Tari, Y. Amirat, A. Chibani, and N. Badache, “Mdp and
learning based approach for ubiquitous services composition,” in 2010

IEEE Globecom Workshops, GC’10, 2010, pp. 1668–1673.
[3] D. Saha and A. Mukherjee, “Pervasive computing: A paradigm for the

21st century,” Computer, vol. 36, no. 3, pp. 25–31+4, 2003.
[4] M. Weiser, “The computer for the 21st century,” Scientific American,

vol. 256, pp. 94–104, 1991.
[5] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and

D. Zukowski, “Challenges: An application model for pervasive comput-
ing,” in Proceedings of the Annual International Conference on Mobile

Computing and Networking, MOBICOM, 2000, pp. 266–274.
[6] Z. Stojanovic and A. Dahanayake, Service-oriented software system

engineering: challenges and practices. Idea, 2005.
[7] S. L. Kiani, M. Riaz, Y. Zhung, S. Lee, and Y. . Lee, “A distributed

middleware solution for context awareness in ubiquitous systems,” in
Proceedings - 11th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications, 2005, pp. 451–454.
[8] J. Bronsted, K. M. Hansen, and M. Ingstrup, “A survey of service

composition mechanisms in ubiquitous computing,” in Proceedings of

UbiComp 2007 Workshop Innsbruck, Austria, vol. 4717, no. 9, 2007,
pp. 87–92.

[9] C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, no. 10, pp. 46–52, 2003.

[10] R. M. Pessoa, E. Silva, M. Van Sinderen, D. A. C. Quartel, and L. F.
Pires, “Enterprise interoperability with soa: A survey of service com-
position approaches,” in Proceedings - IEEE International Enterprise
Distributed Object Computing Workshop, EDOC, 2008, pp. 238–251.

[11] J. F. Buford and H. Yu, “Peer-to-peer networking and applications: Syn-
opsis and research directions,” in Handbook of Peer-to-Peer Networking.
Springer US, 2010, pp. 3–45.

[12] L. Barolli and F. Xhafa, “Jxta-overlay: A p2p platform for distributed,
collaborative, and ubiquitous computing,” IEEE Transactions on Indus-

trial Electronics, vol. 58, no. 6, pp. 2163–2172, 2011.
[13] S. Rodrı́guez and J. Holgado, “A home-automation platform towards

ubiquitous spaces based on a decentralized p2p architecture,” in Interna-

tional Symposium on Distributed Computing and Artificial Intelligence
2008 (DCAI 2008). Springer Berlin / Heidelberg, 2009, pp. 304–308.

[14] J. Holgado-Terriza and S. Rodrı́guez-Valenzuela, “Service oriented mid-
dleware for home-automation,” 2011, submitted to Journal of Network
and Computer Applications.

[15] J. A. Holgado-Terriza and J. Viúdez-Aivar, “A flexible java framework
for embedded systems,” in ACM International Conference Proceeding

Series, 2009, pp. 21–30.
[16] L. Gong, “Jxta: A network programming environment,” IEEE Internet

Computing, vol. 5, no. 3, pp. 88–95, 2001.
[17] R. L. McIntosh, “Open-source tools for distributed device control within

a service-oriented architecture,” JALA - Journal of the Association for
Laboratory Automation, vol. 9, no. 6, pp. 404–410, 2004.

[18] M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, and K. . Matsumoto,
“Constructing home network systems and integrated services using
legacy home appliances and web services,” International Journal of Web
Services Research, vol. 5, no. 1, pp. 82–98, 2008.

[19] J. Gerke, P. Reichl, and B. Stiller, “Strategies for service composition
in p2p networks,” in E-business and Telecommunication Networks.
Springer Berlin Heidelberg, 2007, vol. 3, pp. 62–77.

[20] J. Vazquez, I. Sedano, and D. López de Ipiúa, “Soam: A web-powered
architecture for designing and deploying pervasive semantic devices,”
International Journal of Web Information Systems, vol. 2, no. 3, pp.
212–224, 2007.

536 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

