
FastFIX: An Approach to Self-Healing

Benoit Gaudin and Mike Hinchey
Lero—The Irish Software Engineering Research Centre, University of Limerick, Ireland

firstName.lastName@lero.ie

Abstract—The EU FP7 FastFIX project tackles issues related
to remote software maintenance. In order to achieve this, the
project considers approaches relying on context elicitation, event
correlation, fault-replication and self-healing. Self-healing helps
systems return to a normal state after the occurrence of a fault
or vulnerability exploitation has been detected. The problem
is intuitively appealing as a way to automate the different
maintenance type processes (corrective, adaptive and perfective)
and forms an interesting area of research that has inspired many
research initiatives. In this paper, we propose a framework for
automating corrective maintenance and present its early stage
development, based on software control principles. Our approach
automates the engineering of self-healing systems as it does not
require the system to be designed in a specific way. Instead it can
be applied to legacy systems and automatically equips them with
observation and control points. Moreover, the proposed approach
relies on a sound control theory developed for Discrete Event
Systems. Finally, this paper contributes to the field by introducing
challenges for effective application of this approach to relevant
industrial systems.

I. INTRODUCTION

S
OFTWARE maintenance aims to modify a software sys-

tem after it is deployed in production ([1], [2]). In [3], the

authors identify three different types of maintenance: adaptive,

perfective and corrective. Adaptive maintenance is performed

to make the computer program usable in a changed environ-

ment. Perfective maintenance mainly tackles performance and

maintainability issues. Corrective maintenance is performed

to correct faults. Over the last 20 years the complexity of

both software and communication infrastructures has increased

at an unparalleled rate. This level of complexity means that

software systems are more prone to unexplained failures,

require more support and maintenance, and cost more to

deploy and manage. A fundamental challenge faced by the

software industry is how to ensure that these hugely complex

software systems require less maintenance and human inter-

vention. With concepts such as self-healing, autonomic and

self-adaptive systems provide an answer by reducing human

intervention and reducing the apparent complexity of systems.

Several surveys on self-healing have been published to

describe the State-of-the-art of this field (e.g. [4], [5], [6]).

According to these surveys, the major trends towards finding

a solution to the self-healing problem rely on redundancy

that may concern both architecture and code resources. These
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approaches somehow assume that systems are designed with

adaptive capabilities and are therefore better suited to address

adaptive and perfective maintenance. In this article, we focus

on self-healing for corrective maintenance.

We propose a control theoretic approach to self-healing in

order to deal with corrective maintenance. Control makes it

possible to drive the system in a range of desired behaviors. It

represents an interesting approach to avoiding behaviors that

lead to failures. This is achieved by dynamically disabling

some of the implemented features. Moreover, the proposed

approach automatically synthesizes supervisors charged with

controlling the software. Hence, this automates the computa-

tion of a new suitable range of software behaviors whenever

corrective maintenance needs to be performed, e.g., a failure

has been reported and behaviors exhibiting this failure need

to be removed or avoided.

Section II introduces the FastFIX project ([7]) goals and

the different research aspects that are investigated: context

elicitation, event correlation, fault replication and self-healing.

Section III presents the early stage development and approach

considered for self-healing, which is based on control theory.

Finally, challenges to be tackled in order to implement effec-

tive and efficient control theoretic self-healing features are dis-

cussed in Section IV. Most of these challenges relate to super-

visory control theory and its applicability to software systems.

II. FASTFIX: MONITORING CONTROL FOR REMOTE

SOFTWARE MAINTENANCE

The FastFIX project aims to provide methods and a platform

for improved remote maintenance of software applications.

The FastFIX platform monitors the execution of applications,

their environment and user behaviors. It also provides tech-

niques that analyze the collected data in order to identify

symptoms of execution errors, performance degradation, or

changes in user behavior.

This platform comprises both a client part which interacts

locally with the target application and a server part which

receives data from the client in order to perform analyses.

Collecting information from the target application, as well

as its environment and users, is the basis for the FastFIX

analyses. Therefore, context elicitation and user modeling play

a crucial role in the project. These challenges are tackled

through lightweight software sensor deployment into the run-

time environment, together with facilities to interpret the user

behaviors from data representing their interaction with the

application.
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These sensors can also provide information about the execu-

tion of the application itself and its environment, i.e., method

calls, variable values, timestamps, etc. This data can then

be analyzed by an event correlation component in order to

detect anomalies representing possible attacks or application

malfunctions. Rule-based systems are often used in order to

perform event correlation. However these systems face issues

whenever the complexity of the system to be monitored and

the amount of possible correlations is large. More specifically,

managing a large amount of rules in order to ensure consis-

tency and proper priorities as well as to avoid redundancy, is

a very challenging task. The FastFIX project will tackle this

issue and investigate rule-based correlation engines that are

easier to define and maintain.

The data collected by the FastFIX platform is also used

in order to replicate faults whenever they occur. Indeed,

fault replication represents an interesting feature in order to

diagnose issues. It is first an appealing approach as it avoids

manual fault replication from the symptoms reported by the

user, which can be incomplete, inaccurate or even irrelevant

to the error. Moreover, fault replication techniques address

the replication of faults related to concurrency. This is of

high interest as these types of faults are usually difficult to

reproduce, and hence to diagnose and fix.

The information about the target application collected at

runtime is used in order to perform self-healing. When a

failure occurs, the self-healing capabilities make it possible

to automatically modify the application behaviors so that this

failure cannot occur in future executions. Performing such

automation is a challenging task and better suits types of faults

for which no new behavior creation is required. For this reason,

the FastFIX self-healing mechanism is flexible and also allow

for humans-in-the-loop in order to tackle those software fixes

that cannot be automated.

Finally, as the collected data is sent to the FastFIX server for

analyses, the system execution and user information must be

sent from the client machine to the maintenance team. As this

information may contain sensitive personal data, it is important

to ensure user confidentiality. This is tackled in FastFIX using

obfuscation techniques (e.g. [8]). Obfuscation techniques aim

to abstract the actual variable values into restricted domains

so that it is not possible anymore to precisely determine what

values were used by the user. However, the domain in which

the value is abstracted is accurate enough in order to replicate

the application execution in a similar way as the one performed

with actual user data.

Figure 1 illustrates how the different aspects tackled by

FastFIX can be combined and act in a complementary manner

in order to achieve effective and efficient remote software

maintenance. On the client side of the diagram are the user, the

FastFIX target application and the FastFIX client itself. This

client monitors the user interactions with the target application

as well as the application execution itself. From this informa-

tion, it is able to perform analyses and identify application

failures or changes in the user behaviors. It can then provide

feedback and recommendations to the user themselves, or send

the collected information to the FastFIX server for further

processing. This data can be preprocessed in order to be obfus-

cated so that no sensitive user information is sent to the server.

Fig. 1. The FastFIX overview.

The information sent to the FastFIX server can then be used

in order to perform event correlation, fault replication and au-

tomatic patch generation, through self-healing. The outcomes

of these analyses are then reported back to the FastFIX client

so that actions are taken on the target application, e.g. applying

patches or providing user recommendations.

The rest of this paper focuses on the FastFIX approach to

self-healing, which relies on Supervisory Control Theory for

discrete event systems.

III. A CONTROL THEORETIC APPROACH TO SOFTWARE

SELF-HEALING

In computing systems, control theory has traditionally been

applied to data networks, operating systems, middleware, mul-

timedia and power management ([9]). This section proposes

a control-based approach for the self-healing of software

systems.

With this approach, systems can be automatically equipped

with autonomic features and therefore follow the autonomic

feedback loop of Figure 2(a) at runtime. In particular, sensors

and actuators are automatically added to the software system

in order to realize the Data Collection and Action phases

of Figure 2(a). The Analysis phase is related to control

theory. The system sensors and actuators also implement the

feedback control loop presented in Figure 2(b) and two types

of analyses can therefore be achieved: runtime control decision

and automatic supervisor synthesis. Runtime control decision

can ensure the avoidance of known undesired behaviors during

execution.

Supervisor synthesis is used to automatically modify the

system behaviors. It represents the core technique for cor-

rective maintenance in our approach. The overall proposed

approach is detailed in the remainder of this section.

Our self-healing approach consists of two different phases:

a pre-deployment phase which is performed before the system
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Fig. 2. The runtime autonomic and control feedback loops.

is deployed and where self-healing features are added to the

software; and a post-deployment phase corresponding to the

automatic or semi-automatic execution of the maintenance

process where the system self-healing features are employed.

The latter part itself consists of the system control at

runtime as well as supervisor synthesis whenever new

runtime system specifications need to be ensured, e.g., when

a fault has occurred. Overall the presented approach can be

seen as a three phase approach: pre-deployment, control and

synthesis. The pre-deployment phase prepares the system

for control and synthesis. However, the concepts related to

the pre-deployment phase depend on the ones related to the

control and synthesis phases. We will therefore discuss the

pre-deployment phase last.

A. Control Phase

We first consider the control phase which follows the prin-

ciple illustrated in Figure 2(b). In this diagram, the supervisor

observes and controls the current behaviors of the system.

These behaviors are represented as sequences of events.

As a basic case, we consider that the events that can be

observed by the supervisor consist of method calls. This

can be further augmented for instance with other program

statements such as conditions and also values passed to method

parameters. Therefore we consider that the behavior of a

software application is described by the sequence of method

calls that occur at runtime1. Each time a method is executed,

the supervisor is aware of it and can update its knowledge

regarding the current behavior of the system.

Implementing Figure 2(b) requires the addition of obser-

vation (sensors) and control (actuators) points. In order to

achieve this, we consider embedding some code that models

the supervisor into the software application. More specifically,

the model of the supervisor can be considered as an object

whose current state can be updated whenever a method of the

application to be controlled is called. Moreover, control can

be performed by preventing method executions as modeled in

the supervisor. Figure 3 illustrates this idea where a Supervisor

type is added to the software application. This type (or class)

also provides a method accepts which given the name of a

1For simplicity, we discuss the approach with this basic setting. The general
case is discussed in Section IV.

method returns true if and only if the supervisor will allow

that this method is called from the current state. Whenever a

method is allowed, its body is executed and the current state

of the supervisor object is updated.

void m()

  {

   ...

   method body

   ...

  }

static class Supervisor

 {

  Object supervisor;

  State currentState;

  boolean accepts(String m)     

  {...}

 }

if (!supervisor.accepts(m)) {return;}

Initially

implemented

classes

Supervisor class

Fig. 3. A possible code instrumentation offering observation and control
points.

If the method is not allowed by the supervisor, then it

must not be executed. A basic approach to achieving this is

described in [10], [11] and consists of returning abruptly as

indicated in Figure 3. Such an approach allows for dynamic

restriction of the system executions, e.g., a method execution

may be prevented after a given sequence and allowed after

another one.

B. Synthesis Phase

Paragraph III-A describes the principle and possible mecha-

nisms for controlling software application behaviors at runtime

by means of a supervisor. The design of such a supervisor

corresponds to determining how the application behaviors

must be modified in order to avoid undesired behaviors.

However designing such a supervisor is a challenging task

and prone to error. Moreover, the high complexity of software

applications makes it difficult to manually take into account all

the possible failures that can occur and need to be prevented.

For this reason, supervisors may need to adapt at runtime

so that they take into account newly observed undesired

behaviors, hence performing corrective maintenance. Such an

approach is further described in Figure 4(a) and considers

automatic synthesis of such supervisors. More specifically, we

consider techniques that automatically compute the model of

a supervisor given a model of the application behavior and a

model representing a set of desired behaviors2. Supervisory

Control Theory (SCT) on Discrete Event Systems introduced

by Ramadge and Wonham ([12]) offers such a framework and

techniques for the automatic synthesis of supervisors.

SCT is a formal theory that aims to automatically design a

model for a supervisor ensuring some safety property. Supervi-

sory Control Theory defines notions and techniques that allow

for the existence and automatic computation of a model of the

supervisor, given a model of the system as well as the property

2Behaviors that do not belong to this set are undesired.
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Fig. 4. Software control Adaptation view and a simple control objective.

to be ensured. In this theory, models of a system G are repre-

sented by languages over alphabets of events, denoted L(G).
These languages correspond to sets of sequences of events,

each representing a possible behavior/execution of the system.

Although not as expressive as languages, Finite State Ma-

chines (FSM) are used to model the possible behaviors of

the system as well as the supervisor and the properties to be

ensured by control. Regarding the modeling of supervisors,

Figure 2(b) shows that they can be seen as a function that takes

a given sequence s and returns to the system a set of allowed

events after s. The function S representing the supervisor can

be encoded by a FSM GS such that for all s ∈ L(S), S(s)
represents the set of events that can be triggered from the state

reached in GS after sequence s. It is worthwhile noting that

in the case where events only represent method calls, program

variables are not taken into account in the application behavior

model. The state space of the corresponding FSM does not

therefore correspond to the one of the program variables.

Instead the model encodes loops and branching points in the

program, limiting the state space explosion issue related to

large systems (more details are provided in Section III-C and

more particularly in Figure 5).

Supervisors ensure a given property, called the control

objective. Such a property is modeled as a FSM as well,

generating a set of “safe” behaviors and meaning that the

behaviors that are not encoded by this FSM are undesired. For

instance, Figure 4(b) represents a very simple control objective

which models that method1 must never be executed.

The main goal of Supervisory Control Theory is to auto-

matically synthesize a model of a supervisor that ensures that

the system behaviors are all included in the ones described

by the control objective. The theory also considers that not

every event can or should be disabled by a supervisor. Such

events are said to be uncontrollable. In order to take such

events into account, the alphabet of the system is assumed to

be composed of a set of controllable events (Ac ⊆ A) and

uncontrollable events (Au ⊆ A). Each event of the system

is either controllable or uncontrollable. Controlling a system

consists of restricting its possible behaviors taking into account

the controllable nature of the system events. In order to achieve

this, Ramadge and Wonham (see for example [13]) introduce a

property called Controllability. A system G′ whose behaviors

correspond to a subset of those of G is controllable w.r.t Au

and G if L(G′).Au ∩ L(G) ⊆ L(G′). A controllable set

of behaviors G′ ensures that no sequence of uncontrollable

events can complete a sequence of G′ into a sequence of G

that is no longer in G′. In other words, the controllability

condition ensures the synthesized supervisor can be effectively

implemented with respect to the available controllable events.

We now define the basic supervisory control problem, which

can be stated as in the following.
Basic Supervisory Control Problem (BSCP): Given a sys-

tem G and a control objective K, compute the maximal con-

trollable set of behaviors included in those of both G and K.
Ramadge and Wonham (see for example [13]) have shown

that a solution to the BSCP exists if and only if the maximal

controllable set of behaviors included in those of both G and

K is not empty. They also provide an algorithm computing this

FSM which encodes a most permissive supervisor ensuring the

control objective (see for example [13]). This algorithm can

be seen as a function that takes as inputs a set of uncontrol-

lable events Au, a FSM representing the control objective K

and a FSM representing the behaviors of the system G. In

our proposed approach, corrective maintenance is applied by

modifying the application behaviors. Determining the set of

behaviors to be ensured by control is performed through solv-

ing the BSCP. The obtained model is then used to control the

application. Part of the mechanism involved in achieving this

is described in Section III-A and part of it is performed during

the pre-deployment phase and is described in Section III-C.

C. Pre-Deployment Phase

The pre-deployment phase aims to prepare the software ap-

plication before deployment so that control and synthesis can

be performed at runtime. This preparation is not application

specific and the same processing is applied to any software

systems under consideration. It consists of two subtasks: code

instrumentation and model extraction. Each of these tasks is

performed in an automated fashion.
Code instrumentation is performed in order to introduce

observation and control points as well as to embed a supervisor

in the application. These features will allow for software

control such as depicted in Figure 2(b). Intuitively, automati-

cally instrumenting source code for this purpose consists of

automatically augmenting the application source code with

statements such as in Figure 3, i.e., embedding a supervisor

into the system as well as adding conditional statements in

each method body so that method calls can be observed and

method body execution can be controlled at runtime.
Moreover, model extraction from source code is performed

in order to obtain a model of the behaviors of the system. As

mentioned in Paragraph III-A, application behaviors are repre-

sented with sequences of method calls. An over-approximation

can be obtained from the source code by considering methods,

branching and loops as illustrated in Figure 5.

D. Overall Approach

The proposed overall approach is depicted in the diagram

of Figure 6. The left hand side of this diagram represents the
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Fig. 5. Illustration of FSM extraction.

pre-deployment phase at which code is instrumented in order

to introduce observation and control points as well as data

structures that make it possible to represent and manipulate

supervisor models. A binary (or Bytecode) application with

these facilities can then be obtained through compilation.

During the pre-deployment phase, a model of the behaviors is

also automatically extracted from the source code by analyzing

control flows and method calls in the application.

During the runtime and maintenance phase, the software

artifacts (source code and binary code or Bytecode) are mod-

ified no more. Only models of a supervisor representing their

possible runtime behaviors are manipulated in order to control

the application so that only desired behaviors can be executed.

If no control is necessary at first, then the extracted model

of the application can be used as a supervisor model. This

will certainly have no effect on the implemented application

behaviors.

Some unknown possible failures of the system may occur at

runtime, requiring the application to be healed. The observa-

tion of such a failure indeed indicates that the system behavior

is not satisfactory and needs to be corrected.

In this approach, this correction is performed by mod-

ifying the supervisor that interacts with the application at

runtime. Using Supervisory Control Theory as introduced in

Paragraph III-B, this can be automatically achieved when a

control objective is provided (in this approach, a model of the

possible behaviors of the software application was computed

in the pre-deployment phase and is therefore assumed to be

available). In some situations, this control objective can be

automatically derived from observations of failures during the

system execution (see for example [10]). In general, control

objectives can also be provided by expertise. The accuracy

and relevance of the expertise involved in designing a control

objective will have an impact on the accuracy and relevance

of the corrective solution applied to the system. For instance,

diagnosis can help design a more accurate control objective.

However, in cases where deep analyses and diagnostics cannot

be conducted (e.g., when the amount of time that is necessary

to perform this task is too long), then a simple control objective

excluding the u previously-observed undesired sequences of

method calls can be submitted to the supervisor synthesis

algorithm. Of course this latter option may correspond to

a coarse control of the application, unnecessarily removing

proper (acceptable) behaviors.

The control objective of Figure 4(b) illustrates the case

where it is desired to prevent occurrences of method1. Al-

though in some situations such an objective represents the most

relevant property to ensure in the system, it may also represent

an approximation due to lack of knowledge. The root cause

of the failure that leads to the design of this control objective

may not indeed come from method1 but from other methods

calling method1. If the developers can only observe that the

failure occurs when method1 is executed, then preventing the

occurrence of method1 appears to be the most straightforward

way to avoid the failure.

In any case, the algorithm solving the BSCP provides a new

model of a supervisor which will be used by the application in

order to prevent the future occurrence of undesired behaviors.

In general, a restart of the application is necessary in order to

take into account the newly computed supervisor model.

The control theoretic approach for self-healing proposed in

this section raises several challenges. Some of these challenges

correspond for instance to automating the introduction of

autonomic features into legacy applications; automatically

extracting relevant and accurate models from source code; ap-

plying supervisory control theory on large systems; designing

accurate control objectives, etc. They also relate to different

fields of computer science such as software engineering (e.g.,

software modeling, logging, maintenance), formal methods

and control theory. Some of these challenges are detailed in

Section IV.

IV. CHALLENGES

The control theoretic self-healing approach introduced in

previous sections poses several challenges. Most of these

challenges are directly or indirectly related to performance

and complexity. These issues are related to the system size,

the system model size, the efficiency of the analyses and

supervisor synthesis as well as the need for a low overhead

during runtime execution.

The approach in Section III is flexible enough to allow

for complexity reduction by considering only sub-parts of the

system to be observed, controlled and modeled and also by ap-

proximating the system and control objective models through

abstractions. However, reducing the amount of information

available to the framework described in Figure 6 alters the

quality of the supervisors that can be automatically synthesized

and therefore the relevance of the self-healing solution to be

applied. Therefore, trade-offs between scalability and rele-

vance of the approach have to be determined. For this purpose,

challenges related to system observability and controllability,

to system modeling, to designing control objectives, to con-

currency and to correction types to be applied, are discussed

in the rest of this section.
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A. Controllability and Observability.

Section III introduces a control theoretic approach for

the automation of corrective maintenance processes. This

approach models the possible executions of the system as

sequences of method calls. The approach relies on a supervisor

that observes some of the method calls at runtime (observabil-

ity). Moreover the control mechanism disables the occurrence

of some method calls in order to ensure some properties of

the application (controllability).

Observable
Methods

Controllable
Methods

Model
Events 

Application
Methods

Fig. 7. Observable and Controllable Software Methods.

Figure 7 represents the relationship between observable and

controllable methods as well as how they relate to the sets

of application methods and the methods that are part of the

application model (representing model events). First the model

events correspond to a subset of the application methods. Sec-

ond, observable and controllable methods represent a subset of

the model events. The observable methods are those whose call

can be observed by the supervisor at runtime. The controllable

methods represent those whose execution can be prevented by

the supervisor.

The amount of model events and observable events has

an impact on the size of the application model. Moreover,

the complexity of the supervisor synthesis as well as the

runtime overhead increase with this model size. On the other

hand, the relevance of the supervisor synthesis increases with

the amount of information present in the application model.

Therefore, as our approach aims to systematically automate the

introduction of method observability, one important challenge

is to find approaches to determine the best trade-off between

the amount of methods to be made observable and the amount

of information required for relevant synthesis.

Moreover, defining controllable methods is also a challeng-

ing task. Although it is technically feasible to prevent any

software method to be executed at runtime, this is however

unreasonable for some methods as it may have an impact

on the application’s integrity. For instance, preventing the

execution of a method that returns an object, which will be

later processed during the program execution, may introduce

new possible failures in the system. Therefore, procedures

(i.e., methods that do not return any object) are better suited

to be controllable. This however does not fully guarantee

the application’s integrity as procedures may modify global

variables. Techniques such as slicing (e.g., [14]) could be

considered in order to determine methods whose execution has

a very limited impact on the global execution of the applica-

tion. Another type of method that possesses such a property

are methods capturing events from graphical interfaces and

executing code in reaction to button clicks, for instance. These

methods represent good candidates for controllable methods as

they are not called from other parts of the application or third

party applications.

B. Finite State Machines and Variables.

In Sections III and IV-A, we represent application models as

Finite State Machines, where the transitions represent method

calls. Although this view of the system behaviors makes it

possible to take into account the past execution in order to
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decide on the control actions to be taken, it does not explicitly

take into account the system variables. This approach has an

interesting upside: the state space of the model is in general

smaller than the state space of the application. Indeed, with

this approach, the states of the model do not encode a possible

tuple of values of the application variables. Instead states only

encode branchings and loops of the program (as illustrated in

Figure 5).

The downside of this approach is that information on the

system behaviors is not as accurate as if variable values were

taken into account. For instance, disabling the occurrence of

a method call by control may depend on the values of the

parameters with which the method is called (if any). Therefore,

taking into account some of the application variables in the

approach while preserving its scalability is a challenging task.

Several works have considered supervisory control on FSM

with variables (e.g., [15], [16], [17], [18]). Although Extended

Finite State Machines offer a compact way of representing

potentially large, or even infinite, system state spaces, the

supervisor synthesis takes into consideration the system state

space itself. In order to tackle this issue, abstractions of the

variable values rather than the possible values themselves

should be considered for analysis. This can be done in the

same spirit as for Abstract Interpretation ([19]) or data obfus-

cation techniques (e.g., [8]).

C. Automatic Extraction of Application Models.

The approach introduced in Section III relies on the au-

tomatic design of a model of the application behaviors. In

its basic form, this model can be a Finite State Machine

whose transitions represent method calls. As explained in

Section IV-B, such a model can be extended in order to take

system variables into account. Extended FSM can then be

considered as a way to model the application behaviors.

Some tools have been implemented in order to ex-

tract and analyze models represented as EFSM. For in-

stance, PROMELA allows for program modeling with FSMs.

PROMELA models can be used as input to the SPIN tool,

which can then model-check this model against some proper-

ties. Bandera ([20]) is a tool that allows for FSM extraction

from Java code. Bandera offers the possibility of exporting the

extracted models into the PROMELA format. More recently

in [21], the authors proposed an efficient approach for model

extraction from programs. The approach makes it possible

to deal with different but syntactically similar programming

languages such as C++ and Java.

In all these approaches, however, only some particular parts

of the programming language are considered. The approach

described in Section III requires that the model obtained

of the application is complete; i.e., any observable program

execution should be encoded in the model. This characteristic

is related to the fact that the extracted model is used for on-

line monitoring and must take into account all the possible

system behaviors. Therefore an important challenge for model

extraction consists of obtaining a complete application model.

This requires that the model complies with the specification of

the language compiler or virtual machine so that features such

as threads and graphical components are treated appropriately.

This aspect is also related to the notion of concurrent behaviors

and is detailed further in Section IV-E.

D. Improving Application Models from Runtime Observations.

As mentioned in Section IV-C, the model of the application

behaviors should be complete in order to be used to monitor

the application at runtime. However although some variables

of the system are taken into account in the model, some others

may still be abstracted, leading to a model that is an over-

approximation of the possible application behaviors.

However, some information regarding both the path of the

model taken as well as the variable values observed during

the system execution represent valuable information regarding

actual possible behaviors. For instance, if a transition of the

FSM modeling the system results from over-approximating the

actual system behaviors, it will not be triggered. Therefore if

after a large number of executions it is observed that some

transitions have never been triggered, one may conclude that

these transitions are over-approximating the system behaviors

and should not be taken into account for analysis. This

leads to an improvement of the application model from the

observations made at runtime.

This is an important point as although model completeness

is important in order to ensure adequate monitoring of the

system at runtime, it may unfortunately also induce some over-

restrictive control. In other words, software control may be

over-restrictive when taking into account parts of the model

that actually do not correspond to actual application behaviors.

Improving the model relevance is therefore an important

challenge in order to ensure the most accurate control on ap-

plications. Considering the approach detailed in Section IV-B,

such improvements can be obtained from variable observations

and determination of relationships between parameter domains

of the application methods. Such relationships can be learned

through probabilistic approaches (e.g., [22]) or system iden-

tification techniques ([23]).

E. Multi-threading and Concurrent Control.

Most software applications possess several components run-

ning on different threads. They can therefore be modeled

as a composition of FSMs, each modeling a component. In

this section we consider the control of concurrent systems.

Classical supervisory control techniques require that a single

FSM represent the system behaviors. Such an FSM can be

obtained by computing the composition of the FSM repre-

senting each component. However, this computation leads

to a state explosion problem and represents an important

challenge of supervisory control theory. Some work on control

of concurrent systems have been conducted (e.g., [24], [25],

[26]) and even in the case of models with variables in [18].

However, more work is required in this area in order to

improve the state-of-the-art. Moreover, one specificity of the

approach described in Section III is that the number of

components running concurrently varies over time. Finally, the
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composition mode between components is different from the

usual synchronous and parallel composition that is considered

in classical supervisory control.

F. Designing Control Objectives.

Our proposed approach relies on the synthesis of supervisors

from a model of the system behaviors and a control objective.

This control objective is represented by a FSM and encodes

safety properties over the system behaviors. It is possible, for

instance, to describe what methods must not be executed after

some given executions. If the control objective also provides

information on the variables of the system, then it allows

for the description of complex conditions under which some

method calls must not be executed.
As mentioned in Section III-D and illustrated in Figure 6,

the control objective may be obtained manually, and automat-

ing its design is a difficult challenge.
Some results in this direction have been obtained in [10]

in the specific case of un-handled exceptions. As a general

matter, tackling the automatic design of control objectives

is very much related to automatic fault and anomaly detec-

tion (e.g., [27]) as well as automatic diagnosis. Therefore

techniques related to automatic diagnosis can contribute to

automating control objective designs and should be further

investigated in the context of automatic supervisory control.
Control policies can also consider performing some actions

whenever control is applied to the system, creating new

behaviors. This can be subject to different strategies from

which one needs to be selected.

V. CONCLUSION

This paper describes the EU FP7 FastFIX project, which

tackles issues related to remote software maintenance. In order

to achieve this, the project considers approaches relying on

context elicitation, event correlation, fault-replication and self-

healing. After introducing the general objectives addressed

within FastFIX, we describe its self-healing approach and early

development, which aim to automate the generation of patches,

hence reducing time and cost related to some of the corrective

maintenance tasks.
This self-healing approach relies on control theory. We

describe its different components and phases and introduce

some of its challenges. This paper points out the challenges

that are related to supervisory control theory. It also describes

some challenges, such as automating the design of control

objectives as well as introducing new behaviors into the

application.
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