
Abstract—Future buildings will be smart to support person-
alized people comfort and building energy efficiency as well as
safety, emergency, and context-aware information exchange
scenarios. In this work we propose a decentralized and embed-
ded architecture based on agents and wireless sensor and actua-
tor networks (WSANs) for enabling efficient and effective man-
agement of buildings. The main purpose of the agent-based ar-
chitecture is to efficiently support distributed and coordinated
sensing and actuation operations. The building management ar-
chitecture is implemented in MAPS (Mobile Agent Platform for
Sun SPOTs), an agent-based framework for programming
WSN applications based on the Sun SPOT sensor platform. The
proposed architecture is demonstrated in a simple yet effective
operating scenario related to monitoring workstation usage in
computer laboratories. The high modularity of the proposed ar-
chitecture allows for easy adaptation of higher-level applica-
tion-specific agents that can therefore exploit the architecture to
implement intelligent building management policies.

I. INTRODUCTION

OWADAYS, due to advances in communication and

computing technologies, the need to have high comfort

levels together with an optimization of the energy consump-

tion is becoming important for inhabitants of buildings.

Moreover, buildings should also support their inhabitants

with automatic emergency and safety procedures as well as

context aware information services. To meet all these re-

quirements, future buildings have to incorporate diversified

forms of intelligence [1].

N

We believe that agent-based computing [2] can be exploit-

ed to implement the concept of intelligent buildings due to

the agent features of autonomy, proactiveness, reactiveness,

learnability, mobility and social ability. Specifically agents

can continuously monitor building indoors and their living

inhabitants to gather useful data from people and environ-

ment and can cooperatively achieve even conflicting specific

goals such as personalized people comfort and building ener-

gy efficiency.

A few research efforts based on agents have been to date

proposed to design and implement intelligent building sys-

tems [3][4][5]. However, none of them provide agents em-

bedded in the sensor and actuator devices that would intro-

duce intelligence decentralization and improve system effi-

ciency. This is due to the exploitation of conventional sens-

ing and actuation systems that do not offer distributed com-

puting devices for sensing and actuation. To overcome this

limitation, wireless sensor and actuator networks (WSAN)

[6] can be adopted. WSANs represent a viable and more

flexible solution to traditional building monitoring and actu-

ating systems (BMAS), which require retrofitting the whole

building and therefore are difficult to implement in existing

structures. In contrast, WSAN-based solutions for monitor-

ing buildings and controlling equipment, such as electrical

devices, heating, ventilation and cooling (HVAC), can be in-

stalled in existing structures with minimal effort. This should

enable monitoring of structure conditions, and space and en-

ergy (electricity, gas, water) usage while facilitating the de-

sign of techniques for intelligent device actuation.

In this paper we propose a decentralized and embedded

management architecture for intelligent buildings that is

based on WSANs and overcomes the limitations of the afore-

mentioned solutions [3][4][5]. In particular, the aim of our

architecture is to optimize and fully decentralize the sensing

and actuation operations through distributed cooperative

agents both embedded in sensor/actuator devices and run-

ning on more capable coordinators (PC, plug computers,

PDA/smartphones). The proposed architecture can be easily

programmed to support a wide range of building manage-

ment applications integrating comfort, energy efficiency,

emergency, safety, and context-aware information exchange

aspects.

The rest of this paper is organized as follows. Section II

describes approaches related to our work. In Section III the

proposed agent-based architecture for building management

is defined. Section IV presents the MAPS-based implemen-

tation of the architecture, specifically the sensor/actuator

agents. Section V shows the system GUI and a system de-

ployment for monitoring the workstation usage in computer

laboratories. Finally, conclusions are drawn and directions of

future work elucidated.

II. RELATED WORK

In [3] the authors present the MASBO (Multi-Agent System

for Building cOntrol) architecture that aims to provide a set

of software agents to support both on-line and off-line appli-

cations for intelligent work environments. MASBO is used

to develop a multi-agent system (MAS) able to tradeoff ener-

gy saving and inhabitants’ preferences where preferences can

be learnt and predicted through an unsupervised online real-

time learning algorithm (analyzing inhabitants’ behavior).

Monitoring Building Indoors through Clustered Embedded Agents

Giancarlo Fortino, Antonio Guerrieri
DEIS – University of Calabria,

Via P. Bucci, cubo 41c,
Rende (CS), 87036, Italy

Email: g.fortino@unical.it, aguerrieri@deis.unical.it

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 569–576

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 569

MASBO agents reside on a server and constantly monitor

data from sensors and eventually actuate some commands.

MASBO works as an enhancement to an existing building

automation system by adding learning, reasoning and auton-

omous capabilities. The responsibility of controlling sensors

and actuators, and keeping a requested environmental value

constant is not addressed by MASBO.

In [4] the authors propose a working solution to the problem

of thermal resource distribution in a building using a market-

based MAS. Computational agents representing individual

temperature controllers bid to buy or sell cool or warm air.

The agents, running in a monolithic process on a worksta-

tion, are able to distribute the thermal resources so that all

the building offices have an equitable temperature distribu-

tion. Temperature sensors and air flow actuators are all ac-

cessible directly through distributed hardware modules via a

network connection.

In [5] the authors describe a MAS that monitors and controls

an office building in order to provide added values like ener-

gy saving together with the delivery of energy. The devel-

oped system is distributed in the sense that some agents are

located on PDAs and others run on the Bluetooth access

points (workstations) that communicate with the PDAs. The

system makes use of the existing power lines for communica-

tion between the agents and the sensing and actuation system

controlling lights, heating, ventilation, etc.

Differently from the described approaches, our agent-

based architecture embeds agents into the wireless sensor

and actuator network used as infrastructure for building mon-

itoring and control. This important feature would provide de-

centralized intelligence and improve system efficiency.

III. AGENT-BASED ARCHITECTURE

The agent-based architecture (see Fig. 1) for decentralized

and embedded building management is composed of a build-

ing manager agent (BMA), which is installed in the control

workstation, coordinator agents (CAs), which run in the

basestations, and sensor agents (SAs), which are executed in

the sensor/actuator nodes. Specifically, the architecture relies

on a multi-basestation approach to allow for large buildings

composed of multiple floors and diversified environments.

Thus, the architecture is purposely hybrid: hierarchical and

peer-to-peer. Interaction between CAs is peer-to-peer where-

as interactions between CAs and their related SAs (or SA

cluster) and between BMA and CAs are usually

master/slave. Moreover, SAs of the same cluster coordinate

to dynamically form up a multi-hop ad-hoc network rooted at

the master CA.

In Fig. 2 the main functionalities of BMA, CA and SA are

shown according to a layered organization that is partially

derived from the Building Management Framework

(BMF) [7].

The BMA makes it available the monitoring and control

GUI through which the building manager can issue requests

to configure/program the agent-based building network and

visualize its status and the monitored data. Moreover, the

BMA can be purposely extended to incorporate goal-direct-

ed behaviors for implementing specific building monitoring

and control strategies.

The CA includes the following layers:

Fig. 1 Agent-based architecture for decentralized and embedded man-
agement of buildings based on wireless sensor and actuator networks.

Fig. 2 The layered organization of BMA, CA and SA.

570 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

─ Heterogeneous Platform Support incorporates a set of

adapters that allow interfacing the system with different type

of sensor/actuator platforms. An adapter is linked to a specif-

ic hardware device able to communicate with a specific sen-

sor platform in the network.

─ WSAN Management allows to fully manage a WSAN

cluster. This layer supports packet coding/decoding accord-

ing to the BMF application-level protocol and packet trans-

mission/reception to/from the WSAN cluster. Moreover, this

layer supports device discovery within the cluster.

─ Group Organization provides group-based program-

ming of sensors and actuators, tracking of nodes and groups

in the system, and management of node configurations and

group compositions. Node organization in groups is specifi-

cally defined to capture the morphology of buildings. Nodes

belong to groups depending on their physical (location) or

logical (operation type) characteristics.

─ Request Scheduling allows the support for higher-level

application-specific requests. Through this layer, a CA can

ask for the execution of specific tasks to single or multiple

SAs or groups of SAs. Moreover, this layer keeps track of

the requests submitted to the system, waits for data from the

nodes and passes them to the requesting applications. A re-

quest is formalized through the following tuple: R = <Obj,

Act, R, LT>, where Obj is a specific sensor or actuator be-

longing to a node, Act is the action to be executed on Obj, R

is the frequency of each executed Act, LT is the length of

time over which these actions are to be reiterated. Moreover,

a request can target a single node or a group of nodes having

Obj.

─ Inter-CA Coordination offers efficient mechanisms for

coordination between CAs. Specifically, CAs cooperate for

submitting queries and retrieving data spanning multiple SA

clusters.

The SA is designed around the following layers:

─ Hardware Sensor Platform allows to access the hard-

ware sensor/actuator platform. In particular, the layer facili-

tates the configuration of the platform specific drivers and

the use of the radio.

─ WSAN Management manages the node communication

with the reference CA according to the BMF application pro-

tocol and among the cluster nodes through the network pro-

tocol provided by the node sensor platform.

─ Sensing and Actuation Management allows to acquire

data from sensors and execute actions on actuators. In partic-

ular, this layer allows to address different types of

sensors/actuators in a platform independent way.

─ Node Management is the core of the SA and allows to

coordinate all the layers for task execution. In particular, it

handles events from the lower layers every time that a net-

work packet arrives or data from sensor/actuator are avail-

able, and from the upper layers every time that data are pro-

cessed or a stored request has to be executed.

─ Dynamic Group Management provides group manage-

ment functionalities to the SA. A node can belong to several

groups at the same time and its membership can be dynami-

cally updated on the basis of requests from CAs.

─ In-node Signal Processing allows the SA to execute

signal processing functions on data acquired from sen-

sors [8]. It can compute simple aggregation functions (e.g.

mean, min, max, variance, R.M.S.) and more complex user-

defined functions on buffers of acquired data.

─ Multi Request Scheduling allows the scheduling of

sensing and actuation requests. In particular, it stores the re-

quests from CAs and schedules them according to their exe-

cution rate.

IV. MAPS-BASED IMPLEMENTATION

The agent-based building management architecture is cur-

rently implemented through MAPS [9], our agent-based

framework for developing WSN applications on the Sun

SPOT sensor platform. In this section we first provide a brief

overview of MAPS (details can be found in [9, 10]) and,

then, present the MAPS-based implementation of the pro-

posed building management architecture at sensor-node side,

specifically behavior and event-based interactions of the SA.

A. MAPS: a brief overview

MAPS [9, 10] is an innovative Java-based framework

specifically developed on Sun SPOT technology for enabling

agent-oriented programming of WSN applications. It has

been defined according to the following requirements:

─ Component-based lightweight agent server architec-

ture to avoid heavy concurrency and agents cooperation

models.

─ Lightweight agent architecture to efficiently execute

and migrate agents.

─ Minimal core services involving agent migration, agent

naming, agent communication, timing and sensor node re-

sources access (sensors, actuators, flash memory, and radio).

─ Plug-in-based architecture extensions through which

any other service can be defined in terms of one or more dy-

namically installable components implemented as single or

cooperating (mobile) agents.

─ Use of Java language for defining the mobile agent be-

havior.

The architecture of MAPS (see Fig. 3) is based on several

components interacting through events and offering a set of

services to mobile agents, including message transmission,

agent creation, agent cloning, agent migration, timer han-

dling, and an easy access to the sensor node resources. In

particular, the main components are the following:

─ Mobile Agent (MA). MAs are the basic high-level com-

ponent defined by user for constituting the agent-based ap-

plications.

─ Mobile Agent Execution Engine (MAEE). It manages

the execution of MAs by means of an event-based scheduler

enabling lightweight concurrency. MAEE also interacts with

the other services-provider components to fulfill service re-

quests (message transmission, sensor reading, timer setting,

etc) issued by MAs.

─ Mobile Agent Migration Manager (MAMM). This com-

ponent supports agents migration through the Isolate (de)hi-

bernation feature provided by the Sun SPOT environment.

The MAs hibernation and serialization involve data and exe-

cution state whereas the code must already reside at the des-

tination node (this is a current limitation of the Sun SPOTs

GIANCARLO FORTINO, ANTONIO GUERRIERI: MONITORING BUILDING INDOORS THROUGH CLUSTERED EMBEDDED AGENTS 571

which do not support dynamic class loading and code migra-

tion).

─ Mobile Agent Communication Channel (MACC). It en-

ables inter-agent communications based on asynchronous

messages (unicast or broadcast) supported by the Radiogram

protocol.

─ Mobile Agent Naming (MAN). MAN provides agent

naming based on proxies for supporting MAMM and MACC

in their operations. It also manages the (dynamic) list of the

neighbor sensor nodes which is updated through a beaconing

mechanism based on broadcast messages.

─ Timer Manager (TM). It manages the timer service for

supporting timing of MA operations.

─ Resource Manager (RM). RM allows access to the re-

sources of the Sun SPOT node: sensors (3-axial accelerome-

ter, temperature, light), switches, leds, battery, and flash

memory.

Fig. 3 The architecture of MAPS.

The dynamic behavior of a mobile agent (MA) is modeled

through a multi-plane state machine (MPSM). Each plane

may represent the behavior of the MA in a specific role so

enabling role-based programming. In particular, a plane is

composed of local variables, local functions, and an automa-

ton whose transitions are labeled by Event-Condition-Action

(ECA) rules E[C]/A, where E is the event name, [C] is a

boolean expression evaluated on global and local variables,

and A is the atomic action. Thus, agents interact through

events, which are asynchronously delivered and managed by

the MAEE component.

It is worth noting that the MPSM-based agent behavior

programming allows exploiting the benefits deriving from

three main paradigms for WSN programming: event-driven

programming, state-based programming and mobile agent-

based programming.

MAPS is also interoperable with the JADE framework

[11]. Specifically, a JADE-MAPS gateway [12] has been de-

veloped for allowing JADE agents to interact with MAPS

agents and vice versa. While both MAPS and JADE are

Java-based, they use a different communication method.

JADE sends messages according to the FIPA standards (us-

ing the ACL specifications), while MAPS creates its own

messages based on events. Therefore, the JADE-MAPS

Gateway facilitates message exchange between MAPS and

JADE agents. This inter-platform communication infrastruc-

ture allows rapid prototyping of WSN-based distributed ap-

plications/systems that use JADE at the basestation/coordi-

nator/host sides and MAPS at the sensor node side.

Fig. 4 Sequence Diagram of the interactions between CA and SA

B. MAPS-based sensor agents

The MAPS-based SA (hereafter simply named SA) inter-

acts with its cluster CA through events as sketched in the se-

quence diagram of Fig. 4. Once the SA is created, it periodi-

cally emits the BM_SA_ADVERTISEMENT event until the

CA sends a configuring event (group management or request

scheduling). Through the BM_GROUP_MANAGEMENT

event, the CA manages the membership of target SAs (see

section III). After the SA processes the received event, it

sends the BM_ACK event to the CA

The BM_SENSOR_SCHEDULE (or

BM_ACTUATOR_SCHEDULE) event allows to request a

specific sensing (or actuation) operation to target SAs. The

SA transmits sensed (processed) data to the CA through the

BM_DATA event. The CA can unschedule previously

scheduled requests through the BM_UNSCHEDULE event.

Finally the CA sends out the BM_SA_RESET event to reset

target SAs.

Tables I and II reports the defined MAPS-based building

management events and the predefined values of their pa-

rameters. In particular, an event is defined by its standard

parameters: EventSender ID, EventTarget ID, Event Type,

Event Occurrence. The defined events are of two possible

super types: MSG (sent by CA to SA) and

MSG_TO_BASESTATION (sent by SA to CA). Both types

are further specialized in the defined BM events as reported

in the pairs <MSG_TYPE, BM_event> of the 3rd column of

Table I. Moreover, each event type has its own additional

parameters, which are described in Table II. It is worth not-

ing that the ADDRESSEE value can be set through the fol-

572 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

lowing regular expression: SA+ | ([NOT] G [TSO [NOT]

G]*), where SA is a sensor agent of the building manage-

ment architecture, G is an element from the set of defined

groups, STO is a set theory operator (e.g. union, intersection,

difference) and NOT is the negation. Thus, the addressee of

an event can be either one or more SAs, or SAs belonging to

groups or complex compositions of groups.

The SA agent behavior consists of two types of planes:

Manager plane and Request plane. While the Manager plane

is created at the SA creation time and handles all node tar-

geting events, a Request plane is created by the Manager

plane every time that a new request schedule is received.

This type of plane is removed when it completes its task or

due to the reception of an unschedule event. Agent planes re-

ceive events from the MAPS dispatcher component that is

programmed to deliver the events fetched from the agent

TABLE I.

DEFINED BUILDING MANAGEMENT EVENTS

TABLE II.

ADDITIONAL PARAMETERS OF THE BUILDING MANAGEMENT

EVENTS

GIANCARLO FORTINO, ANTONIO GUERRIERI: MONITORING BUILDING INDOORS THROUGH CLUSTERED EMBEDDED AGENTS 573

queue to the plane in charge to process them. The dispatcher

rules are reported in Table III.

TABLE III.

DISPATCHER RULES

The Manager plane is reported in Fig. 5. In particular, after

agent creation, the Manager plane starts a periodic timer to

advertise the agent presence along with its sensor/actuator

available functions and waits for an incoming event from the

CA. When it receives the first event, the timer is reset. Each

received event is filtered against the current SA’s group

membership. If the filtered event is for the current SA, it is

processed according to its type. A more detailed description

of each action of the Manager plane is provided using a self-

explanatory pseudocode (see Fig. 5).

In Fig. 6 the Sensing Request plane is portrayed. This

plane is created every time that the agent receives a

BM_SENSOR_SCHEDULE event. In particular, after the

Sensing Request plane creation, the plane creates and sub-

mits the MAPS sensing event formalizing the sensing re-

quest. A sensing request can be either one-shot or periodic

with a given lifetime. The request is scheduled until

LIFETIME_ELAPSED==true after the expiration of the pe-

riodic timer driving the submission of the sensing event.

A more detailed description of each action of the Sensing

Request plane is provided using a self-explanatory pseu-

docode (see Fig. 6).

V. A SYSTEM DEPLOYMENT: MONITORING WORKSTATION
USAGE IN COMPUTER LABORATORIES

To show the functionality and effectiveness of the pro-

posed architecture for the management of building indoors,

we present an example of system deployment for the moni-

toring of workstation usage in a computer laboratory or in

offices. The wireless sensor network consists of heteroge-

neous sensor nodes based on Sun SPOTs that are used to

collect information about the ambient light (through the stan-

dard Sun SPOT light sensor), the user presence (through a

Fig. 5 The SA’s Manager plane.

Fig. 6 The SA’s Sensing Request plane.

574 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

Wieye IR sensorboard [13]) and the electricity consumed by

the workstation (through a customization of the ACme elec-

tricity sensorboard [14]).

In Fig. 7, the main window of the Building Management

GUI is shown. It is organized in five main sections support-

ing all the functionalities provided by the system:

─ Nodes and Groups Management sections allows to vi-

sualize the nodes of the WSAN and configure groups, re-

spectively. By right clicking on the sensors/groups the user

can configure sensor/actuator requests to schedule on the

nodes;

─ Request section allows to list details of scheduled re-

quests, display data charts related to the scheduled requests,

unschedule and re-schedule requests;

─ Maps and Graphs section allows visualizing WSAN de-

ployment maps and displaying charts of the data coming

from the sensors (examples of charts are shown in Fig. 9);

─ Console section displays the real-time log of the activity

of the system;

─ File and Saving menu section enables to save data from

the system in structured files and load stored files to display

them in the GUI.

In Fig. 8, the graphical window for sensor/actuator request

scheduling is shown. The window allows setting the parame-

ter of a new request: name, destination (specific nodes or

group composition), execution period, lifetime, one shot re-

quest or unlimited lifetime flags, action type and related de-

vice, possible actuator parameters, requested sensed data

possibly filtered by thresholds and/or synthetic data is re-

quested and its type (average/max/min) and eventual thresh-

old parameters can be set.

Fig. 7 The Building Management GUI

In the experimental system deployment the following re-

quests were set:

─ the raw electricity data (in watt) are gathered every sec-

ond;

─ the average of the ambient light value (in lux) is collect-

ed every 10 seconds;

─ the max IR sensor value is sensed every minute.

The aim of the experiment was the monitoring of a work-

station in a computer laboratory of the Dept. of Electronics,

Informatics and Systems to understand its user’s behavior. A

snapshot of a significant monitoring activity of the duration

of 45 min is shown in Fig. 9. In particular, in Fig. 9 two im-

portant time instants (t1 and t2) are marked. Before t1 the

user was working at his workstation by using a word proces-

sor application and the ambient light is low as artificial light

is off and window curtains were partially closed. Between t1

and t2 the user was out of the office, his workstation auto-

matically switched the monitor off after a period of inactivity

and the light was decreasing as late evening was approach-

ing. At t2, the user came back, started a video streaming ap-

plication, turned the ceiling lamp on, and after five minutes

came out again.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an agent-based architec-

ture for flexible, efficient and embedded sensing and actua-

tion in buildings. Specifically, the distributed software archi-

tecture is embedded into both WSANs and more capable

computing devices (e.g. PCs, smartphones, plug computers).

The proposed architecture can be seen as basic middleware

for developing intelligent building management systems to

achieve the Smart Building concept. Currently the proposed

architecture is exploited to monitor the space occupation and

energy expenditure in computer laboratories for students to

analyze energy consumption patterns with respect to users’

behavior so as to semi-automatically implement behavior

policies. In the current implementation, BMA and CA are

merged into a component-based application implemented

through OSGi [15]. Moreover, only one cluster can be de-

ployed. On-going work is aimed at completing the JADE-

based implementation of the multi-cluster architecture found-

ed on the BMA and on multiple coordinated CAs. Future

work will be devoted to the design of a higher-level agent-

based architecture for Smart Buildings atop the proposed ar-

Fig. 8 The graphical window for sensor/actuator request scheduling.

GIANCARLO FORTINO, ANTONIO GUERRIERI: MONITORING BUILDING INDOORS THROUGH CLUSTERED EMBEDDED AGENTS 575

chitecture to trade off inhabitants’ personal comfort and

building energy expenditure.

ACKNOWLEDGMENT

This work has been partially supported by CONET, the

Cooperating Objects Network of Excellence, funded by the

European Commission under FP7 with contract number FP7-

2007-2-224053, and by TETRis – TETRA Innovative Open

Source Services, funded by the Italian Government (PON

01-00451).

REFERENCES

[1] Davidsson, P., Boman, M.: A multi-agent system for controlling
intelligent buildings. In the Fourth International Conference on
MultiAgent Systems, pp. 377-378, Boston (2000)

[2] Luck, M., McBurney, P., Preist, C.: A manifesto for agent technology:
towards next generation computing. Journal of Autonomous Agents
and Multi-Agent Systems, vol. 9, n. 3, pp. 203-252 (2004)

[3] Qiao, B., Liu, K., Guy, C.: A Multi-Agent System for Building
Control. In the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT '06), pp.653-659, Hong Kong
(2006).

[4] Huberman, B. A., Clearwater, S. H.: A Multi-Agent System for
Controlling Building Environments. In the International Conference
on Multiagent Systems (ICMAS-95), pp. 171-176, San Francisco
(1995)

[5] Davidsson, P., Boman, M.: Distributed monitoring and control of
office buildings by embedded agents. In Information Sciences—
Informatics and Computer Science: An International Journal - Special
issue: Intelligent embedded agents, vol. 171, issue 4, pp. 293-307
(2005)

[6] Stankovic J.: When sensor and actuator cover the world. ETRI
Journal; vol. 30, n. 5, pp. 627–633 (2008)

[7] Guerrieri, A., Ruzzelli, A., Fortino, G., O’Hare, G.: A WSN-based
Building Management Framework to Support Energy-Saving
Applications in Buildings. In Advancements in Distributed
Computing and Internet Technologies: Trends and Issues, Al-Sakib
Khan Pathan, Mukaddim Pathan, Hae Young Lee, eds, chapter 12,
pp. 161-174, IGI Global (2011)

[8] Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri,
A., Sgroi, M.: SPINE: A domain-specific framework for rapid
prototyping of WBSN applications. Software Practice and
Experience, Wiley, vol. 41, issue 3, pp. 237-265 (2011)

[9] Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A Java-based Agent
Platform for Programming Wireless Sensor Networks. The Computer
Journal, vol. 54, issue 3, pp. 439-454 (2011)

[10] Mobile Agent Platform for Sun SPOT (MAPS), documentation and
software at: http://maps.deis.unical.it/.

[11] Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent
systems with a FIPA-compliant agent framework. Softw., Pract.
Exper. vol. 31, issue 2: pp. 103-128 (2001)

[12] Domanski, J.J., Dziadkiewicz, R., Ganzha, M., Gab, A., Mesjasz
M.M.: Implementing GliderAgent – an agent-based decision support
system for glider pilots. In NATO ASI Book, IOS press, 2011, to
appear.

[13] http://www.easysen.com/WiEye.htm
[14] Jiang, X., Dawson-Haggerty, S., Dutta, P., and Culler, D. Design and

Implementation of a High-Fidelity AC Metering Network. In Proc. of
the 8th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN09) Track on Sensor Platforms,
Tools, and Design Methods (SPOTS 09). 2009.

[15] Open System Gateway Initiative (OSGi), documents and software at:

http://www.osgi.org

Fig. 9 Real-time data of the workstation usage (workstation con-
sumed power, ambient light and user presence)

576 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

