
Indexing Trees by Pushdown Automata for

Nonlinear Tree Pattern Matching

J. Trávnı́ček, J. Janoušek, B. Melichar

Department of Theoretical Computer Science

Faculty of Information Technology

Czech Technical University in Prague

Thákurova 9, 160 00 Prague 6, Czech Republic

Email: travnja3@fit.cvut.cz, Jan.Janousek@fit.cvut.cz, melichar@fit.cvut.cz

This research has been partially supported by the Czech Ministry of Education, Youth and Sports

under research program MSMT 6840770014, and by the Czech Science Foundation as project No. 201/09/0807.

Abstract—A new kind of an acyclic pushdown automaton for
an ordered tree is presented. The nonlinear tree pattern pushdown
automaton represents a complete index of the tree for nonlinear
tree patterns and accepts all nonlinear tree patterns which match
the tree. Given a tree with n nodes, the number of such nonlinear
tree patterns is O((2+ v)n), where v is the number of variables
in the patterns. We discuss time and space complexities of the
nondeterministic nonlinear tree pattern pushdown automaton
and a way of its implementation. The presented pushdown
automaton is input–driven and therefore can be determinised.

I. INTRODUCTION

TREES are one of the fundamental data structures used in

Computer Science. Finding occurrences of tree patterns

in trees is an important problem with many applications such

as compiler code selection, interpretation of nonprocedural

languages, implementation of rewriting systems, or various

tree finding and tree replacement systems. Tree patterns con-

taining variables which represent specific subtrees are called

nonlinear tree patterns. Nonlinear tree pattern matching is used

especially in the implementation of term rewriting systems, in

which the terms can be represented as tree structures with

nonlinear variables.

Generally, there exist two basic approaches to the problem

of pattern matching. The first approach is represented by the

use of a pattern matcher which is constructed for patterns. In

other words, the patterns are preprocessed. Given a tree of

size n, such tree pattern matcher typically perform the search

phase in time linear in n [10]. The second basic approach is

represented by the use of an indexing structure constructed for

the subject in which we search. In other words, the subject

is preprocessed. Examples of such indexing structures are

suffix or factor automata [6, 7, 17, 19] for strings or subtree

pushdown automaton [13], which represents a complete index

of a tree for subtrees.

Trees can also be seen as strings, for example in their

prefix (also called preorder) or postfix (also called postorder)

notation. A linear notation of a tree can be obtained by

the corresponding traversing of the tree. Moreover, every

sequential algorithm on a tree traverses nodes of the tree in

a sequential order and follows a linear notation of the tree.

[15] shows that the deterministic pushdown automaton (PDA)

is an appropriate model of computation for labelled ordered

trees in postfix notation and that the trees in postfix notation

acceptable by deterministic PDA form a proper superclass of

the class of regular tree languages [9], which are accepted by

finite tree automata.

This paper describes a new kind of acyclic pushdown

automaton, nonlinear tree pattern pushdown automaton, which

represents a complete index of the tree for nonlinear tree

patterns and accepts all nonlinear tree patterns which match the

tree. Given a tree with n nodes, the number of such nonlinear

tree patterns is O((2+v)n), where v is the number of variables

in the patterns. We describe the construction of the nonlinear

tree pattern pushdown automaton and discuss its time and

space complexities. The presented nondeterministic pushdown

automaton is input–driven and therefore can be determinised.

The deterministic version would accept an input nonlinear tree

pattern of size m in time linear in m and not depending on

n, but its disadvantage would be its large space complexity.

The presented nonlinear tree pattern pushdown automaton

is analogous to string nondeterministic factor automaton [17].

The pushdown symbol alphabet contains just one pushdown

symbol and therefore the pushdown store can be implemented

by a single integer counter. Therefore, efficient methods for

implementing nondeterministic string factor automata, such

as [8], can easily be used also for the implementation of

nondeterministic nonlinear tree pattern pushdown automata.

We note that the presented PDAs can be easily transformed

to counter automata, which are a weaker and simpler model

of computation than the PDA. We present the automata in

this paper as PDAs, because the PDA is a more fundamental

and more widely-used model of computation than the counter

automaton.

Since the tree indexing data structure is to accept a finite

language, a finite automaton could also be constructed. How-

ever, this automaton would have significantly more states than

the PDA, in which the underlying tree structure is processed

by the pushdown store.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 871–878

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 871

The paper is organised as follows. The second section

discusses a related work describing a nonlinear tree pat-

tern matching algorithm. The third section contains basic

definitions. Three types of pushdown automata that indexes

trees for nonlinear pattern matching are presented. The fourth

section describes special case of pushdown automaton. The

first type, described in the fifth section, is a basic pushdown

automaton that represents the basic idea of indexing trees for

nonlinear pattern matching with one variable. The second type,

described in the sixth section, is an optimisation of the basic

pushdown automaton. The optimised pushdown automaton

called nonlinear tree pattern pushdown automaton is smaller

but accepts the same language as the basic one. The subsequent

section is devoted to the indexing for more than one variable

in nonlinear tree patterns. The last section is a conclusion.

II. RELATED WORK

Some algorithms for nonlinear tree pattern matching are

known. Nonlinear tree pattern matching algorithm described

in [18] uses the approach which is represented by the pre-

processing of the nonlinear input tree pattern. The algorithm

reads Euler notation of both a subject tree and a nonlinear

tree pattern. Euler notation is a tree linear notation, which

contains a node each time it is visited during the preorder

traversing of the tree. This means that every node appears

exactly 1 + arity(node)-times in the Euler notation. Our

method presented in this paper uses a standard tree prefix

notation, which contains every node just once, for the first

visit during the preorder traversing of the tree and of the input

pattern.

In [18] factors which represent some subtrees in a subject

tree in Euler notation are constructed. Aho-Corasick automa-

ton is then constructed for these factors. The subject tree in

Euler notation is processed by the constructed Aho-Corasick

automaton and a binary array is constructed for each factor

of the nonlinear tree pattern. If symbol 1 is at position i

in the binary array it means that the corresponding factor of

the pattern string is a suffix of the prefix (to i-th symbol) of

Euler notation of the subject tree. In this way the nonlinear

variables are matched. In our method presented in this paper

we construct a complete index of the subject tree for a

given maximal number of variables and do not construct any

additional matching automata.

III. BASIC NOTIONS

We define notions on trees similarly as they are defined in

[1, 9, 10].

A. Alphabet

An alphabet is a finite nonempty set of symbols. A ranked

alphabet is a finite nonempty set of symbols each of which has

a unique nonnegative arity (or rank). Given a ranked alphabet

A, the arity of a symbol a ∈ A is denoted Arity(a). The
set of symbols of arity p is denoted by Ap. Elements of arity

0, 1, 2, . . . , p are respectively called nullary (constants), unary,

binary, . . ., p-ary symbols. We assume that A contains at least

one constant. In the examples we use numbers at the end of

identifiers for a short declaration of symbols with arity. For

instance, a2 is a short declaration of a binary symbol a.

B. Tree, tree pattern, tree template

Based on concepts from graph theory (see [1]), a tree over

an alphabet A can be defined as follows:

A directed graph G is a pair (N,R), where N is a set of

nodes and R is a set of edges such that each element of R is

of the form (f, g), where f, g ∈ N . This element will indicate

that, for node f , there is an edge leaving f , entering node g.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of

length n from node f0 to node fn if there is an edge which

leaves node fi−1 and enters node fi for 1 ≤ i ≤ n. A cycle

is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag

(dag stands for Directed Acyclic Graph) is an ordered directed

graph that has no cycle. A labelling of an ordered graph G =
(N,R) is a mapping of N into a set of labels. In the examples

we use af for a short declaration of node f labelled by symbol

a.

Given a node f , its out-degree is the number of distinct

pairs (f, g) ∈ R, where g ∈ N . By analogy, the in-degree

of node f is the number of distinct pairs (g, f) ∈ R, where

g ∈ N .

A tree is an acyclic connected graph. Any node of a tree

can be selected as a root of the tree. A tree with a root is

called rooted tree. Nodes of the tree with out-degree 0 are

called leaves.

A tree can be directed. A rooted and directed tree t is a

dag t = (N,R) with a special node r ∈ N , called the root,

such that (1) r has in-degree 0, (2) all other nodes of t have
in-degree 1, (3) there is just one path from the root r to every

f ∈ N , where f 6= r.

A labelled, (rooted, directed) tree is a tree having the

following property: (4) every node f ∈ N is labelled by a

symbol a ∈ A, where A is an alphabet.

A ranked, (labelled, rooted, directed) tree is a tree labelled

by symbols from a ranked alphabet and out-degree of a node f

labelled by symbol a ∈ A equals to Arity(a). Nodes labelled
by nullary symbols (constants) are leaves.

An ordered, (ranked, labelled, rooted, directed) tree is a

tree where direct descendants af1, af2, . . . , afn of a node af
having an Arity(af) = n are ordered.

Example 1 Consider a ranked alphabet A = {a2, a1, a0}.
Consider an ordered, ranked, labelled, rooted, and directed tree

t1 = ({a21, a22, a03, a14, a05, a16, a07}, R1) over A, where

R1 is a set of the following ordered pairs:
R1 = {(a21, a22), (a21, a16),
(a22, a03), (a22, a14), (a14, a05), (a16, a07)}.

The tree t1 written in prefix notation is pref(t1) =
a2 a2 a0 a1 a0 a1 a0.
Trees can be represented graphically, and tree t1 is illus-

trated in Figure 1.

The height of a tree t, denoted by Height(t), is defined as

the maximal length of a path from the root of t to a leaf of t.

872 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

a05

a03 a14 a07

a22 a16

a21

Fig. 1: Tree t1 from Example 1

To define a tree pattern, we use a special nullary symbol

S, not in alphabet A, Arity(S) = 0, which serves as a

placeholder for any subtree. A tree pattern is defined as a

labelled ordered tree over an alphabetA∪{S}. We will assume

that the tree pattern contains at least one node labelled by a

symbol from A. A tree pattern containing at least one symbol

S will be called a tree template.

A tree pattern p with k ≥ 0 occurrences of the symbol

S matches a subject tree t at node n if there exist subtrees

t1, t2, . . . , tk (not necessarily the same) of the tree t such that

the tree p′, obtained from p by substituting the subtree ti for

the i-th occurrence of S in p, i = 1, 2, . . . , k, is equal to the

subtree of t rooted at n.

The nonlinear tree pattern uses nullary symbols X,Y, . . .

which are not in alphabetA. These symbols have arity equal to

zero. These symbols serve as a placeholders for any subtree.

Additionally every occurrence of for example symbol X in

nonlinear tree pattern is matched with the same subject

subtree. A nonlinear tree pattern has to contain at least one

symbol from A. A nonlinear tree pattern which contains at

least two symbols X will be called nonlinear tree template.

Symbol X is called a nonlinear variable.

A nonlinear tree pattern np with k ≥ 2 occurrences of the

symbol X matches an subject tree t at node n if there exist

the same subtrees t1, t2, . . . , tk of the tree t such that the tree

np′, obtained from np by substituting the subtree ti for the

i-th occurrence of X in np, i = 1, 2, . . . , k, is equal to the

subtree of t rooted at n.

Example 2 Consider a tree t1 = ({a21, a22, a03, a14, a05,
a16, a07}, R1) from Example 1, which is illustrated in

Figure 1.

Consider a tree template p1 over A ∪ {S},
p1 = ({a21, S2, a13, S4}, Rp1), where Rp1 is a set of lists of

the following ordered pairs:

Rp1 = {(a21, S2), (a21, a13), (a13, S4)}.

The tree template p1 written in prefix notation is

pref(p1) = a2 S a1 S.

Consider a nonlinear tree template p2 over A ∪ {S,X},
p2 = ({a21, X2, a13, X4}, Rp3), where Rp2 is a set of lists

of the following ordered pairs:

Rp2 = {(a21, X2), (a21, a13), (a13, X4)}.

Note that symbol S can occur in nonlinear tree template

and it serves as unbounded variable.

The tree template p2 written in prefix notation is

pref(p2) = a2 X a1 X .

S4

S2 a13

a21

X4

X2 a13

a21

Fig. 2: Tree template p1 (left) and nonlinear tree template p2
(right) from Example 2

Tree templates p1 and p2 are illustrated in Figure 2. Tree

template p1 has two occurrences in tree t1 – it matches at

nodes 1 and 2 of t1. Nonlinear tree template p2 has one

occurrence in tree t1 – it matches at node 2 of t1.

C. Language, finite and pushdown automata

We define notions from the theory of string languages

similarly as they are defined in [1, 11].

A language over an alphabet A is a set of strings over A.

Symbol A∗ denotes the set of all strings over A including the

empty string, denoted by ε. Set A+ is defined as A+ = A∗ \
{ε}. Similarly, for string x ∈ A∗, symbol xm, m ≥ 0, denotes
the m-fold concatenation of x with x0 = ε. Set x∗ is defined

as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}.
A nondeterministic pushdown automaton (nondeterministic

PDA) is a seven-tuple M = (Q,A, G, δ, q0, Z0, F), where Q

is a finite set of states, A is an input alphabet,G is a pushdown

store alphabet, δ is a mapping from Q× (A∪ {ε})×G into

a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state,

Z0 ∈ G is the initial pushdown store symbol, and F ⊆ Q is

the set of final (accepting) states.

Triple (q, w, x) ∈ Q×A∗×G∗ denotes the configuration of

a pushdown automaton. We will write the top of the pushdown

store x on its left hand side. The initial configuration of a

pushdown automaton is a triple (q0, w, Z0) for the input string
w ∈ A∗. The relation ⊢M⊂ (Q × A∗ × G∗) × (Q × A∗ ×
G∗) is a transition of a pushdown automaton M . It holds that

(q, aw, αβ) ⊢M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). The k-th

power, transitive closure, and transitive and reflexive closure

of the relation ⊢M is denoted ⊢k
M , ⊢+

M , ⊢∗

M , respectively.

A pushdown automaton is input–driven if each of its push-

down operations is determined only by the input symbol.

A language L accepted by a pushdown automaton M is

defined in two distinct ways:

1) Accepting by final state: L(M) = {x : (q0, x, Z0) ⊢∗

M

(q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2) Accepting by empty pushdown store: Lε(M) = {x :
(q0, x, Z0) ⊢

∗

M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If the pushdown automaton accepts the language by empty

pushdown store, then the set F of final states is the empty set.

Unreachable states are states p ∈ Q from automaton M =
(Q,A, G, δ, q0, Z0, F) which are not reachable from the initial

state because there is no sequence of transitions from the initial

state to that particular state p. Formally, there are no transitions

that allow (q0, kw, Z0) ⊢
+
M (p, w, γ).

Unnecessary states are states p ∈ Q from automaton

M = (Q,A, G, δ, q0, Z0, F) which are not connected to any

final state f ∈ F if automaton accepts by final states, or not

JAN TRAVNICEK, JAN JANOUSEK, BORIVOJ MELICHAR: NONLINEAR TREE PATTERN PUSHDOWN AUTOMATA 873

0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

Fig. 3: Transition diagram of nondeterministic tree pattern

pushdown automaton Mnpt (pref(t1)) from Example 3

connected to any state, where γ ∈ G∗ may be ε, if automaton

accepts by empty pushdown store.

Pushdown automaton M = (Q,A, G, δ, q0, Z0, F) is

acyclic if it does not contain transitions δ(q, x1, γ1) ⊢+
M

(q, x2, γ2), where xx2 = x1, x 6= ε and q ∈ Q.

IV. INDEXING TREES FOR TREE PATTERN MATCHING

Tree pattern pushdown automata are introduced in [14, 16]

as an extension of subtree PDA. The tree pattern pushdown

automaton represents a complete index of a tree for linear tree

patterns and accepts all tree patterns that match the tree.

Example 3 Consider a tree t1 in prefix notation pref(t1) =
a2 a2 a0 a1 a0 a1 a0 from Example 1, which is il-

lustrated in Figure 1. The tree pattern pushdown au-

tomaton accepting all tree patterns matching tree t1 is

nondeterministic pushdown automaton Mnpt(pref(t1)) =
({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ5, 0, S,∅)). Its transition dia-

gram is illustrated in Figure 3.

V. INDEXING TREES BY BASIC NONLINEAR TREE PATTERN

PUSHDOWN AUTOMATON

A nondeterministic basic nonlinear tree pattern pushdown

automaton Mb = ({0, 1, 2, . . . , n, x1, . . . , n1, y2, . . . ,

n2, . . . , zm, . . . , nm},A∪{S,X}, {S}, δ, 0, S,∅) accepts all
nonlinear tree patterns which can occur in a subject tree.

A. Construction of basic indexing automaton for nonlinear

tree pattern matching

In our indexing pushdown automata we construct special

parts called tails, which represent parts accessible after reading

an input symbol of a nonlinear variable. Such a symbol selects

a particular tail.

The tail(M, qt, Zt) of an automaton M =
(Q,A, G, δ, q0, Z0, F), where M is an acyclic

tree pattern pushdown automaton, is defined as

tail(M, qt, Zt) = (Qt,A, G, δt, qt, Zt, F). Qt = Q r Qus,

Qus is a set of unreachable states from qt when pushdown

store operations are omitted, qt ∈ Qt is a new initial state of

an automaton, δt = δ r δus, δus are transitions leading from

or to state qn ∈ Qus.

Example 4 Given a tree pattern pushdown automaton Mnpt

(pref(t1)), which is an index of tree t1 from Example 1

shown in Figure 3. The tail of automaton with initial state 3

is tail(Mnpt, 3, S) = (Q,A∪{S}, {S}, δ, 3, S,∅) constructed
from tree pattern pushdown automaton shown in Figure 3, S

is the initial symbol of the pushdown store. The corresponding

transition diagram is illustrated in Figure 4.

3 4 5 6 7
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Fig. 4: Tail of tree pattern pushdown automaton

Mtail(Mnpt, 3, ε) from Example 4

We note that every node of a tree t is the root of just one

complete subtree S. Prefix notation of such subtree pref(S)
is a factor of pref(t1). These factors are in the tree pushdown

automaton ”skipped” by transitions for input symbol S.

A labelled path in the automatonMnpt between states q and

qt, where qt is defined by transition (qt, ε) ∈ δ(q, S, S) will

be denoted sst(q) = b1b2 . . . bm and it represents a subtree in

the linear notation. sst(q) is used in Algorithm 2 to determine

which subtree of subject tree was ”assigned” to particular

automaton tail.

The construction consists of two algorithms. Algorithm 2

constructs tails from the original tree pattern pushdown au-

tomaton. Algorithm 1 connects recursively these created tails

to the automaton being created.

Algorithm 1 Construction of nondeterministic basic nonlin-

ear tree pattern pushdown automaton.

Input: Nondeterministic tree pattern pushdown automaton

Mnpt.

Output: Nondeterministic basic nonlinear tree pattern push-

down automaton Mb.

Method:

1. For each transition (qt, ε) ∈ δ(q, S, S) in automaton

Mnpt do:

1.1. Create Mtmp = nta(tail(Mnpt, qt, S), sst(q)) us-

ing Algorithm 2.

1.2. Add new state qid to Mnpt where qid is copy of state

qt.

1.3. Add new transition (qid, ε) ∈ δ(q,X, S) to Mnpt.

1.4. Add Mtmp to Mnpt and merge initial state of Mtmp

with qid.

2. Mb is Mnpt.

Algorithm 2 Recursive construction of tail of nondeterminis-

tic basic nonlinear tree pattern automaton.

Input: Tail of nondeterministic tree pattern pushdown automa-

ton Mtnpt, string representing subtree skipped by transition

x = sst(q).
Output: Recursively created tail nta(Mtnpt, x).
Method:

1. For each transition (qt, ε) ∈ δ(q, S, S) in automaton

Mtnpt where sst(q) = x do:

1.1. Create Mtmp = nta(tail(Mtnpt, qt, S), x) using

Algorithm 2.

1.2. Add new state qid to Mtnpt where qid is copy of

state qt.

1.3. Add new transition (qid, ε) ∈ δ(q,X, S) to Mtnpt.

874 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε 71

X |S 7→ ε

72

X |S 7→ ε

56 66 76
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X |S 7→ ε

75

X |S 7→ ε

54 64 74
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X |S 7→ ε

73

X |S 7→ ε

38 48 58 68 78
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

X |S 7→ ε

77

X |S 7→ ε

510 610 710
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X |S 7→ ε

79

X |S 7→ ε

511 611 711
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X |S 7→ ε

Fig. 5: Nondeterministic basic nonlinear tree pattern pushdown

automatonMb(t1) from Example 5 constructed for subject tree

shown in Figure 1

1.4. Add Mtmp to Mtnpt and merge initial state of Mtmp

with qid.

2. nta(Mtnpt, x) is Mtnpt.

The difference between Algorithm 2 and Algorithm 1 is that

Algorithm 2 calls itself only when processing transition for

symbol S leading from state q, where sst(q) equals its subtree
parameter. On the other hand, Algorithm 1 calls Algorithm 2

for each transition for symbol S.

Example 5 Given a string p = a2 a2 a0 a1 a0 a1 a0, which is
a prefix notation of tree t1 from Example 1, the corresponding

nondeterministic basic nonlinear tree pattern pushdown au-

tomaton is Mb(t1) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅), where
its transition diagram is illustrated in Figure 5.

VI. INDEXING TREES BY NONLINEAR TREE PATTERN

PUSHDOWN AUTOMATON

Some states of an automaton created by Algorithm 1

may be merged so that states in nondeterministic

nonlinear tree pattern pushdown automaton Mo =
({0, 1, 2, . . . , n, x1, . . . , n1, y2, . . . , n2, . . . , zm, . . . , nm},A ∪
{S,X}, {S}, δ, 0, S, ∅) will still track both virtually assigned

subtree and the same number of nonlinear variables read from

the pattern. Merged states are those from tails with the same

virtually assigned subtree and the same number of nonlinear

variables read.

A. Constructing indexing automaton for nonlinear tree pattern

matching

Definition 1 A tree node state label tnsl(q) is the sequence

number of tree node of subject tree written in prefix notation.

The tnsl(q) is equivalent to automaton state label, where q ∈
Q from automaton Mb = (Q,A ∪ {S,X}, {S}, δ, q0, S,∅).
The tnsl(q) is the main number from state label.

Algorithm 3 Algorithm for counting the tnsl.

Input: Nondeterministic basic nonlinear tree pattern push-

down automaton Mb, state q for which count the tnsl.

Output: Number representing tnsl.

Variables: Temporary number n, State initial.

Method:

1. n = 0. initial is initial state of automaton Mb.

2. While q 6= initial do:

2.1. If exists transition (q, Sarity(a)) ∈ δ(qprev, a, S)
where a ∈ A and qpref is preferably not q0 do:

2.1.1. n = n+ 1, q = qprev .

2.1.2. Continue with step [2.].

2.2. If exists transition (q, ε) ∈ δ(qprev, X, S) where X

is nonlinear variable do:

2.2.1. n = n+ |sst(qprev)|, q = qprev .

2.2.2. Continue with step [2.].

Example 6 Given a nonlinear nondeterministic basic tree pat-

tern pushdown automaton for pattern matching is Mb(t1) =
(Q,A∪{S,X}, {S}, δ, 0, S,∅), having its transition diagram

shown in Figure 5.

The tnsl(3) = 3, tnsl(54) = 5, tnsl(711) = 7, tnsl(79) =
7.

Definition 2 A number of nonlinear variables nnv(q,X) is

the number of transitions for nonlinear variable X on the

path from the initial state q0 to state q, where q and q0 ∈ Q

of a nondeterministic basic nonlinear tree pattern pushdown

automaton Mb = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅) created by

Algorithm 1.

Algorithm 4 Algorithm for counting the nnv.

Input: Nondeterministic basic nonlinear tree pattern push-

down automaton Mb, state q for which count the tnsl.

Output: Number representing nnv.

Variables: Temporary number n, State initial.

Method:

1. n = 0. initial is initial state of automaton Mb.

2. While q 6= initial do:

2.1. If exists transition (q, Sarity(a)) ∈ δ(qprev, a, S)
where a ∈ A and qpref is preferably not q0 do:

2.1.1. q = qprev .

2.1.2. Continue with step [2.].

2.2. If exists transition (q, ε) ∈ δ(qprev, X, S) where X

is nonlinear variable do:

2.2.1. n = n+ 1, q = qprev .

2.2.2. Continue with step [2.].

JAN TRAVNICEK, JAN JANOUSEK, BORIVOJ MELICHAR: NONLINEAR TREE PATTERN PUSHDOWN AUTOMATA 875

Definition 3 The starting states of optimisation sso(Mb) is

a collection of (key, value) pairs, where key is a triplet

(sst(q), nnv(u,X), tnsl(u)) and value is a set of states.

The sso(Mb) stores sets of states with the same number of

transitions for nonlinear variable X nnv(q,X) and subtree

skipped by transition sst(q), which denotes the sets of states

from nondeterministic basic nonlinear tree pattern pushdown

automaton Mb created by Algorithm 1. The sso(Mb) =
{(sst(qx), nnv(sa1, X), tnsl(sa1)), {sa1, sa2, . . .}), (sst(qy),
nnv(sb1, X), tnsl(sb2)), {sb1, sb2, . . .}), . . .}, where the first

state s1 from each set is the main state. State v is sst(v)
denoting state for state s1 given by (v,Xω, Sγ) ⊢ (s1, ω, γ),
where ω = (A ∪ {S,X})∗. All states from that set are

given by following: {∀s : nnv(s,X) = nnv(s1, X) and

sst(v) = sst(u) and tnsl(s) = tnsl(s1); s, s1, u, v ∈ Q},
where state u is sst(u) denoting state for state s given by

(u,X(A ∪ {S})∗ω, Sα) ⊢∗ (s, ω, Sβ), where ω = (A ∪
{S,X})∗.

Each set from the collection of sets of states sso(Mb) de-

fines states from nondeterministic basic nonlinear tree pattern

pushdown automaton Mb that can be merged and the resulting

automaton is called nondeterministic nonlinear tree pattern

pushdown automaton Mo. States from each set defines the

start of a merging process so that states that are reachable by

the same sequence of transitions are also merged.

Example 7 Given a string p = a2 a2 a0 a1 a0 a1 a0, which is
the prefix notation of tree t1 from Example 1. The correspond-

ing nondeterministic basic nonlinear tree pattern pushdown au-

tomaton is Mb(t1) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅), where
its transition diagram and states are illustrated in Figure 5.

All states that occur in one of the set in the collection

ss(Mb)o are target states from all transitions for a symbol

X and the transitions for a symbol S which shares the source

state.

sso(Mb) = {((a0, 1, 5), {54, 58}), ((a0, 1, 7), {71, 74, 78}),

((a0, 2, 7), {73, 77, 710}), ((a1a0, 1, 7), {72, 76})}.

Algorithm 5 Construction of the nondeterministic nonlinear

tree pattern pushdown automaton.

Input: Nondeterministic basic nonlinear tree pattern push-

down automaton Mb.

Output: Nondeterministic nonlinear tree pattern pushdown

automaton Mo.

Variables: Collection of sets of states sso(Mb).
Method:

1. For all transitions (u1, ε) ∈ δ(q,X, S) do:

1.1. If the collection sso(Mb) does not contain a set on

a key (sst(q), nnv(u1, X), tnsl(u1)) create that set as
an empty set.

1.2. Add u1 to the collection sso(Mb) to the set on the

key (sst(q), nnv(u1, X), tnsl(u1)).

2. For all transitions (u2, ε) ∈ δ(q, S, S), where exists a

transition (u1, ε) ∈ δ(q,X, S) do:

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

38 48 58,4 68,4 78,4,1
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

510 610 710,7,3
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

79

56 66 76,2
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

75

511 611 711
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X |S 7→ ε X |S 7→ ε X |S 7→ ε

X |S 7→ ε

X |S 7→ ε

X |S 7→ ε

X |S 7→ ε

X |S 7→ ε X |S 7→ ε

X |S 7→ ε

Fig. 6: Nondeterministic nonlinear tree pattern pushdown au-

tomaton Mo(t1) from Example 8 constructed by Algorithm 5

for subject tree shown in Figure 1

2.3. If nnv(u2, X) 6= 0 and the collection sso(Mb)
does not contain a set on a key (sst(q), nnv(u2, X),
tnsl(u2)) create that set as an empty set.

2.4. Add u2 to the collection sso(Mb) to the set on the

key (sst(q), nnv(u2, X), tnsl(u2)).

3. For each set in the collection sso(Mb) do:

3.1. Merge all states in this set, along with all states that

follows-up.

Example 8 Given a string p = a2 a2 a0 a1 a0 a1 a0,
which is the prefix notation of tree t1 from Example 1, the

corresponding nondeterministic nonlinear tree pattern push-

down automaton is Mo(t1) = (Q,A∪{S,X}, {S}, δ, 0, S,∅),
where merged states are in Example 7 and its transition

diagram and states are illustrated in Figure 6.

The nondeterministic nonlinear tree pattern pushdown au-

tomaton can be even minimalised by omitting the nnv(q,X)
part of the key value pairs of the collection sso(Mb). A

resulting automaton would represent an index of the subject

tree for nonlinear tree pattern matching but would not be able

to say how many nonlinear variables has been read during

processing the nonlinear tree pattern.

B. Time and Space Complexity Analysis

Lemma 1 Time complexity of accepting pattern by automaton

created by Algorithm 5 is O(m), where m is the number of

nodes of a subject tree.

Proof: Automaton created for nonlinear pattern matching

reads just one symbol from the input by every transition.

Automaton accepts or rejects the input pattern at the latest

876 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

after reading the last symbol of pattern tree written in prefix

notation.

Lemma 2 Time complexity of accepting pattern by automaton

created by Algorithm 5 is O(
∑

S rsi), where S is the set of all

prefixes except ε and rsi is the number of distinct sequences

of transitions in automaton Mo for si ∈ S which ends in valid

state.

Proof: Automata has to try all possible sequences of

transitions according to tree template which occur in non-

deterministic nonlinear tree pattern automaton. Sequences of

symbols of these transitions form a prefix of tree template.

Prefix of size of one symbol from tree template is handled by

exactly n steps where n is the number of all possible sequences

of transitions in automaton for that prefix. Prefix of size of two

symbols is handled by n + m steps where m is the number

of all possible sequences of transitions in automaton for that

prefix. Note that to handle two symbol prefix two transitions

has to be processed, however the first transition is already

accounted by prefix of size of one symbol.

Exact time complexity is then sum of all possible sequences

of transitions in automaton for all prefixes of nonlinear tree

template, which is O(
∑

S rsi).

Lemma 3 The number of states of nondeterministic nonlinear

tree pattern pushdown automaton Mo (space complexity)

created by Algorithm 5 is O(m(
∑s

i=0 ri)), where m is the

number of nodes of a subject tree and
∑s

i=0 ri, where s is the

number of distinct subtrees, is the number of automaton tails,

where ri is the number of repetitions of each unique subtree.

Proof: Each occurrence of each unique subtree in tree

increments the number of automaton tails, that were created

for this subtree. The exact number of tails created for particular

subtree is then ri, where ri is the number of repetitions of

that subtree. Then the total number of tails for one nonlinear

variable in automaton is the number of tails created for each

unique subtree of indexed tree which is
∑s

i=0 ri. The total

number of tails does not count original automaton. The exact

space complexity of automaton for one nonlinear variable is

O(m(
∑s

i=0 ri + 1)) = O(m(
∑s

i=0 ri)).

Lemma 4 The number of transitions of nondeterministic non-

linear tree pattern pushdown automaton Mo (space complex-

ity) created by Algorithm 5 is O(m2 + m +
∑s

i=0(
r2
i
+ri
2)),

where m is the number of nodes of a subject tree, s is the

number of distinct subtrees and ri is the number of repetitions

of each unique subtree.

Proof: Given all tails for one nonlinear variable there are

transitions for symbol X between these tails. There is one

transition heading to the last tail. There are two transitions

heading to the previous tail and so on. The number of

transitions for symbol X is
∑s

i=0(
r2
i
+ri
2).

Using Lemma 3 the number of transitions for symbol S

is 1
2m

2 and the number of transitions for symbol a ∈ A is
1
2m

2 +m.

The number of transitions then is O(
∑s

i=0(
r2
i
+ri
2) +m2 +

m).

Lemma 5 Language defined by nondeterministic nonlinear

tree pattern pushdown automaton Mo is O(3m), where m is

the number of nodes of a subject tree.

Proof: Consider a tree with m + 1 nodes. Arity of the

first node is m. Remaining nodes are labelled with the same

nullary symbol. It is possible to create tree template where

on each position of nullary symbol a nonlinear variable X ,

symbol S or the original symbol can be placed. Therefore

on m positions it is possible to chose from three symbols.

Language size is then O(3m), where m+ 1 is the number of

nodes of a subject tree.

VII. CONSTRUCTION OF AUTOMATA FOR PATTERNS WITH

MORE NONLINEAR VARIABLES

Patterns that contain more than one nonlinear variable are

more common than those with one nonlinear variable. The

algorithm for construction of nondeterministic nonlinear tree

pattern pushdown automaton for more nonlinear variables

Mmo or Mmb is basically algorithm for union of automata.

Automaton for two nonlinear variables is union of two au-

tomata for one nonlinear variable.

A. An algorithm of joining automata

Definition 4 The nonlinear variable from automaton nva(M)
is the nonlinear variable for which the nondeterministic non-

linear tree pattern pushdown automaton Mo was created for.

Consider that nondeterministic basic nonlinear tree pattern

pushdown automaton Mmo for two nonlinear variables deter-

mined by X,Y is to be constructed. Nondeterministic nonlin-

ear tree pattern pushdown automatonMo for nonlinear variable

determined by symbol X and second for nonlinear variable

determined by symbol Y are constructed by Algorithm 5. The

first automaton for nonlinear variable determined by symbol

X handles nonlinear variable determined by symbol Y as

linear variable usually determined by symbol S. The second

automaton handles nonlinear variables similarly.

Algorithm 6 Construction of Indexing automaton for more

nonlinear variables.

Input: Set of nondeterministic nonlinear tree pattern push-

down automata Mo.

Output: Nondeterministic nonlinear tree pattern push-

down automaton for more nonlinear variables Mmo =
(Q,A, {S}, δ′, qI , S,∅).
Method:

1. Create set of symbols of nonlinear variables nvs using

nva from input set of automata.

2. For i = 0 to sizeof(Mo), step 1 do:

2.1. Moi is automaton from set Mo on index i.

2.2. For each transition (u, ε) ∈ δ(q, S, S) in automaton

Moi do:

2.2.1. For each symbol s in nvs \ nva(Moi) add

transition (u, ε) ∈ δ(q, s, S) to automaton Moi.

2. Create automaton Mmo as union of all automata in input

set.

JAN TRAVNICEK, JAN JANOUSEK, BORIVOJ MELICHAR: NONLINEAR TREE PATTERN PUSHDOWN AUTOMATA 877

B. Time and space complexity analysis

Lemma 6 The space complexity of a nondeterministic nonlin-

ear pattern pushdown automaton for more nonlinear variables

Mmo is O(tv ∗ m), where t is the number of tails of the

nondeterministic nonlinear tree pattern pushdown automaton

for one nonlinear variable Mo, v is the number of nonlinear

variables and m is the number of nodes of a subject tree.

Proof: The automaton complexity is clear for one non-

linear variable. The number of tails in automaton for more

nonlinear variables is result from the Cartesian product of

tails in each automaton for one nonlinear variable. Each tail

of the first automaton allows the second automaton to move

across tails depending on the others nonlinear variables and

so on for more automata. The number of tails is tv for the

Cartesian product, where t is the number of tails of original

one nonlinear variable automaton. The number of tails is given

by union of v automata for v nonlinear variables. So the exact

space complexity of nondeterministic nonlinear tree pattern

pushdown automaton Mmo for more nonlinear variables is

O(tv ∗m).

Lemma 7 The language accepted by nondeterministic nonlin-

ear tree pattern pushdown automatonMmo for more nonlinear

variables contains O((2 + v)n) sentences, where n is the

number of nodes of a subject tree.

Proof: Proof is constructed similarly as in Lemma 5.

Consider a tree with n+1 nodes. Arity of the first node is n.

Remaining nodes are labelled with the same nullary symbol.

It is possible to create tree template where on each position

of nullary symbol a nonlinear variable X , Y , . . . , symbol S

or the original symbol can be placed. Therefore, m positions

is possible to choose from 2 + v symbols. Language size is

then O((2 + v)n), where n + 1 is the number of nodes of a

subject tree.

VIII. CONCLUSION

Algorithms creating pushdown automata for nonlinear tree

indexing have been presented. Since these pushdown automata

are input–driven, they can be determinised. It is shown that a

nondeterministic nonlinear tree pattern pushdown automaton

for one nonlinear variable has a space complexity polynomial

to the size of the subject tree. The algorithm for constructing

nondeterministic nonlinear tree pattern pushdown automaton

for more nonlinear variables using the union of automata

(Cartesian product of tails of automata) have also been pre-

sented.

The exact space complexity of the deterministic nonlinear

indexing pushdown automata is an open question.

REFERENCES

[1] Alfred V. Aho and Jeffrey D. Ullman. The theory of pars-

ing, translation, and compiling. Prentice-Hall Englewood

Cliffs, N.J., 1972.

[2] Arbology www pages, Available on:

http://www.arbology.org, June 2011.

[3] Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A.,

Chen, M. T., Seiferas, J. I., 1985. The smallest automaton
recognizing the subwords of a text. Theor. Comput. Sci. 40,

31–55.

[4] Crochemore, M., 1986. Transducers and repetitions.

Theor. Comput. Sci. 45 (1), 63–86.

[5] H. Comon, M. Dauchet, R. Gilleron, C. Löding,

F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.

Tree automata techniques and applications. Available on:

http://www.grappa.univ-lille3.fr/tata, 2007. release October,

12th 2007.

[6] Crochemore, M., Hancart, C., 1997. Automata for match-

ing patterns. In: Rozenberg, G., Salomaa, A. (Eds.), Hand-

book of Formal Languages. Vol. 2 Linear Modeling: Back-

ground and Application. Springer–Verlag, Berlin, Ch. 9, pp.

399–462.

[7] Crochemore, M., Rytter, W., 1994. Jewels of Stringology.

World Scientific, New Jersey.

[8] Domenico Cantone, Simone Faro and Emanuele Gi-

aquinta: A Compact Representation of Nondeterministic

(Suffix) Automata for the Bit-Parallel Approach, In: CPM

2010, LNCS 6129, Springer, Berlin, 2010.

[9] F Gecseg and M. Steinby. Tree languages. In G. Rozen-

berg and A. Salomaa, editors, Handbook of Formal Lan-

guages, volume 3 Beyond Words. Handbook of Formal

Languages, pages 1–68. Springer–Verlag, Berlin, 1997.

[10] Christoph M. Hoffmann and Michael J. O’Donnell. Pat-

tern matching in trees. J. ACM, 29(1):68–95, 1982.

[11] Hopcroft, J. E., Motwani, R., Ullman, J. D., 2001. In-

troduction to automata theory, languages, and computation,

2nd Edition. Addison-Wesley, Boston.

[12] J. W. Klop. Term Rewriting Systems, Handbook of Logic

in Computer Science, 1992.

[13] Janousek, J. String Suffix Automata and Subtree Push-

down Automata. In: Proceedings of the Prague Stringology

Conference 2009, pp. 160–172, Czech Technical University

in Prague, Prague, 2009.

[14] Janousek, J.: Arbology: Algorithms on Trees and Push-

down Automata. Habilitation thesis, TU FIT, Brno, 2010.

[15] Janousek, J., Melichar, B. On Regular Tree Languages

and Deterministic Pushdown Automata. In Acta Informat-

ica, Vol. 46, No. 7, pp. 533-547, Springer, 2009.

[16] Melichar, B. Arbology: Trees and pushdown automata.

In: LATA 2010 (LNCS 6031), invited speaker, pp. 32-49,

Springer, 2010.

[17] Melichar, B., Holub, J., Polcar, J., 2005. Text searching

algorithms. Available on: http://stringology.org/athens/, re-

lease November 2005.

[18] R. Ramesh, I. V. Ramakrishnan. Nonlinear Pattern

Matching in Trees, Journal of the Association for Com-

puting Machinery, Vol 39, No 2, April 1992.

[19] Smyth, B., 2003. Computing Patterns in Strings.

Addison-Wesley-Pearson Education Limited, Essex, Eng-

land.

878 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

