
A Neural Model for Ontology Matching

Abstract—Ontology matching is a key issue in the Semantic 

Web. The paper describes an unsupervised neural model for 

matching pairs of ontologies. The result of matching two 

ontologies is a class alignment, where each concept in one 

ontology is put into correspondence with a semantically related 

concept in the other one. The framework is based on a model of 

hierarchical self-organizing maps. Every concept of the two 

ontologies that are matched is encoded in a bag-of-words style, 

by counting the words that occur in their OWL concept 

definition. We evaluated this ontology matching model with the 

OAEI benchmark data set for the bibliography domain. For 

our experiments we chose pairs of ontologies from the dataset 

as candidates for matching.

I. INTRODUCTION

HE USAGE of software services raises the problem of 

discovering the relevant ones for a given purpose, and 

still manual effort is needed to find and compose services. To 

solve this problem, the researchers in Semantic Web propose 

to make the service descriptions more meaningful by 

annotating them with a semantic description of their 

functionality. And the meaning of these semantic 

descriptions is specified in a domain ontology [12].

T

The semantic heterogeneity problem is encountered 

classically in the information integration area as well as in 

the new domain of Semantic Web. Ontology matching 

allows the knowledge and data expressed in different 

ontologies to interoperate. To name only two situations, the 

interoperability is important when two agents communicate, 

as well as for merging two ontologies into a result, combined 

and still consistent single ontology. As a consequence, 

ontology matching is a key issue in the Semantic Web [5].

In this paper we propose an unsupervised neural model for 

matching pairs of ontologies. The result of matching two 

ontologies is a class alignment: each concept in one ontology 

is put into correspondence with the most related concept in 

the other ontology from the semantic point of view. We 

disregard here the problem of also matching the properties 

and the instances of the ontology concepts.

In order to establish a mapping of the concepts of one 

ontology to the concepts of the other ontology, we classify 

the concepts of the first ontology against the taxonomic 

structure of the second ontology. The classification starts 

from a representation of the concepts built as a result of 

analyzing their OWL concept definitions. We collect the 

words used in the semistructured textual descriptions extant 

in OWL ontology definition files. Based on this text mining 

process, we represent the ontology nodes (the concepts) as 

bag-of-words vectors. These vectors are used as input data 

for an unsupervised neural network. More specifically, our 

framework is based on an unsupervised training of an 

extended model of hierarchical self-organizing maps.

In our approach, we consider the OWL semistructured 

textual definition of each concept as a small text document. 

As such, we represent the ontology classes as text 

documents, like in a document categorization setting. We 

cast the concept classification problem as a text document 

classification in a vector space. The semantic content features 

of a concept are the frequencies of occurrence of different 

words in the document representation of the concept. The 

classification of the concepts of the first ontology into the 

taxonomy of the second ontology proceeds by associating 

every ontology 1 concept to one node of the taxonomy of 

ontology 2, based on a similarity in the vector space.

The taxonomy of the second ontology is given as the 

initial state of the neural network. The training of the 

unsupervised neural network takes place by exposing the 

initialized hierarchical self-organizing map to the vector 

representations of the document-like concepts of the first 

ontology, as extracted from their OWL definitions.

In the rest of the paper, after a review of related work, 

section III presents the neural network learning solution 

chosen and adapted in our framework. Then section IV 

details the architecture and implementation of our ontology 

matching model, and section V describes the experimental 

results. The conclusions and future directions are presented 

in section VI.

II. RELATED WORK

A classification process algorithmically similar to our 

ontology matching scenario takes place in the named entity 

classification and taxonomy enrichment methods, where the 

task is to associate every named entity to one taxonomic 

concept or to add new concepts as subclasses attached under 

existent nodes (concepts) of a given initial taxonomy. From 

this point of view, our approach is similar to [10, 1, 13, 2]. 

All the methods mentioned in [10, 1, 13, 2] use a similarity 

based top-down classification process like in our model. The 
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main difference from our work is that their classification is 

based on decision trees, whereas our classification is driven 

by a neural network.

The book [5] includes a comprehensive survey of ontology 

matching approaches and tools. Taking into account the kind 

of input used for computing the similarity of a concept in the 

first ontology to an appropriate concept in the second 

ontology, the authors classify the approaches as name-based 

(terminological) techniques, structure-based, extensional, and 

semantic approaches. In their turn, the terminological 

techniques are divided into string based and linguistic 

approaches.

The method described in this paper belongs to the string 

based approaches. In order to compute the similarity between 

two matched concepts we actually compute a token-based 

distance between them. The computation of token-based 

distances is inspired from information retrieval, and 

consequently a concept definition is taken as a string 

consisting of a multi-set of words (also called bag of words). 

The bag of words for each concept is a vector in a vector 

space, and the token based similarity is a similarity metric 

specific to the vector space.

This token string based category of methods is called 

linguistic matching in [9]. And the multi-set of words (the 

bag of words) is called a virtual document, which contains 

the definition of a concept. The approaches in this category 

extract the meaning of each concept from such virtual 

documents.

Many of the ontology matching approaches make use of 

external resources of common knowledge like lexicons, 

thesauri, and upper level or domain specific ontologies [5]. It 

is worth mentioning the method in [11], which dynamically 

select, exploit (reuse), and combine multiple and 

heterogeneous online ontologies in order to derive semantic 

mappings. The mappings are provided either by a single 

online ontology or by a reasoning process that uses several 

ontologies. By this process of harvesting the Semantic Web, 

the authors prove that the Semantic Web itself is a dynamic 

source of background knowledge that can be successfully 

used to solve real-world problems, including ontology 

matching.

III. MACHINE LEARNING METHOD

In our framework for ontology matching, we classify the 

concepts of the first ontology against the taxonomic structure 

of the second ontology. Our extended model of hierarchical 

self-organizing maps –  Enrich-GHSOM –  represents the 

unsupervised neural network based learning solution adopted 

by our framework. This choice is suitable to the knowledge 

structure onto which the concepts of the first ontology are 

classified – a taxonomy, i.e. an is-a hierarchy of concepts.

A. Self-organizing Maps

The Self-Organizing Map (SOM, also known as Kohonen 

map) learning architecture [8] is one of the most popular 

unsupervised neural network models. SOM can be seen as a 

projection method which maps a high dimensional data space 

into a lower dimensional one. The resulting lower 

dimensional output space is a rectangular SOM map, 

represented as a two-dimensional grid of neurons. Each input 

data item is mapped into one of the neurons in the map. SOM 

plays also the role of a clustering method, so that similar data 

items – represented as vectors of numerical attribute values – 

tend to be mapped into nearby neurons.

The SOM map learns by a self-organization process. The 

training proceeds with unlabeled input data like any 

unsupervised learning. Clusters (classes) are discovered and 

described by gradually detected characteristics during the 

training process. These gradually adjusted characteristics 

play the role of weights in the weight vector associated to 

each neuron.

B. Growing Hierarchical Self-organizing Maps

The growing hierarchical self-organizing map (GHSOM) 

model consists of a set of SOM maps arranged as nodes in a 

hierarchy and it is able to discover hierarchical clusters [4]. 

The SOM’s in the nodes can grow horizontally during the 

training by inserting either one more row or one more 

column of neurons. This happens iteratively until the average 

data deviation (quantization error) over the neurons in the 

SOM map decreases under a specified threshold τ1.

The SOM’s in the nodes can also grow vertically during 

the training, by giving rise to daughter nodes. Each neuron in 

the SOM map could be a candidate for expansion into a 

daughter node SOM map (see Figure 1). The expansion takes 

place whenever the data deviation on the current neuron is 

over a threshold τ2. The thresholds τ1 and τ2 control the 

granularity of the hierarchy learned by GHSOM in terms of 

depth and branching factor.

Figure 1. The GHSOM neural network model.

C. Enrich-GHSOM

The growth of a GHSOM neural network is a completely 

unsupervised process, being only driven by the unlabeled 

input data items themselves together with the two thresholds 

and some additional learning parameters. There is no way to 

suggest from outside any initial paths for the final learnt 

hierarchy. We have extended the GHSOM model with the 

possibility to force the growth of the hierarchy along with 

some predefined paths of a given hierarchy.

Our new extended model, Enrich-GHSOM, is doing a 

classification of the data items into an existing tree hierarchy 

structure. This initial tree plays the role of an initial state for 
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the tree-like neural network model. The classical GHSOM 

model grows during the training by only starting from a 

single node. The top-down growth in our extended model 

starts from a given initial tree and inserts new nodes attached 

as successors to any of its intermediate and leaf nodes.

In Enrich-GHSOM, the nodes of the predefined hierarchy 

are labeled with some data item labels from the input data 

space used for training. Algorithm 1 describes the learning 

algorithm of the Enrich-GHSOM neural network, where 

mqej is the mean quantization error of the data items mapped 

on neuron j, and mqe0 is the global quantization error of the 

entire training data set.

Algorithm 1: Training the

         Enrich-GHSOM neural network

Inputs:    predefined initial tree;

                training data space;

Output:  enriched tree;

begin

  layer  i   =  0

  do

  {

     // training epoch associated to layer i:

     for all (SOM maps on layer i) 

     {

         // phase 1:

         Train the SOM map

         // The SOM training converges

          // by satisfying threshold τ1.

         // phase 2:

         for all (neurons j of the current SOM map)

         {

            if(neuron  j  has been initialized as predefined) 

            {

Propagate the data set mapped in neuron j

towards the predefined daughter map

of neuron j.

            } 

            else // Neuron j has been initialized randomly.

            if(mqej  >  τ2 * mqe0) 

            {

               Born a new daughter map from neuron j,

               exactly like in the GHSOM model.

            }

         }

     }

     i   =  i  + 1

  } 

  while( there is at least one SOM map on layer i )

end

The training data items propagate top-down throughout the 

given tree hierarchy structure. When the propagation process 

hits a parent SOM of a tree node, then the weight vector of 

the corresponding parent neuron in that parent SOM is 

already initialized with the data item vector of that 

predefined daughter node label. The weight vectors of the 

SOM neurons with no predefined daughter are initialized 

with random values. Then the training of that SOM map 

proceeds by classifying the training data items against the 

initialized neurons. Training data items that are similar (as 

vectors) to the predefined initialized neurons are propagated 

downwards to the associated predefined daughter SOM 

nodes to continue the training (recursively) on that 

predefined daughter SOM. Data items that are not similar to 

the initialized neurons are mapped to other, non-initialized 

(actually randomly initialized), neurons in the same SOM. 

They propagate downwards only if the threshold τ2 is 

surpassed, giving rise to new daughter SOM nodes.

For instance, consider the parent neuron of a current SOM 

node is labeled mammal, and there are two predefined 

daughter nodes labeled feline and bear, which correspond to 

two predefined initialized neurons in the current SOM. Then 

the training data item vector dog is not similar to any of the 

two neuron initializer weight vectors associated to feline and 

bear (see Figure 2, where the neuron initializers are marked 

with bold). So dog will remain as classified into that SOM – 

mapped on another, non-initialized neuron – i.e. as daughter 

(direct hyponym) of mammal and twin of the existent nodes 

feline and bear. Also, a data item labeled tiger – similar with 

the weight vector of the “feline” neuron – will be propagated 

into the associated predefined daughter SOM map together 

with other terms that correspond to felines. They will all 

become direct or indirect hyponyms of the concept feline. 

The process continues top-down for all the SOM nodes in the 

predefined initial tree hierarchy, ending at the leaves. The 

data item vector representations of the node labels of the 

given initial tree play the role of predefined initializer weight 

vectors for our neural model.

Figure 2. The Enrich-GHSOM neural network model.

For the evaluation of the classification accuracy of the 

Enrich-GHSOM neural network, we compare the given 

initial tree-like state of the network with the enriched tree-

like state. The output tree is nothing else than the input tree 

enriched with the new nodes inserted as classified during the 

top-down training process. We consider a training data item 

as classified into, or associated to, one node of the given 

input tree when that SOM node is the last node of the given 

tree that has been traversed by the data item before leaving 

the tree. Obviously this is also the deepest of the input tree 

nodes traversed by the item during the training. After leaving 

the predefined input tree, the data item will only traverse 
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SOM nodes newly inserted during the Enrich-GHSOM 

training. In short, the nodes to which different data items get 

classified are the nodes where that data items leave the given 

input tree.

IV. A MODEL FOR UNSUPERVISED ONTOLOGY MATCHING

The architecture of our model is implemented as a pipeline 

with several processing stages. The whole processing can be 

divided in two main steps: the acquisition of the vector 

representations of the concepts, and then the classification of 

the first ontology concepts into the taxonomy of the second 

ontology.

The OWL class definition of each concept of the two 

ontologies being matched is considered as a small text 

document. For one concept, the document is the fragment 

broken out of the OWL ontology description, which defines 

only that concept. From such a semistructured document-like 

representation of the taxonomic node, we extract the words 

which compose the concept name, and also the words 

occurring in the name of its direct super-class. We also 

collect the words from the names of relations and properties 

for which the concept plays the role of domain, as well as the 

words in the concept names to which these relations point, 

i.e. the range concepts of the relations. Usually the words in 

the OWL descriptions are agglutinated, so we apply the rule 

of thumb that a new word begins with an uppercase letter 

(the camel case convention) or after an underscore or a dash.

The semantic content features of the vector representation 

of one concept document are the frequencies of occurrence 

of the different words extracted from the OWL 

semistructured text document representation of the concept. 

The words extracted in this way can be considered as a gloss 

definition of the concept: “An instance of the concept 

Collection is a Book (direct superclass of Collection) which 

has as parts (relation parts) instances of the concept 

InCollection (range concept for the relation parts)”. Always 

the gloss of a concept defines the restrictions imposed upon 

its direct superclass as being the ones specific to the current 

concept. In the example, the restriction is that the range of 

the property parts to be restricted to the concept 

InCollection. (In the ontology of the example, the property 

parts is defined as having Part as range concept, for which 

InCollection is only one of its subclasses.) The concepts in 

this example can be recognized in Figure 3, which illustrates 

the taxonomy of one of the ontologies actually used in our 

experiments reported in section V. Some of the OWL 

concept definitions, including the ones used in our 

experiments, also have a comment in natural language. This 

again plays the role of a gloss definition. For the example 

concept Collection, the gloss comment is “A book that is 

collection of texts or articles”.

The first ontology concepts treated as documents are 

mapped to the second ontology classes (concepts). The 

classification algorithm proceeds by “populating”  the 

taxonomy of the second ontology with the first ontology 

concept documents. The Enrich-GHSOM neural network 

drives a top-down hierarchical classification of the first 

ontology concepts along with the taxonomy branches of the 

second ontology. Every ontology 1 concept is associated to 

one node of ontology 2.

In order to use our Enrich-GHSOM neural network to 

induce such a classification behavior, a symbolic-neural 

translation is first done by parsing a textual representation of 

the second ontology taxonomy, which has the form of 

is_a(concept, superconcept) assertions. The result of this 

parsing is the initial internal tree-like state of the neural 

network, which mirrors the taxonomy of the second 

ontology. In order for the initialized network to be able to 

classify ontology 1 concept documents into this (ontology 2) 

taxonomic structure, a representation as a numerical vector is 

needed for each node in this taxonomy. This node vector 

plays the role of predefined initial weight vector for the 

neural network (see section III-C). Actually, for each of the 

second ontology nodes, we define this vector as being the 

document vector representation of the concept associated to 

the node.

During the top-down Enrich-GHSOM classification 

process, vector similarity computations take place between 

the vector representations of the classified documents (which 

represent concepts of ontology 1) on one hand, and the 

vector representations of the documents which represent the 

taxonomic nodes (of ontology 2) traversed by the ontology 1 

concepts on the other hand. The union of all the words used 

as features for the classified ontology 1 concepts and for the 

taxonomy 2 nodes constitutes a global vocabulary.

A. Vector Representation

Since Enrich-GHSOM is a neural network system, the 

ontology 1 concepts classified by Enrich-GHSOM and the 

concepts of taxonomy 2 have to be represented as vectors. In 

our framework, the features of the vector representation of a 

concept encode semantic content information in an Rn vector 

space. Specifically, the features are the frequencies of 

occurrence of different words in the document representing 

the concept.

In such a setting, the meaning of semantically similar 

concepts is expressed by similar vectors in the vector space. 

The Euclidean distance is used in our current model to 

compute the dissimilarity between vectors.

The framework allows different ways to encode the 

frequencies of occurrence: simple flat counts of occurrences, 

the TF-IDF weighting scheme, and the word category 

histograms (WCH). One of these representations, i.e. the TF-

IDF (“term (or word) frequency times inverse document 

frequency”) weighing scheme is commonplace for text 

document classification settings, which is also the case for 

our model.

The third method from the enumeration above encodes the 

vector representation as a word category histogram (WCH). 

In order to compute such histograms, first a SOM map [8] is 

trained having the global vocabulary of words as input data 

space to arrive at a reduced set of semantic categories of 

words. Words with similar meaning are clustered together by 

the unsupervised SOM neural network. In this SOM training, 

the words are represented as vectors of frequencies of their 

occurrence in the different concept documents. Equally like 

the document vectors, the word vectors are collected from 
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the same word/document occurrence matrix, but after 

transposing this matrix.

For a given document, by summing together the 

frequencies in document of all the words that belong to one 

and the same category, and merely keeping these summed 

frequencies of the words per categories as histogram vector 

features, we arrive at a reduced dimensionality for the 

document vector representation. In other words, the WCH 

histogram is obtained by counting the occurrences for words 

of distinct categories instead of counting the occurrences of 

distinct words. The categories of words are in fact semantic 

categories of words, as induced by training the SOM map on 

the entire global vocabulary of words used in the concept 

documents. By reducing the dimensionality of the feature 

vectors, the word category histograms also reduce the data 

sparseness of the vector representations in our setting.

The vector representations are sparse, since the concept 

documents are small, and consequently each document 

contains only a few of the global vocabulary of words. For 

the rest of the words, the document vector has value zero as 

the feature corresponding to a word that is absent from the 

document. Besides using the WCH histograms, two other 

ways of reducing the number of zeros in our vector 

representations are the centroid vector and the category 

vector [10, 2]. In our current experiments, they are only used 

for reducing the data sparseness of the ontology 2 concept 

documents, in order to improve the semantic discrimination 

power of taxonomy 2, which plays the role of a decision tree. 

We have used the idea of centroid in the following way: the 

average vector of the vector representations of all the 

concepts in the sub-tree rooted by the given concept, 

including the root itself. Likewise, the category vector of a 

sub-tree is the sum of all the concept vectors of the sub-tree, 

normalized to unit length (unit norm).

V. EXPERIMENTAL RESULTS

We have evaluated our ontology matching approach with 

the Ontology Alignment Evaluation Initiative1 (OAEI) 

benchmark data set for the bibliography domain [5, 3]. The 

set consists of a suite of ontologies obtained by altering an 

initial ontology. The alterations have been made along with 

different aspects, such as the class and property names, 

removing the properties or the instances, distorting the 

specialization hierarchy (i.e. the taxonomy, the subclass 

relations) etc. The result is a set consisting of more than 50 

pairs of ontologies to be matched, where ontology 1 is one of 

the altered ontologies and ontology 2 is the initial ontology.

A. Experimental Setup

The initial ontology from the OAEI benchmark suite of 

ontologies consists of 33 concepts. 24 of them are established 

into the Reference taxonomy, having the concept Reference 

in the root. The remaining concepts are called “special 

classes”  by the authors of the benchmark suite. They are 

arranged in very small taxonomies or alone, playing rather 

the role of range concepts for the relations which start (as 

domain) from the 24 concepts in the Reference taxonomy. 

1  http://oaei.ontologymatching.org/

The concept Reference is the most generic concept in the 

bibliography topic, having the meaning of “any bibliographic 

reference”. Figure 3 illustrates this Reference taxonomy, 

which always plays the role of “ontology 2”  (initial 

ontology) in the experiments described below. In all of our 

experiments we classify the document-style “ontology 1” 

concepts against the Reference taxonomy, where ontology 1 

is one of the altered ontologies.

For the experimental evaluation, we assess the mapping 

from ontology 1 concepts to ontology 2 concepts. We 

evaluate the correctness of the pairs (o1_concept, 

o2_concept) by comparison to a reference alignment. As 

being a benchmark suite for evaluating the ontology 

matching algorithms, the OAEI bibliography dataset comes 

equipped with a reference alignment for each of the pairs of 

ontologies to be matched. A reference alignment is a list of 

concept pairs where the correctness of the pairs has been 

found consensually by people.

Figure 3. The Reference taxonomy - “ontology o2”.

B. Evaluation Measures

The most important measure proposed in the literature for 

evaluating the ontology matching systems is the pair 

consisting of precision and recall. Their computation is 

based on counting the correct and the incorrect pairs of 

concepts from the matched ontologies. This is an “all-or-

nothing” measure, and the alignments found by an ontology 

matching system can nevertheless contain near misses, i.e. 

pairs of concepts (o1_concept, o2_concept) that are 

semantically close to a correct pair. This observation led to 

the relaxed precision and recall, which are weighted by a 

measure of overlap proximity [5]. One of the overlap 

proximities proposed is the symmetric one [5], which weights 

the precision and recall by the similarity between the concept 

from the alignment found by the system S and the concept 

from the reference alignment R. The similarity between two 

concepts is understood here as a taxonomic similarity. It is 

inverse proportional with the taxonomic distance between the 

concepts in terms of the number of taxonomy edges which 

separate the two concepts in the ontology the concepts 

belong to. This ontology can be either of the two ontologies 
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o1 and o2 being matched, so, symmetrically, both elements 

o1_concept and o2_concept of the pairs are compared in the 

system alignment S versus the reference alignment R.

We propose here an evaluation measure inspired from the 

area of semantic classification (like ontology enrichment and 

named entity classification): the learning accuracy [6, 2, 10, 

1, 13]. By choosing this measure, we consider correct 

semantic classifications with different levels of detail. For 

instance, the named entity Tom can be mapped to the concept 

cat, feline, carnivore, mammal, or animal with different 

levels of detail, as a consequence of different hypernym-

hyponym taxonomic distances between the concept chosen 

by the system and the correct one. Consequently, being a 

“near miss”  measure (as opposed to “all-or-nothing”), and 

also by weighting the semantic closeness by the same 

measure of taxonomic distance, the learning accuracy is in 

agreement with the relaxed precision and recall proposed in 

the ontology matching literature. The only difference is that, 

somehow non-symmetrically, we measure the taxonomic 

similarity between the system alignment S and the reference 

alignment R only in what concerns o2_concept, so only for 

the second component of the pairs in the two compared 

alignments S and R. This is because our ontology matching 

system classifies semantically any given (fixed) o1_concept 

against the ontology o2.

For a given concept o1_concept, let s be the concept (from 

ontology o2) assigned by the system, and r be the correct 

concept according to the reference alignment. Then the 

learning accuracy is the average over all the classified 

concepts o1_concept (from ontology o1) of the function 

LA(s, r), where the function LA is defined as in [6]:

δ(top, a) + 1

           LA(s, r) = --------------------------------------       (1)

 δ(top, a) + δ(a, s) + δ(a, r) + 1

Where top is the root of the taxonomy, and a is the least 

common subsumer of the concepts s and r (i.e. the most 

specific common hypernym of s and r). δ(x, y) is the 

taxonomic distance between concepts x and y. The learning 

accuracy has a real value between 0 and 1, also interpreted as 

a percentage between 0 and 100%.

In the experimental results reported in this paper, the 

symmetric learning accuracy actually corresponds to the 

definition in formula (1), and the learning accuracy is a 

historically initial version of the learning accuracy measure 

introduced by [7] and also defined in [6]:

 δ(top, a) + 1

LA’(s, r) =     ------------------         if s is ancestor of r

        δ(top, r) + 1              (then also a = s)

         δ(top, a) + 1                      (2)

      LA’(s, r) =    --------------------------------   otherwise

δ(top, a) + 2 * δ(a, s) + 1

We evaluated our experiments in terms of both variants of 

the learning accuracy and also a third variant of it, which is 

called edge measure. The edge measure counts literally the 

taxonomic distance between the system predicted concept s 

(i.e. according to the system alignment) and the one from the 

reference alignment r.

C. Evaluation Results

In the experiments reported in tables I to IV, we use the 

following notations. Flat means document vectors 

represented as flat counts of occurrences. When TFIDF 

occurs together with WCH, then the TF-IDF weighting 

scheme is first applied to the flat count document vectors. 

Then the result TF-IDF vectors are converted into WCH 

histograms, thus reducing the concept vector dimensionality. 

WHCM means “big histograms”, i.e. the vector 

dimensionality is about 100 for the different experimental 

runs, whereas WCHm means “small histograms”, and the 

vector dimensions are only about 35. Centr and categ are the 

means to compute the vector of a taxonomic node of 

ontology o2, as a centroid or as a category of all the nodes in 

the subtree of the concept node.

Table I illustrates the results of matching the initial 

ontology (playing the role of ontology 2) with an ontology 

(acting as ontology 1) altered by substituting the concept 

names with synonyms, e.g. Unpublished became 

Manuscript, and LectureNotes became CourseMaterial. This 

pair of ontologies is the test nr. 205 in the OAEI benchmark 

suite and the test pair is equipped (built-in in the dataset) 

with the following reference alignment:

R205  =  { (Manuscript, Unpublished),

 (CourseMaterial, LectureNotes), (3)

… }

In the altered ontology of the test pair in Table II all the 

properties and relations have been removed from the initial 

ontology. In table III ontology 1 from the test pair has been 

altered by completely translating the initial ontology (except 

the comments) in French. Unpublished becomes NonPublié 

and LectureNotes becomes Polycopié. Table IV shows a test 

pair in which the altered ontology has an enriched taxonomic 

structure as compared to the initial ontology. The altered 

Reference taxonomy o1 has 45 concepts compared to 24 of 

the initial Reference taxonomy o2 (see Figure 4 versus 

Figure 3).

Across the three tests, there is a natural tendency that 

using the TF-IDF weighting measure improves the results. 

TF-IDF is a semantic-oriented scheme, which gives a higher 

weight to the words appearing in fewer documents. This 

leads to an increase in the semantic discrimination power 

between documents (actually between concepts in our 

setting, since the concepts are represented by documents). At 

the same time, there is also a slight improvement when 

representing ontology 2 concepts as category, as compared 

to representing them as centroid.

938 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011



TABLE I. ALIGNMENT 205 – SYNONYMS

Experiment

Symmetric 

Learning 

Accuracy

Learning 

Accuracy
Edge Measure

flat, centr 0.329861 0.368055 2.458333

flat, WCHM, 

centr 0.315972 0.343055 2.333333

flat, WCHm, 

centr 0.430555 0.423611 1.583333

TFIDF, centr 0.427083 0.430555 1.625

TFIDF, 

WCHM, centr 0.40972 0.40278 1.66667

TFIDF, 

WCHm, centr 0.45833 0.46667 1.75

flat, categ 0.33681 0.35139 2.70833

flat, WCHM, 

categ 0.37847 0.39583 2.16667

flat, WCHm, 

categ 0.38125 0.39861 2.16667

TFIDF, categ 0.5 0.5 1.375

TFIDF, 

WCHM, categ 0.43403 0.4375 1.70833

TFIDF, 

WCHm, categ 0.48958 0.49444 1.54167

TABLE II. ALIGNMENT 228 – NO PROPERTY

Experiment

Symmetric 

Learning 

Accuracy

Learning 

Accuracy
Edge Measure

flat, centr 0.30903 0.35556 2.58333

flat, WCHM, 

centr 0.30903 0.35556 2.58333

flat, WCHm, 

centr 0.37847 0.38889 1.91667

TFIDF, centr 0.5625 0.5625 1.20833

TFIDF, 

WCHM, centr 0.40972 0.40972 1.625

TFIDF, 

WCHm, centr 0.38542 0.40972 2

flat, categ 0.39792 0.39444 2.54167

flat, WCHM, 

categ 0.39583 0.43056 2.25

flat, WCHm, 

categ 0.39722 0.4125 2.29167

TFIDF, categ 0.76389 0.72917 0.79167

TFIDF, 

WCHM, categ 0.59792 0.59444 1.33333

TFIDF, 

WCHm, categ 0.38681 0.40417 2.08333

The very best results attained (76.4%) are in the case 

when the properties are suppressed, whereas the second best 

accuracy corresponds to the expanded taxonomy (63.2%). 

This is not a surprise, since in both cases the altered 

ontology keeps the concept names the same as in the initial 

ontology. Finally, the worst accuracy (a maximum of 

47.2%) is obtained when the alteration means a translation to 

French. In this case the semantic classifier, which is the 

heart of our ontology matcher, had to face the cross 

language problem.

VI. CONCLUSIONS AND FURTHER WORK

We have presented an unsupervised top-down neural 

network based model for class based ontology matching. The 

matching is cast as a document classification problem, where 

the concepts of the two ontologies being matched are 

considered as text documents. The matcher provides good 

alignment results, which means a reduced effort required 

from a user assistant to fix the alignments found by the 

system.

As future work, we will use other data sets from the 

Ontology Alignment Evaluation Initiative, such as real life 

expressive ontologies in the anatomy domain, or large 

thesauri in the agriculture domain. For the sake of symmetry 

TABLE III. ALIGNMENT 206 – FOREIGN NAMES

Experiment

Symmetric 

Learning 

Accuracy

Learning 

Accuracy
Edge Measure

flat, centr 0.35764 0.35556 1.91667

flat, WCHM, 

centr 0.35417 0.36806 2.08333

flat, WCHm, 

centr 0.375 0.36806 1.75

TFIDF, centr 0.38889 0.38194 1.66667

TFIDF, 

WCHM, centr 0.39931 0.39028 1.70833

TFIDF, 

WCHm, centr 0.4375 0.4375 1.54167

flat, categ 0.32431 0.33472 2.20833

flat, WCHM, 

categ 0.38542 0.41667 2.08333

flat, WCHm, 

categ 0.38889 0.40278 1.95833

TFIDF, categ 0.43056 0.43056 1.58333

TFIDF, 

WCHM, categ 0.42014 0.41806 1.66667

TFIDF, 

WCHm, categ 0.46528 0.47222 1.54167

TABLE IV. ALIGNMENT 238 – EXPANDED HIERARCHY

Experiment

Symmetric 

Learning 

Accuracy

Learning 

Accuracy
Edge Measure

flat, centr 0.37153 0.40278 2.33333

flat, WCHM, 

centr 0.43403 0.44444 1.875

flat, WCHm, 

centr 0.41667 0.43056 1.95833

TFIDF, centr 0.58333 0.56944 1.16667

TFIDF, 

WCHM, centr 0.51042 0.50694 1.41667

TFIDF, 

WCHm, centr 0.48056 0.48056 1.66667

flat, categ 0.38889 0.40556 2.45833

flat, WCHM, 

categ 0.46806 0.46944 2.04167

flat, WCHm, 

categ 0.39583 0.43056 2.25

TFIDF, categ 0.57639 0.5625 1.20833

TFIDF, 

WCHM, categ 0.63194 0.62639 1.16667

TFIDF, 

WCHm, categ 0.47292 0.49861 2.04167
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and a perfect compliance with the relaxed precision and 

recall used in the literature [5], we will interchange the role 

of “ontology 1”  and “ontology 2”  as defined in our setting. 

We will compute the learning accuracy of classifying 

ontology 1 concepts against the taxonomy of ontology 2, 

then interchange the two ontologies and compute again the 

learning accuracy. The final measure for the quality of 

matching will be the average of the learning accuracy of the 

two symmetric alignments found by the matcher.
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