
Formal Verification of Business Processes as Role
Activity Diagrams

Amelia Bădică∗ and Costin Bădică†

∗University of Craiova, Romania, Email: ameliabd@yahoo.com
†University of Craiova, Romania, Email: costin.badica@software.ucv.ro

Abstract—Business process modeling is performed during the
requirements analysis and specification of business software
systems. Checking qualitative aspects of business processes is
required for quality assurance, as well as for compliance with
non-functional requirements. We show how business process
models represented as Role Activity Diagrams can be formally
checked using process algebras and temporal logics.

I. INTRODUCTION

MODERN organizations are process-centered and the

truth of the statement “process precedes information”

[1] is now widely recognized. This explains why most of the

frameworks for organizational modeling and design emphasize

the role of processes and process modeling from the high level

description of the organization to the underlying IT support

systems. Nevertheless, most often, the mapping of business

process models to IT applications is defined in an ad-hoc way

and the support for managing this mapping is poor. Even if

the importance of a separate modeling stage was recognized

and a preliminary business process modeling activity is carried

out, the resulting model does not have a formal computational

semantics and thus it is difficult to map it onto an IT language.

On the other hand, the language spoken by IT specialists is

too technical, so it is hard to link it up to higher level goals

of the organization stated by business analysts.

Consider for example the requirements analysis for an IT

system supporting a process-centered business organization.

The set of resulting requirements usually contains functional,

non-functional, as well as domain specific requirements. Ac-

cording to [2] (i) non-functional requirements may be very

hard to verify, as the customers describe them using high-level

and informal goals that usually apply to the system or process

as a whole, rather than to a specific functionality, and (ii)

domain requirements are usually very difficult to understand

and specify by non-experts of the application domain. Recent

works proposed methods to link non-functional requirements

to business process models via goal analysis [3], although the

support for automated verification is lacking.

Second, during the last decade, several formal approaches

for business process modeling and design were proposed,

relying on sound logical approaches. We classified them into

(i) lightweight formalizations that use classic first-order logics

[4], (ii) heavyweight formalizations based on temporal logics

[5], and (iii) hybrid approaches that combine first-order and

more advanced (e.g. dynamic or temporal) logics [6].

Third, software engineering provides sound formal mod-

eling and verification techniques for the modeling and ver-

ification of software specifications. These methods are now

well-supported by model checking technologies [5] and their

practical application was improved by introduction of property

verification patterns that can be expressed using temporal

logics [7]. Recently, the application of formal methods was

extended to business processes [8], [9]. A significant step

ahead was achieved by introduction of property verification

patterns for business process models [10], recently enhanced

with visual notations [11], [12]. In particular, model checking

can be applied for quality assurance of business processes [13],

[9].

We conclude that business process modeling is necessary

during the requirements analysis and specification of a busi-

ness software system for a process-centered organization.

Checking qualitative aspects of business processes is required

for quality assurance, as well as for compliance with non-

functional or domain specific requirements. However, although

the software technology that could help to automate this

verification exists, the main difficulty is the semantic gap

between the languages “spoken” by the business analysts and

the IT people. While business analysts are using high-level

diagrammatic notations with an intuitive meaning and closer

to the business world, IT people are using low-level compu-

tational languages that are closer to the computing world. We

claim that the missing bit that hinders their clean interaction

is the lack of, broadly understood, formal rigor of the current

notations used by both business and IT communities.

We propose our contribution for bridging this gap by focus-

ing on formal modeling and verification of business processes

represented as Role Activity Diagrams (RAD) [1]. We are

aware of the large variety of modeling languages that were pro-

posed for the business and software engineering communities,

including the most recent Business Process Modeling Notation

(BPMN)1. Our chose RAD because: (i) RAD was used for

modeling requirements of business processes [12], [14], [15];

(ii) RAD has formal semantics that we introduced in [8];

thus the extension of this work to formal verification is quite

natural and straightforward; moreover RAD is at the core of

the formalism for knowledge-based modeling of organizations

proposed in [6]; (iii) RAD is intuitive and more appropriate

for business analysts [1]; (iv) while the focus of other process

1http://www.bpmn.org/

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 277–280

ISBN 978-83-60810-22-4

978-83-60810-22-4/$25.00 c© 2011 IEEE 277

Fig. 1: Sample RAD model for a design project

notations, like UML activity diagrams and BPMN is set on the

technical aspects including standardization, interoperability,

and integration with software modeling languages, the focus

of RAD is set on addressing the high-level needs of a process

modeler from business rather than technical perspective.

II. AN EXAMPLE OF FORMAL VERIFICATION

RAD is a visual notation for business process modeling

[1]. We consider the Finite State Process algebra (FSP) model

of a RAD process and show how it can be cheacked against

qualitative properties represented using temporal logics. FSP

is introduced in [16] and the mapping of RAD to FSP is

presented in [8].

Sample Formal Model. Let us consider the RAD model of

the design process shown in Figure 1. Its FSP model is shown

below. Note that the meaning of the actions used in this FSP

model is given in Table I.

‖DD0 = SS/{npa/o}.
‖DD1 = L/{npa/i, atp/o}.
‖DD2 = E/{atp/i}.
‖DivisionalDirector = (DD0 ‖ DD1 ‖ DD2).

‖D0 = SS/{atdd/o}.
‖D1 = L/{atdd/i, dp/o}.
‖D2 = L/{dp/i, cm/o}.
‖D3 = L/{dp/i, pe/o}.
‖D4 = L/{cm/i, ds/o}.
‖D5 = L/{pe/i, re/o}.
‖D6 = L/{re/i, gpd/o}.
‖D7 = L/{gpd/i, ds/o}.
‖D8 = L/{ds/i, pdm/o}.
‖D9 = L/{{nok, pdm}/i, cdqc/o}.
‖D10 = L/{cdqc/i, {nok, ok}/o}.
‖D11 = L/{ok/i, paef/o}.
‖D12 = L/{paef/i, psaef/o}.
‖D13 = E/{psaef/i}.
‖Designer = (D0 ‖ D1 ‖ D2 ‖ · · · ‖ D13).

‖PM0 = SS/{atp/o}.
‖PM1 = L/{atp/i, wtd/o}.
‖PM2 = L/{wtd/i, atdd/o}.
‖PM3 = L/{atdd/i, re/o}.
‖PM4 = L/{re/i, pp/o}.
‖PM5 = L/{pp/i, gpd/o}.
‖PM6 = L/{gpd/i, psaef/o}.
‖PM7 = L/{psaef/i, pdr/o}.
‖PM8 = E/{pdr/i}.
‖ProjectManager = (PM0 ‖ PM1 ‖ PM2 ‖ · · · ‖ PM8).

‖System = (DivizionalDirector ‖ Designer ‖
ProjectManager).

Sample Verification. Formal modeling of business pro-

cesses has the advantage that models can be systematically

checked against user-defined properties. A property is defined

by a statement that should be true for all the possible execution

paths of the process. A property is used to describe a desirable

feature of the system behavior. Formal definition of business

process properties has the advantage that it enables their

concise, rather than speculative analysis.

Properties of software systems are expressed as temporal

logic formulas [5]. Temporal logics are used for declarative

specification of properties of dynamic systems defined as

labeled transition systems, including business processes. A

property holds if the associated formula is true for all the

possible executions of the system, as it is described by the

system model. For system models captured using FSP it was

shown that a convenient logic for property specification is

fluent linear temporal logic (FLTL) [16].

In FLTL primitive properties are expressed using fluents. A

fluent is a property whose truth is triggered by an initiating

event and that holds until the signalling of a terminating event.

In FSP it is natural to model initiating and terminating events

by execution of specific actions. Every action a defines a

singleton fluent F (a) having a as the single initiating action

and the rest of all actions as terminating actions. A singleton

fluent F (a) is usually written as a in FLTL formulas.

FLTL formulas are built over fluent propositions using the

logical operators ∧,∨,→,¬ and temporal operators X (next),

U (until), W (weak until), F (eventually) and G (always)

[16]. A property P is specified using an FLTL formula Φ.

At the core of a verification task is the activity of property

specification. This activity is recognized as very difficult,

because on one side it requires special skills in formal spec-

ification using temporal logics, while on the other side it

requires a good understanding of the target application domain.

Nevertheless, some steps have been made in order to help the

human modeler to produce specifications of properties by the

introduction of specification patterns [7], [10], [11]. However,

278 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

TABLE I: Mapping of RAD elements onto FSP actions.

Action RAD entity name RAD entity type Role

npa New project approved External event Divisional Director

atp Agree TOR for project Interaction Divisional Director, Project Manager

wtd Write TOR for Designer Activity Project Manager

atdd Agree TOR for Designer and delegate Interaction Designer, Project Manager

dp n/a Part splitting Designer

cm Choose a method Activity Designer

pe Prepare and estimate Activity Designer

re Receive and estimate Interaction Designer, Project Manager

ds n/a Parts synchronization point Designer

gpd Give Plan to Designer Interaction Designer, Project Manager

pdm Produce Design using Method Activity Designer

cdqc Carry out design quality check Activity Designer

paef Prepare Actual Effort Figures Activity Designer

psaef Pass Actual Effort Figures Interaction Designer, Project Manager

pp Prepare a plan Activity Designer

gpd Give Plan to Designer Interaction Designer, Project Manager

nok Not ok Case refinement Designer

ok Ok Case refinement Designer

pcd Project completed and debriefed State description Project Manager

in our opinion even with the availability of visual specification

patterns [12] we are still far from bridging the gap between

requirements analysis and verification, as pointed out in the

introduction of this paper. Nevertheless, we found very useful

the use of patterns to specify simple properties for the process

example considered in this paper.

In our case we considered two sample properties:
P1 Each project approved must be eventually completed and debriefed.
P2 Each project cannot be completed and debriefed without being approved

by a design quality check.

Based on a rigorous analysis of the business domain,

[10] proposed four classes of property specification patterns

for business process models; tracing, consequence, combined

occurrence, and precedence. Those two properties were for-

malized using consequence and precedence patterns by refor-

mulating them as follows:
P1 The action “New project approved” leads to reaching the state “Project

completed and debriefed”.
P2 The state “Project completed and debriefed” requires the action “Carry

out design quality check” to return a positive response.

Their formal description using FLTL is as follows:

assert P1 = G (npa → F pcd)

assert P2 = ((¬pcdU ok) ∨G¬pcd)

We have checked the sample process model against these

two properties with the help of Labelled Transition System

Analyser (version 3.0)2. Both P1 and P2 were found as not

violated by the process model. However, the analysis of P2

revealed a deadlock that can be explained as follows. A

property check assumes three steps: (i) construction of a new

process coresponding to the given property; (ii) computation

of the parallel composition of the original process with the

property process; (iii) performing a graph analysis of the re-

sulting parallel composition. In our case, the resulting parallel

composition has a deadlock because the property P2 does not

2http://www.doc.ic.ac.uk/∼jnm/book/ltsa/download.html

explicitly check that action pcd actually occurs, while in the

original process this action will always eventually occur.

This simple experiment revealed a number of difficulties

with the application of formal specification to requirements

verification of business process models.

• The formal business process model is very difficult to

understand and maintain. Without a proper management

of the links between the formal model and the initial RAD

model, it is impossible to manage large and complex

process models.

• The formalization of requirements is very difficult to

realize, even with the availability of property specification

patterns. Additional support, beyond patterns, is needed

to better manage the requirements and their mapping to

formal properties.

• The results of the verification process are very difficult to

interpret. Special support to link them back to the RAD

model, as well as to explain them to the human modeler

is lacking.

III. CONCLUSIONS

We introduced a method for checking qualitative properties

of business processes represented as RADs using the for-

mal specification languages of process algebras and temporal

logics. We presented our initial analysis of the problems

encountered during the application of formal verification for

checking requirements of business processes. In our opinion

the core technologies already exist. However, the necessary

links between them are lacking. We think that the main cause

is the gap between the languages spoken by the business

and computing communities. We plan to address this issue

as medium term future work. In the short term we plan to

enhance our results by considering more complex processes

and properties.

AMELIA BADICA, COSTIN BADICA: FORMAL VERIFICATION OF BUSINESS PROCESSES REPRESENTED AS ROLE ACTIVITY DIAGRAMS 279

ACKNOWLEDGMENT

The work reported here was partly supported by (i) the

research project “SCIPA: Servicii software semantice de

Colaborare si Interoperabilitate pentru realizarea Proceselor

Adaptive de business” with the National Authority for Sci-

entific Research, Romania and partly by (ii) the research

project “Agent-Based Service Negotiation in Computational

Grids” between Systems Research Institute, Polish Academy

of Sciences, Poland and Software Engineering Department,

University of Craiova, Romania.

REFERENCES

[1] M. A. Ould, Business Process Management: A Rigorous Approach.
British Computer Society, 2005.

[2] I. Sommerville, Software Engineering, 9/E. Addison-Wesley, 2011.
[3] F. Aburub, M. Odeh, and I. Beeson, “Modelling non-functional require-

ments of business processes,” Information and Software Technologies,
vol. 49, no. 11-12, pp. 1162–1171, 2007.

[4] Y.-H. Chen-Burger and D. Robertson, Automating Business Modelling.
Springer, 2004.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The
MIT Press, 1999.

[6] M. Koubarakis and D. Plexousakis, “A formal framework for business
process modelling and design,” Information Systems, vol. 27, no. 5, pp.
299–319, 2002.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proc.21st international

conference on Software engineering (ICSE 1999). IEEE Computer
Society Press, 1999, pp. 411–420.

[8] A. Bădică, C. Bădică, and V. Liţoiu, “Role activity diagrams as finite
state processes,” in Proc.2nd International Symposium on Parallel and

Distributed Computing (ISPDC 2003). IEEE Computer Society, 2003,
pp. 15–22.

[9] B. B. Anderson, J. V. Hansen, P. B. Lowry, and S. L. Summers, “Model
checking for e-business control and assurance,” IEEE Transactions on

Systems, Man, and Cybernetics, vol. 35, pp. 445–450, 2005.
[10] W. Janssen, R. Mateescu, S. Mauw, P. Fennema, and P. v. d. Stappen,

“Model checking for managers,” in Proceedings of the 5th and 6th

International SPIN Workshops on Theoretical and Practical Aspects of

SPIN Model Checking, ser. Lecture Notes in Computer Science, vol.
1680. Springer-Verlag, 1999, pp. 92–107.

[11] A. Forster, G. Engels, T. Schattkowsky, and R. Van Der Straeten, “Ver-
ification of business process quality constraints based on visual process
patterns,” in Proceedings of the First Joint IEEE/IFIP Symposium on

Theoretical Aspects of Software Engineering. IEEE Computer Society,
2007, pp. 197–208.

[12] A. Awad, M. Weidlich, and M. Weske, “Visually specifying compliance
rules and explaining their violations for business processes,” Journal of

Visual Languages and Computing, vol. 22, no. 1, pp. 30–55, 2011.
[13] W. Wang, Z. Hidvégi, A. D. Bailey, and A. B. Whinston, “E-process

design and assurance using model checking,” Computer, vol. 33, no. 10,
pp. 48–53, 2000.

[14] N. V. Patel, “Healthcare modelling through role activity diagrams for
process-based information systems development,” Requirements Engi-

neering, vol. 5, no. 2, pp. 83–92, 2000.
[15] S. Bleistein, K. Cox, J. Verner, and K. Phalp, “Requirements engineering

for e-business advantage,” Requirements Engineering, vol. 11, no. 1, pp.
4–16, 2006.

[16] J. Magee and J. Kramer, Concurrency. State Models and Java Programs,

2/E. John Wiley & Sons, 2006.

280 PROCEEDINGS OF THE FEDCSIS. SZCZECIN, 2011

